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PRIMARY ABELIAN GROUPS MODULO
FINITE GROUPS

RONALD J. ENSEY

Let S/ be the category of Abelian groups, ^~ the Serre
class of finite Abelian groups, and form the quotient category
S/\J?~. The purpose of this paper is to find a complete set
of invariants for direct sums of countable reduced p-groups,
such groups being considered as objects of the category
S/1^. Specifically, it will be shown that two direct sums
of countable reduced p-groups G and H are isomorphic in
Sf\J?~ if and only if

fG(ά) = fH(oί) for almost all ordinal numbers a,
and

/<?(<*) Φ /ff(α) implies max (/*(«), /*(«)) < ^ o .

The objects of the quotient category <s*?\£>? where Sf is any
Serre class of sf are just the objects of j&. A description of
Horn Sf\£?(G, H) for objects G and H of S^l^ can be found in
[5]. Such a description is omitted here since two Abelian groups G
and H are isomorphic in Jtf/Jzf if and only if there exist subgroups
S and A of G, and T and B of H such that S/A cz T/B in Stf and
G/S, A, H/T, ΰ e ^ . (See 2.3 and 2.4 in [5].) Consequently all
computations can be made in jzf the category of Abelian groups. In
particular the words group and homomorphism will always mean Abelian
group and j^-homomorphism, respectively. For a proof that Sf\£t?
is an Abelian category, see [3].

The following is immediate.

PROPOSITION 1. // two groups G and H are isomorphic in the
category J&l^~, then either \G\ = \H\ or m a x ( | G | , \H\) < ^ 0 .

Let G be a reduced p-group, and l e t α be an ordinal number.
Define paG inductively as follows: p°G = G, paG = p(pa"ιG) if a — 1
exists, and paG = Πβ<a PβG if α is a limit ordinal. The dimension
fG(a) of the vector space (paG)[p]/(pa+1G)[p] is called the αth Ulm in-
variant of G. Define Ga inductively as follows: G° = G, Ga = pω(Ga~1)
if a — 1 exists, and Ga = Γiβ<a Gβ if a is a limit ordinal. Since G is
reduced, there is a least ordinal τ, | τ \ ^ | G |, such that Gτ = 0. The
quotient groups Ga/Ga+1, a < r, are called the Ulm factors of G. All
the Ulm factors except possibly the last, if it exists, are unbounded.
An element xeG has height a in G if x e paG, but x £ pa+1G. Ulm's
theorem states that two countable reduced p-groups are isomorphic if
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and only if their corresponding Ulm factors are isomorphic, or equiv-
alently, if and only if they have the same Ulm invariants. This result
has been extended to direct sums of countable reduced p-groups by
Kolettis in [4]. The author has shown in [1] that two direct sums of
countable reduced p-groups G and H are isomorphic in the quotient
category j ^ / ^ , where & is the Serre class of bounded groups, if
and only if there is an integer k ;> 0 such that for all ordinal num-
bers a and integers r ^ 0

ΣoΛ(* + * + i) ^ Σ Λ(« + i)
and

i=0 j=0

Since the Serre class of finite groups is a subclass of the Serre class
of bounded groups, it is natural to ask how the above conditions must
be strengthened to characterize isomorphism in jy/*^~ That is the
intention of this paper. Any unexplained notation or terminology will
be that of Fuchs in [2] with the exception that G + H will denote
the sum of G and H while G 0 H will be the direct sum.

LEMMA 2. Let S be a cofinite subgroup of a reduced p-group G.
Then there is an integer n ^ 0 such that fG(a) = fs{

a) for all ordinal
numbers a ^ n.

Proof. Since S is cofinite in G, write G/S = {xι + S, •••,»,. + S}.
Let w ^ 0 be an integer such that pnXi = 0 for i = 1, , r. Let
pw2/ e pwG. Then y + S = xt + S for some i among 1, , r. Thus
y — x{e S and p%?/ = pw(2/ — «<) e p % 5. Hence pwG = p % 5 and /σ(α) =

for all ordinal numbers a ^ n.

