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REPRESENTATION OF REAL NUMBERS BY
GENERALIZED GEOMETRIC SERIES

E. A. MAIER

We shall say that the series of real numbers, Σ^=o V^u
is a generalized geometric series (g.g.s.) if and only if
a\ ̂  cLi+idi-! for all i ^ 1. (Note that the series is geometric
if and only if equality holds.) In this paper we investigate
the representation of positive real numbers less than or equal
to one by generalized geometric series of the form Σ£=o â /c*
where the d are positive integers and x ̂  1.

1* Preliminary results*

LEMMA 1. If Σf=o 1/α* is a g.g.s. and

1
< \ak+ί\ , then

i=k+l ~ \ak\

Proof. Since \ak/ak+t\ iS \ak/ak+1\' for all t ^ 1, we have

1 ^ 1 v
Σ

\ak
\ak+1\ — \ak

The following theorem readily follows from Lemma 1.

THEOREM 1. The g.g.s. ΣΓ=o 1/α* converges if and only if there
exists k such that \ak\ < | α Λ + 1 | .

T H E O R E M 2. Let ΣΓ=o l/α f 6e α g.g.s. wΐ£/2, 0 < α0 < αx. Lei a =

ΣΓ=i I K , Sfc = Σf=o l/α* α^d ίfc+1 = ak+1/ak - 1. Γ/^β^

(i) the sequence of half-open intervals {(Sk, Sk + l/(αΛ+1 — α )̂]} is

α sequence of nested intervals whose intersection is a,

(ii) tk ^ tk+1 ^ l/ak(a - Sk).

Proof. Since the series is a g.g.s., we have

1 ^ 1 + 1

Hence the sequence of intervals in (i) above is nested. Also ak < ak+1

for all k Ξ> 0. Thus, using Lemma 1,

( 1 ) Sk < a ^ Sk + Sk + ̂ — .
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Since ak/ak+1 ^ a^ax for all k ^ 0, we have

0 ^ lim - ^ lim = 0 ,
* <* & k (CL Aπ (CLi A

ak\ ~~ -L I
\a0 J

and it follows from (1) that the intervals converge to a.
Inequalities (ii) are obtained from (1) and the definition of tk.

COROLLARY. Let x > 0 and let a = ΣΓ=o %%/Ci be a g.g.s. with

0 < cox < d; Zeί S* = Σ*=o #7C* α ^ sk+ι = Ck+ι/Ck — 1. ΪT^βw

(i) ίfeβ sequence of half-open intervals {(Sk, Sk + xk+1/(ck+ι — xck)]}

is a sequence of nested intervals whose intersection is a,

(ii) sk £ sk+1 £ xk+ι/(ck(a - Sk)) + (x- 1).

Proof. Apply the theorem with ak = ck/xk observing that in this
case

J. £fc + l 1 ^A + l ~i~ J- 1
Vjc + 1 — ± — -1-

XCk X

3. The representation of reals/ The corollary to Theorem 2
suggests an algorithm for constructing a g.g.s. of the form X,Γ=o ^{/cu

where the c< are integers and x ^ 1, which converges to a given posi-
tive real number β ^ 1.

To obtain such a series let {s0, su s2 •} be any sequence of posi-
tive integers such that s0 = [1//5] and, for k >̂ 0,

{ rγk + l } Λ-fc + 1

—I — - 1, 8* - if < sk+ι £ —I — + (x - 1)
ck{β - sk) J chφ - sk)

where c, = UU (βy + 1) and S4 = Σi=o xV^
Such a sequence of integers exists since

ck(β - S t) = ck^(sk

and hence

+ (a; - 1) ̂  ,f+\, + ( x - l ) .

The resulting series, ΣΠ=o*Vcί where c4 = Π* =o (s, +1), is a g.g.s.
since s ^ ^ s4. Also since β ^ 1,
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*! ([1] >

Thus the series satisfies the hypotheses of the corollary to Theorem 2.
Now from the manner in which the sequence {sk} has been obtained,
we have

x -1 ^ _ <--- a? ι / Λ Λ i \

ck(β - &) - cfc(/3 - Sk)

and thus

+ 1) cΛ(sΛ + 1 + 1 - a?)

zy.fe + 1

= sk + — .

Therefore, by (i) of the corollary, β = ΣΠ=o a^M
If x Φ 1, the sequence {sΛ} obtained by the above process is not

unique. For example, if β = 1 and x = 2, we have s0 = 1,

maxj x - 1, s0 -
lcoβ — 1

= max {1, 0} = 1 and — - — + x - 1 = 3 .
Co — 1

Thus there are two possible values for sλ. To obtain uniqueness, we
must further restrict the sk. One restriction that leads to a unique
representation is to require that sk >̂ xsk_l9 We now turn our atten-
tion to series which satisfy this condition.

