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ON THE RATE OF DECAY OF SOLUTIONS OF
PARABOLIC DIFFERENTIAL EQUATIONS

J. K. OppsoN

In this paper upper and lower bounds are determined for
the rate of growth or decay of solutions of parabolic equations
for indefinitely increasing time. These bounds are obtained
from comparison functions which are constructed systematically
with the aid of elliptic extremal operators and in many cases
are the best possible for the class of problems which we con-
sider,

The behavior of solutions of parabolic equations for indefinitely
increasing time has been investigated by several authors in recent
years. We refer in particular to the papers [2], [3] and [9] and the
survey article [7]. Most of these articles have been concerned with
establishing the approach of solutions to a steady state condition
under various assumptions on the coefficients. In the present paper
we determine upper and lower bounds for the rate at which solutions
decay (or possibly grow) in a half cylinder as ¢ — . These results,
presented in Theorems 1 and 2, are obtained for a class of parabolic
equations, assuming only uniform parabolicity and boundedness of the
coefficients. The main tool is the maximum principle and the use of
comparison functions constructed with the aid of elliptic extremal
operators [15, 16]. By this device the estimates which we obtain
are often the best possible for the class of operators which we consider.

2. Notations and basic hypotheses. Let 2 be a bounded, open,
connected subset of E*(n = 1) with boundary 7" and closure 2 = Q U I.
Let D denote the (n + 1)-dimensional half cylinder D = 2 x (0, «).

In this paper we shall be concerned with the linear differential
operator
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with real valued coefficients defined for all

(x,t) = (x,, +++, 2, t) € D and satisfying there the following hypothesis I:
(1) > a;(x,t) =1 for all (x,t)eD;
(2) There exists a constant «, 0 < a@ < 1/n, such that

St a(x, )88, = a> & for all (x,f)e D and all real n-vectors
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(4) There exist constants k,, k, such that 0 < k, < k(x, t) < k,in D.
We remark that any uniformly parabolic operator of the form
7o Asj (0%)0x,02;) + S, B; (0/ox;) + ¢ — (9/ot) with bounded coeffici-

ents can be normalized to the form (2.1) by dividing by >\7, 4.

Note that the conditions I(1) and I(2) imply that 32, a;;&6; =
[L—(n—Dea] >~ & in D for all real n-vectors (&, ---, &,) and that in
the case a« = 1/n the principal part of the operator L reduces to
(1/n)4, where 4 denotes the n-dimensional Laplacian.

It is well known [4-7, 10, 14, 17-18] that under the hypotheses
I the operator (2.1) enjoys the maximum and boundary point principles.
Since we wish to permit possible discontinuities in our solutions u(x, t)
on the initial surface 2 x {0} we state these principles in the following
form: Suppose that u(x,¢) is a real valued function, differentiable
with respect to ¢ and twice differentiable with respect to x in D,
continuous on 2 x (0, «), and satisfying Lu — k(du/ot) =0 in D.
Suppose that 4 < 0on I" x (0, ) and that lim (, ,)_5,, %(%,t) < 0. Then
w(x,t) <0 in 2 x (0, ). If u(a’ t) =0 for some point (2°,¢,) e D
then u(x,t) =0 for allzec 2,0 < ¢t < ¢,. If w2’ t,) = 0 for some point
(x°, t,) € I' x (0, ) and if I" has the inner sphere property' at 2° then
either u(x,t) = 0 for allze 2,0 < t < ¢, or else there exists a positive
constant m such that w(z,¢) < —m ||z — 2°|| for all x within the
prescribed sphere along a fixed line segment from 2° and sufficiently
close to 2. Here we define

[EIEOSE
With the aid of the maximum principle we establish the following

LEMMA 1. Suppose that hypotheses I hold. Let u(x,t) be a real
valued function, differentiable with respect tot and twice differentiable
with respect to x in D, continuous on 2 x (0, =), and satisfying
Lu — k(Qu/ot) = 0 in D. Suppose that uw <0 on I" X (0, ) and that
Tm 07w (2, t) < M. If u(x®, t,) = 0 for some point (2°, t,) € I" x (0, o)
and tf I' has the exterior sphere property' at x° then there exists a
positive constant C such that w(z,t) < Cllaz—2a°|| for all x in 2 and
sufficiently close to 2°.

