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EXCEPTIONAL 3/2-TRANSITIVE
PERMUTATION GROUPS

D. S. PASSMAN

Solvable 3/2-transitive permutation groups were previously
classified to within a finite number of exceptions. In this
paper the exceptional groups are determined. They have
degrees 3?2, 52, 72, 11?2, 17?2 and 3, In addition, these groups
are shown to have no transitive extensions,

There are three families of groups which play a special role
here. Let ¢ be a prime. We let .&”(¢q") denote the set of all semilinear
transformations on the finite field GF'(¢"). Thus .&”(¢") consists of
all transformations

x—ar’ + b

with a,be GF(¢"), a # 0 and ¢ a field automorphism. Clearly this
is a solvable group, doubly transitive on GF(q").

We let .9%(¢q™) be the group acting on a 2-dimensional space over
GF(q™) which contains the transformations

o=@y O )+60

+a™t
and
@ —@n( ., ¢) 0

with a,b,ce GF(q") and a = 0. We see easily that .54(¢") is solvable
and if ¢ # 2 then it acts 3/2-transitively on the 2-dimensional space.
Finally we let I'(¢™) denote the set of all functions of the form

x__}aa:"—{-b
cx’ +d

with a, b, ¢, d € GF(¢"), ad — bc = 0 and ¢ a field automorphism. These
functions permute the set GF(q™) U {e} and I'(g") is triply transitive.
Clearly I'(q").. = .%°(q") is solvable. Let I'(¢*) denote the subgroup
of I'(q™) consisting of these functions of the form

ax + b
Pr—
cx +d

with ad — be a nonzero square in GF(q").
The following results are proved here.
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THEOREM A. Let & be a linear group acting on vector space B
of order q". Suppose that & acts half-transitively but not semi-
regularly on V. If & is primitive as a linear group then

(1) 0,®) is eyclic for p > 2.

(ii) The Frattini subgroup @(0,(®)) is cyclic and

[0.(6) : 2(0,(6))] = 2°.

THEOREM B. Let & be a solvable 3/2-transitive permutation
group. Then with suitable tdentification, & satisfies one of the
Sfollowing.

(i) © 1s a Frobenius group.

(ii) &< (g

(iii) & = .54(g") or

(iv) & has degree 3%, 5%, 7%, 11* 17* or 3%

The exceptions of (iv) above do in fact exist. If deg & = 17*
then we can take & to be an exceptional solvable doubly transitive
group, while if deg & = 17 then we construct this group explicitly
and show that it has order 96-17%

THEOREM C. Let & be a 5/2-transitive permutation group and
suppose that the stabilizer of a point is solvable. Then with suitable
identification we have one of the following

(i) ® is a Zassenhaus group or

(i) I'(gm 26 > I'(g").

The main result here is Theorem B. Theorem A isolates that
part of the proof in which solvability is not assumed. Theorem C
follows immediately from the results of [8] and the fact that these
exceptional groups have no transitive extensions.

1. Preliminaries. We will be concerned here with linear groups
& which act half-transitively but not semiregularly on the set ¥* of
nonzero vectors. This implies (see [11], Th. 10.4) that & acts irre-
ducibly on 8. There are thus two possibilities according to whether
® is primitive or imprimitive as a linear group. The latter case is
completely classified in Theorem 4.2 of [7] which we restate below
for convenience.

THEOREM 1.1. Let & act fatthjully on wvector space L over
GF(q) and let & act half-transitively but not semiregularly on V¥,
If & is tmprimitive as a linear group, then & satisfies one of the
Sollowing

(i) & = 74(q") with q # 2 and n an integer.
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(ii) |B| =3 and & 1is isomorphic to a central product of the
dihedral and quaternion groups of order 8.

(iii) |B| =2 and & 1is tsomorphic to the dihedral group of
order 18 with cyclic Sylow 3-subgroup.

Here .77(¢q") is the stabilizer in .2%(¢") of the zero vector and
hence we know all these groups explicitly. Thus we need only consider
the primitive case here.

Let & be a primitive linear group and let 5 be a normal p-sub-
group of &. Since every normal abelian subgroup of & is cyclic (see
for example [9], Lemma 1) it follows that every characteristic abelian
subgroup of P is cyclic. Hence by definition §§ is a group of sym-
plectic type. A characterization of these groups can be found in [1].
In particular for » > 2, 3 is a central product of one cyclic p-group
and any number of nonabelian groups of order »* and period p. If
p = 2, then B is a central product of either a cyclic 2-group or a
2-group of maximal class (that is, a dihedral, semidihedral or quaternion
group) and any number of nonabelian groups of order 8. A special
case of these are groups of type E(p, m).