LEMMA 3. Let S be a cofinite subgroup of a reduced p-group G.
Then for any integer n^O, fG(n) = fs(n) or max (fβ(n)9fs(n)) < fct,.

Proof. Let f:(pnS)[p]/(pn+ίS)[p] -> (pnG)[p]/(pn+ίG)[p] be the homo-
morphism induced by the natural injection S~+G. Then Ker / =
«VnS)[p] Π (Pn+1G)[p])/(p«+1S)[p] and |Ker/ | ^ | (p +1G)[p]/(p

I p +1G/p +1S i ^ I G/S |. Also Im/ = (
and | Coker/| - | (pnG)[p]/((pnS)[p] + (pn+1G)[p]) \ ̂

\(pnG)[p]/(p»S)[p]\^\G/S\. Thus (pnS)[p]/(p^S)[p] and (p G)[p]/
(pw+1G)[p] are isomorphic in j ^ / / " ' . The lemma now follows from
Proposition 1.

LEMMA 4. Le£ /9 be an ordinal number, and let Abe a subgroup



PRIMARY ABELIAN GROUPS MODULO FINITE GROUPS 79

of a reduced p-group G such that A contains no elements of height
β or β + 1, the heights taken in G. Then fGίA{β) = fG(β). In par-
ticular if A is a finite subgroup of G, then fGjA{(^) = /<?(#) for almost
all ordinal numbers a.

Proof. Let {xi + A + ((pβ+1G + A)jA)[p\}I be a basis of

((pβG + A)/A)[p]/((p^G + A)/A)[p]

with Xi 6 pβG for each i e I. Then px{ e pβ+1G Π A, and since A has
no elements of height β + 1 in G, pXi e pβ+2G. Write px{ — pz{ where
Zi e pβ+1G. Then xi - zi e (pβG)[p], b u t xt - zt i (pβ+1G)[p]. Also xi -

zζ + A + ((Pβ+1G + A)/A)[p] = x< + A + ((pβ+1G + A)JA)[p]. Let Vi =

α, - Zi for i e j . Then {^ + A + ((^+1G + A)/A)[p]}j is a basis of

((pβG + A)/A)[p]/((p^G + A)/Λ)b]

with Vi 6 (p^G)^] for each i e I. Suppose Σ ί e j r^i e (p^+1G)[p] for some
finite subset JS I. Then Σ*β/ n ^ + 4 e ((^ + 1 G + A)/A)[p]. Thus
p I r< for each ieJ and {̂ /i + (p^+1G)[p]}7 is an independent subset of
(pβG)[p]/(pβ+1G)[p]> Hence fGjA{β) ^ fG(β).

Let {x, + (pβ+1G)[p]}κ be a basis of (yG)b]/(y+ 1G)[p]. Suppose
ΣίβL s<» + A e ((ί?^+1G + A)/A)[p] for some finite subset L £ iΓ. Then
ΣίeL «<»< + A = pa? + A for some a? e pβG. Now ?/ = Σi&L s^ —
p^ 6 pβG Π A. Since A has no elements of height β in G,ye pβ+1G.
So

and p I s{ for each % e L. Thus {x^, + A + ((pβ+tG + A)/A)[p]}κ is an
independent subset of ((p*G + A)M)[ί)]/((ί)^+1G + A)/Λ)[p]. Hence

LEMMA 5. Let G be a reduced p-group with finite subgroup A.

Then for any ordinal number <x, fe(a) = fGIA(a) or max (fa(a),

fauia)) < No-

Proof. The projection G-^G/A induces a homomorphism

/ : (P"G)[p]l(p"*1G)[p] > ((p«G + A)IA)[p]/((p^G + A)/A)[p] .

The kernel of / is ((p"G)[p] Π (pa+1G + A)[p])/(pa+1G)[p] and therefore

I K e r / | ^ I (p°+1G + A)[p]/(p"^G[p] | ^ | ((p^G + A)/p^G)[p] |

^ I (ί>α+1G + A)jpa+1G I - I A/pa+1G f]A\^\A\.