Proof. Assume first that c(x, ) < 0. Without loss of generality
we may suppose that the axes have been translated so that the
exterior sphere prescribed at ° is centered at the origin and has radius
7, = |[|2°]|]. Define » = ||| and 0*= |||’ + (¢ — t,)’. Consider now
the (» + 1)-dimensional sphere B = {(x, t): 0* < 7%}, which is exterior to

1 I" has the inner (exterior) sphgre property at x° if there exists an open ball B
contained in £ (the complement of 2) such that BN I" = {x°}.
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D at the point (2°, ¢,), and the concentric sphere B’ = {(x, t): 0> < (7, + €)%}
where ¢ > 0 is chosen to be suitably small.

Define 2’ to be the open subset of D enclosed by B’ for 0 < ¢ < &, I’
to be the closure of B’ N{I" x (0, t,)}, and S’ to be the subset of the
surface of B’ contained in D for 0 < ¢ < ¢,.

In the closure of 2’ consider the function A(x,t) = e~ —e™,
where 6 is a constant to be chosen subsequently. Note that ~ > 0
in the closure of 2’ with the exception of the point (2°, t,) where we
have h(2°, t,) = 0.

In 2" we have

Lh—k % = oh + 2061 — 20 S} ayww; + 3 b, — k(t — t)
1,7=1 7=1
=< 20e*[A — 2a || 2" ||}
< 0 if 6 is chosen to be sufficiently large.

It is an easy consequence of the weak form of the maximum
principle mentioned earlier that u(zx, t) < max {0, M} in D and hence
there exists a positive constant C such that v < Ch for (x,t)e S’.

If we now define w = u — Ch we have Lw — k(dw/ot) > 0 in &’
while w <0 in S’ U I”. It follows from the weak maximum principle
that w < 0 in the closure of 2'. In particular we have wu(x,t) <
Cle~ — e} for x € 2,r < r, + ¢, which immediately implies the re-
sult of the lemma. Note that the constant C is independent of ¢, in
this case.

For the more general case when c¢(xz,t) < v,v > 0, we apply the
above result to the function v(z, t) = e 7"*ouy(x, t) which satisfies the
inequality Lv — k(0v/0t) = 0 in D for an operator of type (2.1) with
c(x,t) 0. We obtain v(x,t) < Cle=s — ¢~} and thus wu(x,t) <
Ceyto/ko{e—-ar?o _ 6_‘”2}.

3. Extremal operators and the class &,. Let us denote by
&, the class of uniformly elliptic operators of the form
L’ n t 82
= ai o x, ——
i;l J( ) axmamj
with real valued coefficients defined in D and satisfying there the
hypotheses I(1) and I(2). In recent papers [15, 16] Pucci has introduced
the maximizing and minimizing operators, relative to the class <2,
defined respectively by
M. [u](z, t) = sup {L'u(x,t)}
Lte <z,

(3.1)
m[ul(x, t) = ngg {L'u(x, t)}

for any given function u(x, t) twice differentiable with respect to x in D.
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He has shown that these operators have the nonlinear representations

M, [u] = adu + (1 — na)C,(u)

3.2) mJu] = adu + (1 — na)C,(w)

where 4 denotes the n-dimensional Laplacian and Cy(u) < Cy(u) £ -+ <
C.(u) denote the ordered eigenvalues of the » x n Hessian matrix
(uij(xr t))°

For functions u(x, t) = R(r,t) which depend only upon ¢ and the
distance r = ||« || from a fixed point (taken to be the origin) the re-
presentations (3.2) reduce to the simpler forms

Mjul = 1, S8 4 G =) OK

r? r or
3.3)
2
mou] = hy OE 1 (L= hs) OR
or? r or

where h, = a and h,=1— (n — l)a if (*R/or*) < (1/r)(6R/or) while
h=1— (m — 1)a and h, = a if (*R/or*) = (1/r)(0R/or).

