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EXTENSIONS OF PSEUDO-VALUATIONS

JAMES A. HUCKABA

Let ίo be a pseudo-valuation defined on a commutative
ring R and let S be an overring of R. This paper investigates
conditions needed to imply that w can be extended to S. These
conditions are given in terms of a particular sequence of ideals
{Ai)T=o in R which is called the best filtration for w. The
main theorem states that if w is a pseudo-valuation on R with
best filtration {Ai} and each A% is a contracted ideal with re-
spect to S, then w can be extended to S. The converse of
this result is then proved.

By using our main theorem and some recent results by Gilmer
[1], we show in several important cases that if S is an overring of
R and w is any pseudo-valuation on R possessing a best filtration,
then w can be extended to S. In particular, if R is a Priifer domain
with quotient field K and if S is an overring of R such that S Π K = R,
then w can be extended from R to S.

We begin in §1 by defining and developing properties of a best
filtration and determining classes of pseudo-valuations which have
best filtrations. The main results and applications are then proved
in §2.

i ; Filtrations* All rings are commutative, associative, and have
identity. If S is an overring of R, we assume that S and R have
the same identity. A pseudo-valuation on the ring R is a mapping
w from R into the extended real number system such that:

( i ) w(0)= oo> w(l) = 0,
(ii) w(x — y) ^ min {w(x), w(y)},
(iii) w(xy) Ξ> w(x) + w(y), for each x, yeR.

w is called a homogeneous pseudo-valuation in case:
(iv) w(x2) = 2w(x) for each xe R.

w is called a valuation in case:
(v) w(xy) = w(x) + w(y) for each x,yeR.

Pseudo-valuations were first introduced by Rees [3]. Rees proved in
[3] that (iv) is equivalent to the condition that w(xn) = nw(x) for
each positive integer n and for each xeR. These functions arise
quite naturally in ring theory. If A is a proper ideal of R, define
vA(x) — n if x e An, x £ An+1 and vA(x) = oo iί χeAn for all n. Then
vA is a pseudo-valuation. We say that vA is associated with the ideal
A. A sequence of ideals {AJJLo of R such that Ao = R, Ai+1 c Aif and
AiAj c A ί + i for all i and i is called a filtration on J2. Notice that
the nonnegative integral powers of an ideal A of R forms a filtration,
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where A° is defined to be R. Also note that any filtration {AJ deter-
mines a pseudo-valuation in exactly the same manner that the powers
of an ideal A determines vA. For an arbitrary pseudo-valuation w on
R and a subset T of R, define w(T) = inf{w(t): te T}.

DEFINITION 1. If w is a pseudo-valuation on R, define

AQ = R

Ai = {x e R: w(x) > w{Ai_x)} ,

if w(Λ -i) < °° .

At = A<_!, if w(^-ί-i) = co .

Each member of the sequence {AJ is an ideal of R. The sequence
defined by (1.1) has the property that A0Z) Axz> A2Z) •••. A ί + 1 is not
necessarily a proper subset of A*, as will be shown in Examples 1
and 2. Also note that for a given pseudo-valuation w, {xeR: w(x) =
oo}c Π Ai. The following example shows that there exists pseudo-
valuations such that the sequence defined by (1.1) is not a filtration.

EXAMPLE 1. Let SI be an ideal of a ring R in which 3li=22I<+1

for all i. Define a sequence of ideals {B{} as follows: Bo = R, Bx = Sί2,
B2 = 2t3, B3 = J54 = 2I5, and JS, = 2Γ(ί ^ 5). Then {BJ is a filtration
in jβ and determines some pseudo-valuation w, where w(x) — n if
x e eBnf x £ Bn+1 and w(x) = oo if x e f)Bn. Now use Definition 1 to define
A{ with respect to w. We obtain Ai = Bi(i = 0,1, 2, 3) and A* =
B i + 1(i = 4,5, •••). But {Ai} is not a filtration, since (A2)

2ζ£A4.