We say € is a group of type E(p, m) with m == 0 if & has the
following structure. If » > 2, then & is a central product of m
nonabelian groups of order »* and period p. If p» = 2, then € is a
central product of a cyclic group of order 2 or 4, and m nonabelian
groups of order 8. Thus in both cases | &' | = p, Z(€), the center of
@, is cyclic and [€: Z(€)] = p*. Moreover | Z(€) | = p for p > 2 and
| Z(€)| =2 or 4 for p =2. We call m the width of G.

Again let P be of symplectic type. If p > 2, then Q2,(%), the
subgroup generated by all elements of order p, is either cyclic (if B
is) or of type E(p,m). If » =2, then the Frattini subgroup &(p)
is eyclic, and Q,(Ce@(YP)) is either cyeclic or of type KE(2,m). The
latter group is cyclic only if 9 is eyclic or | B | = 16 and P is maximal
class. Thus modulo the above mentioned exceptions P contains a
characteristic subgroup & of type E(p, m) with m == 0.

If p > 2, then for each (p,m) there is precisely one group of
type E(p, m). On the other hand, if p = 2, then for each m there are
three isomorphism classes for FE(2,m) and we describe these now.
For convenience we will use the following notation throughout this
paper : D denotes the dihedral group of order 8, £ denotes the
quaternion group of order 8, and 3 denotes a cyclic group of order
4. Furthermore any product of these written as DQ, 39D, ete.
will indicate a central product. Now we have easily @D = QQ and
89 = 30. Hence if € is type E(2,m) then € is isomorphic to one
of the following three groups.
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iso I: €= .-.--Q

!

iso II: G=9Q---Q

iso III: G=300---9Q.

!

m—1

We will see below that these three groups are nonisomorphic.
For any group & we let I(®) denote the number of its noncentral

involutions.

LEMMA 1.2, Let € be a group of type E(2, m). Then

IC) =24 (=2 —2 fE=is0o I
=2 — (=2 — 2 4f € =iso II
= 2¥m+t — 2 iof € =iso III.

In particular these three groups are monisomorphic. Moreover with
the exception of € = Q, € s generated by all its noncentral involu-
tions.

Proof. Let I*(®) denote the number of elements Ge® with
G* = 1. Then I(€) = I*(€) — 2. Suppose € is iso I or II and write
¢ = & Q where €, is type E(2, m — 1). Clearly

I*(€) = 3(| €, | — I*(€)) + I"(C)) .

Thus if I*(E)) = 22 + §(—2)™* then I*(€) = 2™ + §(—2)™. Hence
the first two results follow easily. If € = isolll, let Z(€) =<Z).
Then the map X — XZ yields a one to one correspondence between
the elements of & with square 1 and those of order 4. Hence clearly
I*@) = 1/2| G | = 2o+,

Now any such @ can be written as EOD ... D and of course D
is generated by its noncentral involutions. Since the same is easily
seen to be true for ¢, = D, AD or 8D, the result follows.

Let @ be type E(p, m) and let T = ¢/Z(E). Then W is elementary
abelian of order p** and we view this additively as a 2m-dimensional
vector space over GF(p). If p =2 we say We is an involution
vector if the coset corresponding to W in & contains an involution
of & Here we let (W) denote the number of such involution

vectors.

LEMMA 1.3. Let  be a group of automorphisms of group € of
type E(p, m) which centralizes Z(E) and let & be the subgroup of
consisting of those elements which centralize B8, Then

(i) & s isomorphic to a subgroup of the direct product of
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Z(®) taken 2m times.

(ii) The commutator map (,) of € induces a mnonsingular
skew-symmetric bilinear form on . As such H/R is contained
isomorphically in the sympletic groun Sp(2m, p).

(iil) If p = 2, then in addition /R permutes the (W) involu-
tion wvectors of TW. Here

(W) = 21 — (=2)» ' —1 4fE=1is0o I
=2t 4 (=2t —1 ¢f € =1is0o II
= 2 1 of @ =iso III.

Proof. (i) Let E,-.--,E,, be a set of coset representatives of
Z(©) in €. We define 6: & — [[ Z(€) (2m times) by 0(K) = [[ EXE.
This is easily seen to be a monomorphism.

(ii) and (iii) If W is an involution vector then we see easily that
the coset of W contains precisely two noncentral involutions of .
Hence () = 1/21(€). The result now follows easily.

We now consider the action of & on a vector space 2.

LEMMA 1.4. Let group & of type E(p, m) act on vector space B
of order q". Suppose further that & acts without fixed points on
Bt Then

(1) sp™|n where s 1is the smallest positive integer with
[ Z©) ¢ — 1.

(ii) If Te@ — Z(&) has order p then |Ce(T)| = q"/.

(iil) If xe Bt then &, the stabilizer of x in € is elementary
abelian.

