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ON A CONJECTURE OF GOLOMB

W. H. MILLS AND NEAL ZIERLER

On the basis of empirical evidence for n = 2, 3, 4, and 5
Golomb has conjectured that the degree of every irreducible
factor of

F(x) = x2%+1 + x271'1-1 + 1

over GF(2) divides 6(n — 1). We prove the stronger result
that the degree of every irreducible factor of F(x) divides
either 2(n — 1) or 3(w — 1), but not n — 1.

It follows from this that F(x) = F^F^x), where the degrees
of the irreducible factors of Fx{x) divide 2(n — 1), and the degrees of
the irreducible factors of F2(x) divide S(n — 1). The polynomials
Fx(x) and F2(x) have a number of interesting properties that we
discovered for small values of n by computer runs, and that later
we were able to prove for arbitrary values of n. It is noteworthy
that not only were these properties suggested by computer runs,
but the central ideas of their proof were also suggested by these
runs. The key lemma in our study of Fλ(x) and F2(x) was actually
discovered for n = 2, 4, and 6 by machine. It was then not difficult
to prove it for arbitrary n.

1* A proof of Golomb's conjecture* In this paper all poly-
nomials are over GF(2).

Let n be an integer, n ^ 2, and set r = 2n~\ The polynomial we
are interested in is

F(x) = x2r+1 + xr~ι + 1.

Set

K = GF(r), L = GF(r2), M = GF(r*) .

THEOREM 1. Let a be a root of F(x). Then agK and either
aeL or ar2+r+1 = 1.

Proof. Suppose a is in K. Then ar~γ — 1 and

0 = F(a) = a2r+1 ,

which is impossible. Hence a is not in K. Next we observe that

( 1 ) F(xr) + xr2~rF(x) = (x'2-1 + l)(xr2+r+1 + 1) .
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The identity (1) is readily verified by expanding both sides. Since r
is a power of 2, we have F(x) | F(xr) so that

F(x) (x1-2-1 + l)(xr2+r+1 + 1) .

Therefore, either a'2-1 = 1, in which case aeL, or ar2+r+1 = 1.
Since r2 + r + 1 is a factor of r3 — 1 it follows from Theorem 1

that any root a of F(x) lies in either L or M, but not in K. This
implies that the degree of every irreducible factor of F(x) divides
either 2(n — 1) or 3(n — 1), but not n — 1. Thus, Theorem 1 implies
the truth of Golomb's conjecture.

2* The polynomial G(x). We can obtain more information about
the roots of F(x) by studying the closely related polynomial

G{x) = (xr + x1"1 + l)(xr+1 + x + 1) .

We begin by observing that the following identity holds:

( 2 ) (x2r+1 + l)F(x2r) + α>2r(r-1)ίτ(a0 = G(#2r+1) .

The identity (2) is readily verified by expanding both sides.

LEMMA 1. If a is a root of F(x), then a2r+1 is root of G(x).

Proof. Since r is a power of 2, we have F(x) \ F(x2r). Hence (2)
gives us F(x) | G(x2r+i). Therefore F{a) = 0 implies that G(α2r+1) = 0,
which proves the lemma.

Set G,(x) = xr + xr~ι + 1 and G2{x) = x1^1 + x + 1, so that G(x) =
Gi(a?)G2(ίc). Let Jϊ(α;) be the polynomial whose roots are the inverses
of the roots of G^x). Thus H{x) = xr + a? + 1. It is known1 that the
roots of H(x) lie in the field L, but not in K, and the roots of G2(x)
lie in M. This is easily seen by looking at the effect of the automor-
phism σ given by σω = ωr for all ω in the splitting field of G(x).
Thus if £ is a root of H(x), then σ/3 = β + 1, so that σ2β = /9,
α/3 ^ /3. This implies that /S lies in L but not in K. On the other
hand, if β is a root of G2(x), then (7/3 = 1 + β~\ σ2β = (1 + /S)-1, and
<73/3 = /3, which implies that β lies in M. It follows that the roots
of Gι{x) lie in L but not in iΓ, and that Gx(α;) and G2(x) have no com-
mon roots.

Since the trinomial xa + xb + 1 has multiple roots if and only if
a and δ are both even, we see that Gx(x) and G2{x) do not have mul-
tiple roots. Hence G(x) does not have multiple roots. Moreover F(x)
does not have multiple roots.

1 These results have been credited to J. Riordan. See [1, p. 93].



ON A CONJECTURE OF GOLOMB 637

LEMMA 2. Let a be a root of F(x) and let β = a2r+1. If β is a
root ofGι(x)9 then a lies in L. If β is a root of G2(x), then ar2+r+1 =
1 and a lies in M.

Proof. We have

0 = F(a) = β + ar~ι + 1 ,

so that

1 + β = α"-1 .

Suppose first /S is a root of G^x). Then

Hence

so that α 6 GF(r2) = L.

On the other hand, suppose that β is a root of Gz(x). Then

α'- 1 = 1 + β = /3 r + 1 = α ( 2 r + 1 ) ( r + 1 ) .

Therefore

or

Since r2 + r + 1 divides r3 — 1, we have

and the proof is complete.
We note that Lemmas 1 and 2 imply Golomb's conjecture. This

gives us a second, but longer, proof of his conjecture—one whose main
idea was suggested by computer results.