Also I m / = (((p"G)[p] + ί)α+1G + A)/A)[p]/((pβ+1G + A)/A)[p], Coker /
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~ ((p*G + A)/A)[p]/(((p«G)[p] + p«+1G + A)/A)\p], and |Coker/| ^
I ((paG + A)/A)[p]/(((paG)[p] + A)/A)[p] |. Let x + A, y + A e ((paG +
A)/A)[p] with x,ye paG. Then pec, p?/ e A. If px = py, then as —
2/ e (PβG)[p], a? - 2/ + A e (((pβG)[p] + A)/A)[p], and x + A + (((pβG)[p] +
A)/A)[p] = y + A + (((pβG)[p] + A)/A)[p]. So | Coker/| ^ | ((p«G +
A)/A)[p]/(((p"G)[p] + A)/A)[p] \£\A\. Hence (pβG)[p]/(Pβ+1G)[p] and
((paG + A)/A)[p]/((pα+1G + A)/A)[2>] are isomorphic in j*f/^~. The
lemma now follows from Proposition 1.

LEMMA 6. Let β be an ordinal number, and let G and H be
countable reduced p-groups such that

(ί) fσ(a) = fπ(a) for °H ordinal number a Φ β, and
(ii) max(/0(/9),/fi(/S))<«o.

Then G and H are isomorphic in

Proof. Take fG(β) ^ fH(β), and let k >̂ 0 be an integer such that
fo(β) = fn(β) + k. Write β = coy + n, n^O. Then Gr ~ Hr 0
Σ* C(p%+1) where Gr = G7Gr+1 and Hτ = Hr/Hr+1. Suppose iJr is finite.
Then so is Gr. Moreover, G/Gr ~ H/Hr, and so G and H are isomor-
phic in jy/_^. Assume iϊ r is infinite. For each a < T, write £Γα =
L a 0 M a where Lα and Mα are unbounded and \La\ = |M"α| = | i ϊ α | .
Let L be a countable reduced p-group whose Ulm factors are Ha for
a ;> 7 and Lα for α < γ. (Such a group exists by Zippin's lemma.)
Let M be a countable reduced p-group whose Ulm factors are Ma for
α < γ a n d M r = Σ* C(p*+1). Then L 0 ikf ~ G and L φ (M/M7) ^ H.
Hence G and H are isomorphic in

LEMMA 7. Lβί /9 be an ordinal number, and let G and H be
direct sums of countable reduced p-groups such that

(i) fo{oc) = fH(&) for all* ordinal numbers CLΦ β, and
(ii) max(/G(/9), ΛGe))<Ko.

G α̂ cZ Jϊ are isomorphic in

Proof. Let G = Σ; .e^^ where |X^| ^ ^ 0 for each λ e A Let
A, = {λ G A I /^GS) = 0}, and let X - Σ.e,-^ Xλ. Since /G(/S) is finite,
A — Λγ I < y$0. There is a countable reduced p-group Y with /F(α:) =

fx{a) for <x ^ β and /F(/5) = fH{β). By Lemma 6, X and Y are isomorphic
in StfΊJf'. Hence '^uλeAlXχ@ X and Σ e^-X^φ Y are isomorphic in

But G ̂  Σ^e^ X;. 0 X and i ϊ - Σ e* X. 0 Γ". Hence G and
are isomorphic in

THEOREM. Let G and H be direct sums of countable reduced p-
groups. Then G and H are isomorphic in j / / / ' if and only if
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(i) fσ(&) = fΛa) for almost all ordinal numbers a,
and

(ii) fQ(a) Φ fΉ{a) implies max (fG(a), fH{ά)) < ^ 0 .

Proof. That (i) and (ii) are necessary follows from Lemmas 2,
3, 4, and 5. That (i) and (ii) are sufficient follows from a finite
number of applications of Lemma 7.
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