Proof. (i) Since & acts without fixed points ¢ = p. By complete
reducibility we can assume that € acts irreducibly on 8. Let y be
the character of an absolutely irreducible constituent of &. From
the representation of ¢ as a homomorphic image of a direct product
of nonabelian group of order p* (and possibly a cyclic group of order
4 if p =2) we see easily that deg y = p™ and y vanishes off Z(E).
Hence by definition of s, GF(q)(3) = GF(q°) and B contains as absolutely
irreducible constituents the s algebraic conjugates of the representa-
tion affording y. Thus (i) follows.

(ii) We wish to show here that dim Cg(T) = n/p. This dimen-
sion is clearly invariant under field extension so by complete reducibility
we can assume 2B is absolutely irreducible. If # is the corresponding
complex character then 6(T) is a sum of pth roots of unity (including
1) and 6(T) = 0. Hence all eigenvalues occur with the same multi-
plicity n/p and (ii) follows.
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(iii) This is clear since @(®) acts semiregularly on B,

LemMA 1.5. Let group € of type E(p, m) act on vector space B
of order q" and let Te@® — Z(§) have order p. Suppose further
that & acts without fixed points on B. Then

(i) There exists x e B with €, = (1> with the following excep-
tions which occur for p =2: (@) ¢" = 3%, € =9, (b) ¢ =5, € = 3Q,
(c) g =3, € = DQ. In each of these exceptions |E.| =2 for all
x e B,

(ii) There exists x € Bt with €, = {T> with the following excep-
tions which occur for p=2: (a) ¢~ =3, € =29, (b) ¢" =5,
E =322, (¢) ¢"=3, E=2Q%Q0. In each of these exceptions
|G, | =4 or 1 for all xe T

Proof. (i) We first note that by [4] Theorem II (a), (b) and (c)
are in fact exceptions. Suppose now that €, == (1) for all e Bt
Then every element of Bf is centralized by a noncentral element
Pe@ of order p. Thus

B = U:Ca(P)

where the union is over respesentatives of the N noncentral subgroups
of & of order p. By Lemma 1.4 we have

q" = |B| = Ng*»

and ¢"*~'" < N.
Let »p > 2. Then N < p™+/(p — 1) and n = sp™. Furthermore
plg—1s0 ¢ =p+ 1. Thus

ppm_pm—l < (p + l)pm_m—l _S_ qs(pm_pm—l)
é qn(l-—llp) § N < p2m+1/(p _ 1) < p2m+1 .
This yields p™*(p —1) < 2m + 1 and since p > 2 we have p = 3,
m = 1 here. However with » = 3, m = 1 the equation
(p + 1" < PP (p — 1)

is not satisfied so p > 2 cannot occur here.
Now let »p = 2 so that N = I(§). Suppose first that | Z(€) | = 4.
Then 4|¢* — 1 and I(€) < 2*»+', Thus

52m—1 é qsgm——l é qn(l_l/p) é Né 22m+1 .

This yields 5”7 < 2"+ so m =1 or 2. If m =1, then ¢*° < 8 and
4|¢° — 1 yields ¢" = 5° and we have exception (b). If m = 2, then
q"* < 32, 4]¢° — 1 and 4s|n yields ¢ = 5*. We show now that this
possibility does not occur. Let ze®* and suppose that &, = (1.
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Choose Pec @i Since €, is abelian G, & Cs(P) = (P> x & where
© = 3Q. Now xeCg(P), |Ca(P)| =5 and & acts on this subspace.
Since this action yields the exceptional case (b) we have |[E,| = 2
and hence |€,| = 4. Thus for all 2 e ¥, |E,| =1 or 4. This, by the
way, is the exceptional case (b) of part (ii). If ¥ = |J Cs(P) then
since each ¢, is elementary abelian, we see that this union covers B
three times. Thus

54—1=128*|§%I(@)-(52—1) <%-25(52—1)

a contradiction.
Now let | Z(€)| = 2s0 [(€) < 2™ + 2™ — 2, Since ¢° = 3 we have

32m——1 é qszm~1 é qn(l—llp) g N :\__ 22m __|_ 2m . 2 .

This yields 3" < 2 + 2™ so m =1 or 2. If m =1 then ¢"* <4
so ¢" = 3% Clearly ¢ # {Q so we have exception (a) here. If m = 2,
then 4| % and ¢"* < 18 yields ¢* = 8%, If ¢ = DQ we have exception
(c). We show finally that € %= QQ. Let 2 € % and suppose €, = (1.
Choose PeG* and let Cs(P) =<P) x €. Here € is nonabelian of
order 8. Since Cs(€) contains P we see that C(€) = D and hence
G = DF. Thus G =D. This implies as above that |E,| =2 and
|, ] =4, thereby vyielding exception (a) of part (ii). Again if
B = |J Cx(P), then B is triply covered so

3 1= |¥| < éf(@)@z 1< %20(32 —1,

a contradiction. This completes the proof of (i).