DEFINITION 2. Let w be a pseudo-valuation on iϋ and let {AJ be
defined by (1.1). If {AJ is a filtration in R such that a? e Π A{ if and
only if w(x) = oo, then {AJ is called a δβsί filtration for w. Let 5(5)
denote the class of all pseudo-valuations on R which have a best
filtration.

Example 1 then implies that there are pseudo-valuations which
do not have best filtrations. It is clear from the definition that if w
has a best filtration, then it is unique. From now on we will talk
about the best filtration for w.

EXAMPLE 2. Let w be a pseudo-valuation on R and let {AJ be
the sequence defined by (1.1). It is possible for {AJ to be a filtration
in JR, yet not be the best filtration for w. Let v be a real valued
nondiscrete valuation on a field K and consider v as a pseudo-valuation
on its valuation ring Rυ. Since the value group of v has no smallest
positive element, v(AL) — 0. Then A2 = {x e R: v(x) > v(Aj) = 0} = A1#
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By induction, we see that Aζ = Aι for each i ^ 1. Hence the sequence
{Ai} is such that AQ =2 Ax = A2 — . Therefore v $ B(R). However,
it is clear that {AJ is a filtration.

We will be interested only when the sequence defined by (1.1) is
a filtration. This always happens in one important case.

REMARK 1. If v is a valuation on a ring R and if {A{} is the
sequence of ideals defined by (1.1), then {A<} is a filtration in R.

Proof. It is clear that A{ z> Ai+ί for each i. Hence, to complete
the proof we need to show that A{A5 c Ai+j for all nonnegative
integers i and y. We fix j and use induction on i. Clearly A0Aj c AQ+j.
Assume that Ai_xAά c Ai+i_i. for i ^ 1. Let x e A+Aj, then x — Σί=i α A
where αfc e ̂  and bk e Aό. We may assume without loss of generality
that via,) + v(bt) = min£=1 (v(ak) + v(6A)) Then v(x) ^ ^(αj + ̂ (6i).
Case 1: If v(Ai_^ < oo, then via,) > v(Ai_j), and thus v(a?) > ̂ (^^0 + vίA^ ) =
i ίA îAy) ^ vίAi+^i). By Definition 1, x e Aί+j. Case 2: If v(Aiβl) = ^ ,
then v(a ) = oo, which implies that xeAi+d. Therefore AiAj c Ai+j.

LEMMA 1. Let weBiR) and let {A^ be the best filtration for w.
Then:

(1) Ai — Ai+1 if and only if w(A{) = co.
( 2 ) Let xe Ai and x $ Ai+1. Then y e Af and y & Ai+ί if and

only if w(x) = w(y). In fact, w(x) = wiA{).
( 3 ) IfyeAi and z & Aif then w(y) > w(z).
( 4 ) // w(x) < oo y then there exists an integer i such that x e Ai

and x $ Ai+1.

Proof. (1) Suppose A{ = Ai+1. By induction we see that A{ = Ai+t

for each positive integer t. If w(Ai) < oo, then there is an element
xe Ai such that w(x) < oo. But x e Π Ai which implies that w(x) — oo 9

a contradiction. Conversely, if w(Ai) = oo, then A{ = Ai+ι by definition
of the best filtration.

(2) First note that xeAi,x£Ai+1 implies that w(x) = w(Ai). If
yeAi,y£Ai+ί, then clearly w(x) = w(y). Conversely, assume w(x) =
w{y). If i = 0, then w(y) ^ w(Aj) and hence y is in Ao, but not in
A1# If i > 0, then wiA^) ^ ^(A^). If equality holds, then A{ = Ai+1,
which implies that xeAi+1. Therefore wiA^ < w(Ai), which implies
that y e A{. Also y £ Ai+1, for if so, then w(y) >

i 3 ) and (4) are clear.

The converse of the above result is also true.
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LEMMA 2. Let w be a pseudo-valuation on R and let {B{} be a
filtration in R satisfying properties (l)-(4). Then {Bi} is the best
filtration for w.