From the definitions it is clear that for any function u(z, t), twice
differentiable with respect to « in D, and any L'e &, we have the
inequality mJu](x, t) < L'u(x, t) < M [u](x, t) for each (x, t) e D. How-
ever, it may also be shown that there exist operators L], L;c L, (with
coefficients determined by w) such that Lu(x,t) = m.[u](x,t) and
Lz, t) = MJu](x, t) for all (z,t) e D, thereby justifying the termi-
nology.

We refer to the papers [8, 11-13, 16] for a more detailed develop-
ment of the theory of these extremal operators and their applications.
Their significance for our purposes in this paper rests on the fact
that they provide a systematic method for determining comparison
functions for our parabolic operator (2.1). The construction of these
functions is based upon the following lemma. Here J, denotes the
Bessel function of the first kind of order yx in the notation of [1], and

r= o] = )"

LEMMA 2. Let «a,B,v,k be constants with 0 < a < 1/n, and
B> —1. If we set

pe Bl g s Gl (n—Da] —mi
2[1 — (m — V)] KT

where &, 1s the first positive zero of J.(5), then the function
r~*J {(&r[r)le ™ is a solution of the equation



PARABOLIC DIFFERENTIAL EQUATIONS 393

wn the (n + 1)-dimensional cylinder Q={(x, t): r < 1o, t > 0} which is
positive in Q, decreasing with respect to r, and zero on the cylindrical
surface r = r,. If, instead, we set

(B +1)
2«

ali — e

-1 and 7= -
KTy

#:

then this function is a solution of the equation

Bow _ k% _yp
meu] + r 87‘+7u ”at

m Q which is positive in Q, decreasing with respect to r, and zero
on the surface r = r,.

4. The decay estimates. With the aid of the maximum principle
and the previous lemmas we can now establish our main results on
the decay rate of solutions associated with our parabolic operator (2.1).

To obtain an upper bound on the decay rate we suppose that the
set 2 has diameter 27, and is contained in the sphere of radius 7,
centered at the point 2°c E™. The set D is then enclosed in the (n + 1)-
dimensional half cylinder Q = {(x, t): ||x — 2°|| < 7o, t > O}.

THEOREM 1. Suppose that hypotheses I hold and that

inf S\ bz — o) = 8> —1 and supe(, t) = .
D

D =1

Define

- B +1) _ _ &l = (n — Da] — 73
S s B P

where &, 1s the first positive zero of J.(§) and £ =k, if
&l — (n — Da] = i, while £ =k, if &[1 — (n — )a] < 5.
Suppose that u(x,t) is a real valued function, differentiable with
respect to t and twice differentiable with respect to x wn D, continuous
on 2 x (0, =), and satisfying Lu — k(u/ot) = 0 in D. If w(z,t) <0
‘on I' x (0, =) and Timy, .z (2, t) < M then there exists a positive
constant C such that u(z,t) < Coe™* in Q x (0, o) where o denotes
the distance from x to the lateral surface of Q.

Proof. We need only consider the case M > 0 for otherwise the
result follows trivially from the weak maximum principle. Moreover
without loss of generality we may suppose that the axes have been
translated so that the axis of the cylinder @ is the ¢-axis.

Using the definition of the maximizing operator, the assumptions
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of the theorem, and Lemma 2 we note that the function V(r,t) =
r=tJ(Er[r)e~* satisfies the differential inequality

(be)
v -1 <mvi+ S50V oy 0V
ot r or ot
< MV]+E20 4 qy - £ 2 =0

in D, where £ is prescribed in the hypothesis of the theorem.

Let 0 < ¢ <1 be an arbitrary constant and denote by D, the half
cylinder D, = Q x (g, ). Note that I" has the exterior sphere property
at any point a° € I" such that (2°, €) is a common boundary point of both
D.and Q. Theresult of Lemma 1 then implies that lim,_, {u(z, &)/ V (r, &)}
is bounded above by a constant which may be chosen independent of «.
Moreover from the weak maximum principle we have u(x, €) bounded
above, by M if v < 0 and by Me'* if v > 0, for all xc 2. It follows
that there exists a positive constant a, independent of ¢, such that
u(x,e) —aV(r,e) <0 for all xe Q.