3* The polynomials Fx{x) and F2(x). By Theorem 1 we can
write

F(x) = Ft{x)F2{x) ,

where every root of Fx(x) lies in L but not in K, and every root of
F2(x) lies in M but not in K. Since L Γ) M = K the factors Ft(x) and
F2(x) are uniquely determined. If a is a root of F^x), then a2r+1 is
a root of Gi(x). If a is a root of F2(x), then α 2 r + 1 is a root of G2(x).
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The degree of every irreducible factor of F^x) divides 2(n — 1), but
not n — 1. The degree of every irreducible factor of F2(x) divides
3(n — 1) but not n — 1.

For 2 <̂  n ^ 18, our computer results showed that

[r if n is even ,
( 3 ) degree of Fλ{x) = \ i „ .„

(r - (-2) 2 ( % + 1 ) if w is odd .

In this section we will prove that (3) holds for all n ^ 2. We
use the following characterization of the roots of Fx(x)\

LEMMA 3. An element a of L is a root of F^x) if and only if
a2r+1 is a root of Gλ(x).

Proof. It has already been shown that if a is a root of F^x),
then a2r+1 is a root of Gx(x). Now let a be an element of L, set β =
a2r+1, and suppose that β is a root of Gλ{x). Since a7"2™1 = 1 we have
(aβ)r~ι = 1. Therefore

βr~ιF{a) - βr~\β + ar~x + 1)

= βr + 1 + /S7-1 = 0,

so that a is a root of F(x). Since α e L , it follows that a is a root
of F,(x).

Similarly it may be shown that an element a of M such that

ar2+r+1 = 1

is a root of F2(x) if and only if a2r+1 is a root of G2(x).

LEMMA 4. Let β he a nonzero element of L, and let R(β) denote
the number of elements a in L such that a2r+1 = β. Then

ί
l if n is even ,

3 if n is odd and β is a cube in L ,

0 otherwise .

Proof. Any common divisor of 2r + 1 and r2 — 1 must divide

(2r - l)(2r + 1) - 4(r2 - 1) = 3 .

Since r = 2n~\ it follows that the greatest common divisor of 2r + 1
and r2 — 1 is 1 if n is even and is 3 if n is odd.

Since r2 — 1 is the order of the multiplicative group of L, and
since this group is cyclic, the result (4) follows at once.

THEOREM 2. Suppose n is even. Then the degree of Fλ(x) is r
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and the degree of F2(x) is r + 1.

Proof. It follows from Lemmas 3 and 4 that Ft(x) and Gx{x)
have the same degree. Therefore, the degree of Fλ(x) is r. Since
F(x) = FJjήF^x) and the degree of F(x) is 2r + 1, the degree of
F2(x) is r + 1.

For w odd the situation is clearly more complicated.

THEOREM 3. Suppose n is odd. Then the degree of Ft(x) is
r - (-2)*(%+1) and the degree of F2(x) is

((_2)^~1> - I ) 2 .

Proof. Let ft denote the degree of Ft(x). By Lemmas 3 and 4,
fx is three times the number of roots β of G^x) that are cubes in L.
Replacing β by /5"1 we see that fγ is three times the number of roots
of H(x) that are cubes in L, where H(x) = xr + a? + 1 as before.

Let σ again be the automorphism such that σω = ωr for all ω
in L. Let β be a root of H(x). Then σβ = β + 1. Set λ = /9(/S + 1).
Then

\ = βσβ = βι+r ,

which is an element of K. Moreover β is a cube in L if and only if
λ is a cube in K. Since x2 + a? = λ has only two roots, we see that
λ is not of the form τ(τ + 1) with τ in iΓ. Conversely, let λ be an
element of K that is not of the form τ(τ + 1) with r in K. Let /5
be one of the two roots of

( 5 ) x2 + x = X .

Since σX = λ, it follows that σ/3 is also a root of (5). Now the roots
of (5) are β and β + 1. Furthermore /3 is not in K so that σβ Φ β.
Therefore

£ + 1 = σβ = βr ,

and β is a root of ϋ(α;). Thus, every cube λ in K, not of the form
r(r + 1) with τ in K, corresponds to exactly two roots of H(x) that
are cubes in L. Hence fγ = 6ΛΓ, where N is the number of cubes of
K that are not of the form τ(r + 1) with τ in K. Since the number
of nonzero cubes in K is (r — l)/3 we have

N + No = (r - l)/3

where JV0 is the number of nonzero cubes in K that are of the form
r(τ + 1) with τ in K. We will calculate No by means of cubic cyclo-
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tomic numbers. Let g be a generator of the multiplicative group of
K. The cubic cyclotomic number (i, j) is defined to be the number of
solutions t, u of

1 + g^ = gi+*> , 0 ^ ί, W < (r - l)/3 .

Setting τ = gi+3t and

1 + r = ^ + 8 , 0 ^ i, i < 3 ,

we see that the number of τ in K such that τ(τ + 1) is a nonzero
cube in K is

(0, 0) + (1, 2) + (2, 1) .

However, each nonzero λ in K of the form τ(τ + 1) corresponds to
two values of τ. Hence

2iV0 = (0, 0) + (1, 2) + (2,1) .

It is known, [2, pp. 148-149] or [3, pp. 32-35], that

(1, 2) = (2, 1) = (0, 0) + 1

and

9(0,0) = r - 8 + (-2) i ί n + 1 ) .

Putting these relations together we obtain

fx = 6N = 2r - 2 - 6N0 = 2r - 8 - 9(0, 0)

Finally, the degree of ^(x) is

2r + l - / 1 = r + l + (-2) i ( % + 1 ) = ((-2) ̂ - 1 ) - I)2 ,

and the proof is complete.
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