Proof. Clearly x e Π Bt if and only if w(x) = oo. Suppose that
w(Bi_1) < oo. By properties (2) and (3) Bt = {xeR:w(x) ^ w(Bi)}.
Thus Bi c {x e R: w(x) > w(Bi_<)}. On the other hand, suppose that
w(x) > w{Bi_ι). If w(x)=oo, then x e Γ) B5 and hence xeB{. If
w(x) < oo, choose k such that x e Bk and x $ Bk+1. Suppose that
k <; i — 1, then BkZ)Bi^, so w(ίc) = w(J5A) ^ w(i?;_i), a contradiction.
So we must have fc > i — 1 and hence x e B{. Therefore B{ =

By (1), if w(Bi^) = oo, then J84-1 - S i#

We assume from now on that all pseudo-valuations w which are
considered have the property that there exists at least one x such
that 0 < w(x) < oo.

LEMMA 3. (a) If w is a homogeneous pseudo-valuation on R and
if {Ai} is the sequence of ideals defined by (1.1), then w(Ai) < oo for
each i.

(b) If w is a pseudo-valuation on a ring R and if {AJ is the
sequence of ideals defined by (1.1) such that each Ai is finitely
generated, then wiA^) < oo implies that w(Ai) > w(Aι_-).

Proof, (a) Suppose, to the contrary, that i is the smallest positive
integer such that w(Ai) = oo. Since w is nontrivial, i ^ 2. Choose
xeAt_19 x$Ai. Then 0 < w(x) < oo, and w(x2) > w(x) ;> wiA^), so
x2 e Ai. But, w(Ai) ^ w(x2) = 2w(x) < oo, contradicting the assumption
that w(Ai) = oo.

(b) Let aiy , an be a basis for Aiβ Choose αA such that w(αfc) =
min {w(αi), , w(an)}. Then w(Af) = w(ak). Since αA e Aif w(ak) > ^(A^J
and therefore w(At) > w(Ai^.

The following theorem shows that there are many pseudo-valuations
with best ίiltrations.

THEOREM 1. (1) Any pseudo-valuation associated with an ideal
is in B(R). More generally, any pseudo-valuation determined by a
filtration {Bi}, where Bi = Bi+1 implies that Bi = Bi+k for each positive
integer k, is in B(R).

(2) If the sequence {A^ of ideals defined by (1.1) is a filtration
and if linv^ w(A{) = oo, then weB(R). Both of these conditions are
satisfied if w is a valuation on R and R is noetherian.
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( 3 ) A pseudo-valuation w on R such that the range of w is
equal to the set of all multiples of some positive real number t > 0
is in B(R). This includes all integrally valued homogeneous pseudo-
valuations w such that there is an xeR for which w(x) = 1.

( 4) All integrally valued pseudo-valuations and pseudo-valuations
on a noetherίan ring such that (1.1) forms a filtrations are in B(R).

Proof. (1) Clear.
( 2 ) Let w and {AJ satisfy the hypothesis of the first statement

of (2). Clearly w(x) — oo implies that x e nA». Let x e Π Ai9 then
w(x) ^ w(Ai_ύ for each i. Since \ivni^oaw{A^ = oo, w(x) = oo.

We will now prove the second statement of (2). Let ί; be a
valuation on a noetherian ring R. By Remark 1, the sequence of
ideals {AJ defined by (1.1) is a filtration in R. We need to show that

o,v(Ai) = oo. Consider a basis {yly *- ,yr} for the ideal A19 Let
= min{v(#1), , v(yr)}. Then yι is an element of R with the

property that v(yλ) = ε is a minimal positive element in the range of
v. Assume that l i m ^ v(Ai) = t < oo. By Lemma 3 (b), v{A{) > v(Ai^)
for each i. Thus we can choose a sequence {xά} e ί£ so that #(%) = αy

where (t — ε)<a1<a2< •••, and each aό <t. Let I? be the ideal
generated by {%}. Since i? is noetherian there exists a positive integer
n so that {xly , #„} is a basis of i?. Let p > n, then xpe B and so