Combining these results we conclude that the function w(z,t) =
u(x, t) — aV(r, t) satisfies the differential inequality Lw — k(Qw/ot) = 0
in D, and the inequality w < 0 on I" X [¢, =] and on 2 x {¢}. By the
weak maximum principle we have w <0 in 2 X [e, =), i.e., there
exists a positive constant, a, such that

u(x, t) < ar“f‘J,(-E-"i)e"“ in 9 x [e, =)
T

and since a is independent of ¢ the same result holds in 2 x (0, o).
This clearly implies the result of the theorem.

To obtain a lower bound for the decay rate we define », to be
the maximum of the radii of all open spheres contained in 2 and
suppose one such largest sphere is B, centred at the point '€ 2. The
set D then contains the (n + 1)-dimensional half cylinder @, = B x (0,0) =
{(,8): ||e—a || <7y, ¢ > 0

THEOREM 2. Suppose that hypotheses 1 hold and that
SUPg Dty by(w; —in) = B, infy, ¢(x, t) = v. Define p = {(B + 1)/2a} — 1
and A = 6% , Where &, 1s the first positive zero of J.(§) and

1
K =k, iof a& = vri while K = k, if ag: < vr.

Suppose that w(xz,t) is a real valued function, differentiable with
respect to t and twice differentiable with respect to x in D, continuous on
2 % (0, ), and satisfying Lu — k(du/ot) < 0in D. If u=0onl x (0, ),
lim g, orwio (@, 1) Z 0, and lim, ., gc0 (2, t) > 0 then there ewists a
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positive constant m such that w(x,t) = mpe™* in B X [g, ) where p
denotes the distance from « to the boundary of B and € >0 is ar-
bitrarily small.

Proof. Again we may assume that the axes are translated so
that the sphere B is centred at the origin. Using the definition of
the minimizing operator, the assumptions of the theorem, and Lemma
2 we note that the function wv(r,t) = r—J.{(&r/r)}e " satisfies the
differential inequality

o (X 0:) 5,, o
— 52 >, =T _ oY
Ly =k = malv] + =— o0+ ot
2ma[v]+£a—v+‘/—Kglt}=

in @,, where K is prescribed in the hypotheses of the theorem.

Let 0 < ¢ < 1bean arbitrary constant. Note that # > 0 on B x {¢}
by the strong minimum principle and the condition lim,,;-ox o %(x,t) > 0.
Moreover the boundary point principle implies that lim, ;5 {u(z, €)/v(r, €)}
is bounded below by a positive constant, since I” has the inner sphere
property at any point common to /" and éB. It follows that there
exists a positive constant o such that u(x, €) — dv(r, &) = 0 for all z € B.

Combining these results we conclude that the function w(z, t) =
u(x, t) — ov(r, t) satisfies the differential inequality Lw — k(dw/ot) < 0
in B X (¢, «) and the inequality w = 0 on 0B X [¢, ) and on B x [e].
By the weak minimum principle we have w = 0 in B X [¢, ), i.e.,
there exists a positive constant § such that u(x, ) = or—+J.{&r/r,)}e*
in B X [g, o). The result of the theorem now follows directly.

5. Concluding remarks. We emphasize that for the class of
operators of the form (2.1) with coefficients b, =0,v=1, ---, 7 and
the case that 2 is a sphere our Theorems 1 and 2 cannot be improved.
In fact from the discussion of the properties of the extremal operators
it follows that there exists an operator in this class for which our
comparison function V(r,t) (v(r, t)) is a solution in Q x (0, ).

Finally let us note that Theorems 1 and 2 may be used to obtain
comparison theorems for more general nonhomogeneous parabolic
equations by the device of subtracting off a suitable approximate
solution of the equations.
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