THEOREM 3. Let s > 0, x ^ 1. For ft ^ 0, let sk = α;fes, cfc =

Πί = 0 (Si + 1). 77*<m Σ"-o xyc* = 1/s; that is

8 s + 1 (s + l)(a;s + 1) (s + l)(αs + l)(a;2s + 1)

Proo/. Let S& = Σ ί U a ? ^ . We shall show by induction that
Sk + IMS = 1/s for all ft ^ 0. For ft = 0, we have

If Sfc + l/cAs = 1/s, then
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1
= sk

= λ - J_ + 11 / sxk+1 + 1

+ 1) / s

It also follows by induction that ck > (s + 1)* and hence, since s + 1 > 1,
o,, l/cΛs = 0. Thus lim^*, Sk = l i m ^ (1/s + l/c*s) = 1/s.

T H E O R E M 4 . Let x ^ l . Let {s0, slf si9 •} be a sequence of posi-

tive integers such that sk ^ xsk_x for all k^O and let ck = Π?=o (s< + 1 ) .

ΣΓ-o »VC< ^ s α convergent g.g.s. Furthermore if a — ΣΓ=o »Vcί

( i ) the sequence of half-open intervals {(Sk, Sk + xk+ί/(ck+1 — ck)]}
is a sequence of nested intervals whose intersection is a,

(ϋ) Sk+1 = [xk+'/ck(a - Sk)] for all k ^ 0, s0 = [1/α],
(iii) i/ ίc is rational, then a is rational if and only if sk = xsj,^

for all k sufficiently large.

Proof. Since cjc^ = s< + 1 ^ s i + 1 + 1 = ci+1/cif it follows that

and hence ΣΓ=o # 7 ^ is a g.g.s. The series converges by Theorem 1
since c0 < cjx.

To establish (i), we first observe that sk+j+ί ^ x3'sk+1 for all j ^ 0.
Thus, using Theorem 3, we have

Sk < a = Sk + Σ
t=0 "

+

7 T ΰ — — T w TV +

+ ̂ — — ^ ^ - +

( s Λ + 1 + l)(a?Sfc+i + l)(x2sk+1 + 1)

- sk + ̂ i - i - - sk + ^+ 1

l ) ( a ? s Λ + 1

Furthermore, since sk+2 — xsk+1 ^ 0, we have
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"1 'V \

χ

2 '

>k + l / 1 /v. \ /y.fc + 1

Ίi + 1 - x ) ^
Ck + 1 ^ Sfc + 1 Sfc+2 '

Thus

y.fc + 1

and the sequence of intervals in (i) is nested. Since

by part (i) of the corollary to Theorem 2, the intersection of the in-
tervals is a.

To establish (ii), we have from (i) that

e*(Sjfc+i + 1) CkSk+ι

Solving these inequalities for sk+u we have

( 2 ) ck(a - St)
 X

Also, since s t ^ ί»*s0, using Theorem 3, we have

a ^
s0 + 1 s0 + 1 (s0 + l)(xsQ + 1)

/v.2 1

+ ? + ... = JL

and hence so]=Jl/a].
We turn now to the proof of (iii). Suppose sk = xsk^ for all

k > k0. Then sko+j = ^JsAo for all j ^ 0. Thus, again using Theorem
3, we have

o_1 V

x
+

(skQ+1)(x8ko + 1) (sko+1)(%sko+1)(x2skQ+1)
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which is rational if x is rational.
Conversely, suppose a is rational. From (2) we have

sk+1

Thus

( γk + l \

a- Sk--—

( 3 ) = ek(8k+ί + l ) (α -Sk) - xk+1

(a — bk)

Hence, if α = p/g, for all k we have

0 < ck+1(p - Sk+1q) ^ ck(p - Skq) .

Therefore, noting that ckSk is an integer, {ck(p — Skq)} is a nonincreas-
ing sequence of positive integers and thus for k sufficiently large, say
k > k0, the terms of the sequence become constant. Hence, for k > k0,
ck+1(a — Sk+1) = ck(a — Sk) and thus equality must hold in (3). There-
fore sk+1 = xk+1/ck(a — SΛ) for k > kQ and, for & sufficiently large,

= X = XSk

THEOREM 5. Let 0 < β ^ 1 αmZ ϊeί a? δβ α positive integer. Then
there exists a unique sequence of positive integers {s0, s19 s2 •••} such
that sk ^ xsk^ for k^l and β = ΣΓ=o # 7 ^ w Λ β r β ^ = Πί :=o (s{ + 1 ) .

Proof. Define

Λ . i 1 Ci 1
So — I -zr , . „ w - ,

Co

and, for k > 0,

77^ P7T~ I >

Then, in the same manner as inequality (3) was obtained, we have

ck+ί(β - Sk+1) ^ ck(β - Sk) .

Thus
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/y.fc + 1 zy.fc + 1

sk+1 > * 1 > * 1
ek(β - Sk) ~ ck_t(β - Sk-d

= χ( ϊ l _ ) - l ^ X S k - 1 .

Since s ^ and ŝ̂ . — 1 are integers, it follows that sk+1 ^ xsk. Also
from the definition of sk+1,

sk+ι <1 < sk+ι
ck(β - Sk) ~ ck(β - Sk)

Therefore

/y.t + 1 γk

Sk < Sk+1 = Sk ^ * - Sk)

Thus from Theorem 4 (i), /S = Σr=o α V^. The uniqueness of the se-
quence {sk} follows from Theorem 4 (ii).

Received March 20, 1968.

UNIVERSITY OF OREGON AND

PACIFIC LUTHERAN UNIVERSITY