£p = Σ?=i α^τί» ai e R- τ h e n ^(^p) ^ m i n {̂ (̂ 1^1)1 ' »^(α»» )} L e t v(«i»y)

be this minimum. Case 1: If v{a5) Φ 0, then v(xp) ^ v ( ^ ) + aά ^ ε + α, ^ ί,
which is a contradiction. Case 2: If v(aά) = 0, then v(a?p) = αp > α̂  =
v(xj) = (̂αyajj ). By properties of a valuation, v ί α ^ ) = v{akxk) for some
Jc^n,kΦj. Since!;(&,-) =̂  V(«A.), v(α*) ^ 0. Hence, v(xp) ^ v(αfc) + ak ^ ί,
a contradiction. This proves that l inv^ v(Ai) = 00.

( 3 ) Define 5 0 = R and inductively, J5; = {x e R: w(x) ^ i ί}. The
sequence {J?J satisfies the hypothesis of Lemma 2 and is a best filtration
for w.

( 4 ) The first part is clear. For the second part use the same
technique as in (2).

2* The main results* The following notation will be used in
this section. Let S be an overring of R. If A is an ideal of R, then
the extension of A to S, A-S, will be denoted by A\ If B is an ideal
of S, then the contraction of B to R, B f] R, will be denoted by B\

THEOREM 2. Suppose that S is an overring of R, woeB(R), and
{Ai} is the best filtration for w0. If each A* is a contracted ideal
with respect to S, then wQ can be extended to S.

Proof. Define I?* = At for each i. Then {£J is a filtration on S.
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Define a mapping w on S as follows: w(x) = wQ(Ai) if x e Bi} x g Bi+1

and tt?(#) = oo if x e Π B{. We will show that w is a pseudo-valuation
on S which extends w0 to S. Property (i) of the definition of pseudo-
valuation is obviously satisfied. Suppose that x e B^ x g Bi+1 and y e B3,
y g Bj+1. Without loss of generality, assume that i S j . Then x — y eB{

and hence, w(x — y) Ξ> wo(A;) — m i n {^(A^), ^(A^-)} = min {w(#), w(?/)}.
Similarly if either xeBi for all i or yeB3 for all j , then
w(x — y) ^ min{w(a?), w(?/)}. This proves property (ii).

Finally, we wish to show w(xy) ^ w(x) + w(?/). Again let xeBi9

xgBi+ι and y eB3,y $Bd+1. Then xyeBiBddBi+3 9 so that

If wo(Ai) + tϋo(-Ai) ^ wo(-4i+J ), then tt;(a?2/) ^ w(x) + w(i/). On the other
hand, if wo(Ai) + wQ(As) > wo(Ai+s), there are two cases to consider.
Case 1: Suppose there is a positive integer t such that

wo(Ai) + wQ(A3 ) ^ wo(i4f+J + ί) ,

but wo(Ai) + wo(As) > WoiAi+j+t^). Then AiAyCAi+y^, and hence
BiBj c i5 ί + i + ί . Since xy e BiB3 c Bi+3+t, w(xy) ^ w(a ) + w(y). Case 2:
Suppose that wo(At) + wo(-Ay) > ^o(^ί+i+t) for all t. Then wo(AiA5 ) > wo(Ak)
for all /c, which implies that AiA3 cz AA for all &. Hence,

xy e A\A) c (Π?=i Ak)° c

Therefore te;(a?y) = oo and w(xy) ^ w{x) + w(i/). When either x e Γ) Bk

or y e n Bk, clearly w(a?2/) = w(x) + ^(?/) =oo. This proves property
(iii), showing that w is a pseudo-valuation on S.

It is easy to see that w extends w0. Take ze R. Ii ze Aζ, z $ Ai+1

then by Lemma 1, wo(z) = wQ(Ai). Clearly zeBit Suppose zeBi+1,
since z is also in R, z e Ai+ι

e* = Ai+1 a contradiction. Therefore z £ Bi+1,
and hence w(z) = tt?o(Ai). If 2 e ί lA i ? then z e n δ i which implies that
W0(z) —

A subring R of a ring £ is said to have property C with respect
to S in case each ideal of JB is a contraction of an ideal in S. In [1],
Gilmer shows that in several cases, if S is an overring of R which
is integrally dependent on R, then R has property C with respect to
S. Using Gilmer's theory we obtain several applications of Theorem
2, which are listed in the corollaries below. A Priifer domain is a
domain R with identity in which each finitely generated ideal is in-
vertible, or equivalently, in which RP is a valuation ring for each
prime ideal P in R. An ideal A of a ring R is called a valuation
ideal in case there exists a valuation ring Rv containing R and an
ideal B of Rv such that B Π R = A.



EXTENSIONS OF PSEUDO-VALUATIONS 301

COROLLARY 1. Suppose that R is a Prufer domain with quotient
field K and that R is a subdomain of R^ If i^ n K = R, then every
w e B(R) can be extended to Rlm

Proof. By [1; p. 563, Corollary 2], R has property C with respect
to Rlm Then each ideal in a best filtration for w is a contracted ideal
with respect to Rlm By Theorem 2, w can be extended to RL.

COROLLARY 2. Let R be a domain, let weB(R), suppose that Rλ

is integral over R, and let {AJ be the best filtration for w. If each
Aι is an intersection of valuation ideals of R, then w can be extended
to RL.

Proof. Apply [1; p. 564, Th. 2] and Theorem 2.
It is known that if R is an integrally closed domain, A is a

complete ideal in R if and only if A is the intersection of valuation
ideals. Now let R be an integrally closed domain with quotient field
K, L a finite algebraic extension of if, and R' the integral closure
of R in L. By [1; p. 569, Th. 6] and Theorem 2, we have:

COROLLARY 3. If Rr has an integral basis over R and if we B(R),
then w can be extended to R'.

THEOREM 3. Suppose that R is a subring of the ring S and
suppose that w0 is a pseudo-valuation on R which has an extension
to a pseudo-valuation τυ on S. If oc belongs to the set of extended
reals, then the ideals Aa — {x e R: wo(x) > a) and Ba = {x e R: wo(x) ̂  a}
are contractions of ideals of S.

Proof. Aa is the contraction of A'a = {x e S: w(x) > a} and Ba is
the contraction of B'a = {x e S: w(x) Ξ> a).

The converse of Theorem 2 is also true.

THEOREM 4. Let S be an overring of R, let woeB(R), and let
{Ai} be the best filtration for w0. If w0 can be extended to S, then
each Ai is a contracted ideal with respect to S.

Proof. Apply Theorem 3.

COROLLARY 4. Suppose w0 e B(R) can be extended to some w on
Rv, where Rυ is a valuation ring. Then each ideal in the best
filtration of w0 is a valuation ideal.

REMARK 2. Let R be a domain with quotient field K and w0 a
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nonnegative pseudo-valuation on R. (Nonnegative pseudo-valuations
were the most important types of pseudo-valuations studied in [2]
and [3]). w0 can always be extended to a nonnegative pseudo-valuation
w on a subring R', where R(zRr c K, in the following way. Let M
be the set of y e R such that wo(y) < oo and wQ(xy) = wo(x) + wo(y)
for all x e R. Then M is a multiplicative subset of R not containing
zero. Hence we can form the quotient ring of R with respect to
M, RM. A function w' can be defined on RM by w'(x/y) = wo(x) — wQ(y).
wf is not necessarily nonnegative. However, if R' = {ze RM: w'(z) ^ 0}
and w is the restriction of w' to R', then R' is a ring and w is an
extension of wQ to iϋ'. R' is called the natural domain of w0. This
type of extension was discussed and used in [2].

I would like to express my gratitude to the referee for his many
suggestions on this manuscript. In particular, I would like to thank
him for his suggested statement and proof of Theorem 3.
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