(ii) If m =1, then any abelian subgroup of & of order 4 meets
Z(&). Since Z(€) acts semiregularly, we conclude that for all x ¢ ¥,
|G,] =1 or 2. Thus the result follows here.

Let m = 2. Then Cs(T) = {T)> x & where € is type E(p, m — 1).
Note that ¢ = GCs(€) and T e Cs(€). Thus if p = 2 then Cs(€) = D
and the isomorphism class of @ is uniquely determined by @ = .
Now @ acts on Cu(T) a subspace of size ¢”* and hence if this is
not one of the exceptions of part (i), then there exists x ¢ Cx(T)* with
€, =<{1>. Since T e, and G, is abelian, it then follows that &, = {T.
The result now clearly follows.

We now turn to a variant of an argument used in [2] (§ 2.5).

LEMMA 1.6, Let & = GJ where € 1s type E(p, m), & A S and
I =<JT > ts cyclic of order j. Suppose & acts on F-vector space B
wm such o way that the restriction to & s fatthful and absolutely
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wrreducible. Lf further the characteristic of F 1s prime to | © |,
then there exists monmegative integers g, A, * -, &;_, satisfying

(1) a4+ a,+ -+ +a;,_, =p"

(i) a?+a*+ -+ +a>_, < N and

(iii) a, = dim, Cx(J)
where N is the number of orbits in T = G/Z(E) under the action
of J.

Proof. Since dim, Cgs(J) is clearly invariant under field extension,
we can assume F' is algebraically closed. Let ec F be a primitive
jth root of unity and suppose that &’ occurs as an eigenvalue of J
with multiplicity a, for ¢ =0,1, ---,5 — 1. If X denotes the envelop-
ing algebra of this representation then clearly

A+ a, + +oe +a;_, =dim, B
aj + al + +-- 4 aj_, = dim; Cx(J)
a, = dim, Cg(J) .

Now U is a faithful absolutely irreducible E-module so dim, B = p™.
Hence (i) and (iii) follow. In addition the group ring F() maps onto
Y in the obvious manner. Under this map Z(€) is sent into the field
of scalars so the image of F'[§]| is spanned by p*™ coset representa-
tives of Z(€) in ¢. But dim, Y = p*™ so these must in fact form a
basis of Y. With this choice of basis we see clearly that dim, Cx(J)
is at most equal to the number of orbits of & on &/Z(E) so the result
follows.

The following two results enable us to use inductive methods in
our study of half-transitive linear groups.

LeMmA 1.7. Let & be a half-transitive permutation group and
let NG, Suppose that either N = 1> or N acts half-transitively.
Let & 2 9 23 where /I is a normal Hall subgroup of &/I. Then
9 acts half-transitively.

Proof. See Lemma 2.1 of [5].

LemmA 1.8. (Reduction Lemma). Let & be a linear group on
GF(q)-vector space VB and suppose that & acts half-transitively but
not semiregularly on Bf. Let & be a group of type E(p,m) with
G A ®. Then there exists a linear group & acting on GF(q)-vector
space U and a normal subgroup € of & satisfying

(i) & acts half-transitively on W.

(ii) © =€ and € acts irreducibly on U.

(ili) If & 4s solvable so is ©.
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(iv) If G % Q, then & does mot act semiregularly on U.
(v) Suppose that either p>2 or p=2 and m = 2. Then
either & = € = DQ with q = 3 or G is primitive as a linear group.

Proof. Since & does not act semiregularly, it acts irreducibly
on B. By Clifford’s theorem all irreducible ¢ constituents of LB are
conjugate and hence € acts faithfully on each. Let Il be an irreducible
E-submodule of B and let N ={Ge®|UG =U}. Suppose xell¥,
Since ¢ A G

(x®)8, = (26,)¢ = 2E

and hence ®, normalizes 2@&. Moreover & acts irreducibly on Il so U
is the linear span of & and hence &, = N. If & is the kernel of
the action of N on U, then clearly & = N/K acts semiregularly on 1%,
Since @ acts faithfully on U, ¢ = CR/R=C. Also €A G and €
acts irreducibly on 1l so (i), (ii) and (iii) follow.

We have @ = @. Thus if & %= Q then &, and hence &, cannot
act semiregularly. This yields (iv). Finally suppose that either
p>2o0or p=2 and m =2. Then G %= Q so & does not act semi-
regularly. Hence if ® is imprimitive as a linear group, then the struc-
ture of & is given in Theorem 1.1. In both (i) and (iii) of that
theorem ®& has a normal abelian subgroup of index 2 and hence ©
could not possibly contain &. Thus only (ii) of that theorem can
occur here and since m = 2 this yields ® = € = DQ and || = 3.
This completes the proof of the lemma.

We close this section by offering a precise statement of Lemma
6 of [4]. The proof is the same and will not be repeated.

LEMMA 1.9. Let ® act faithfully on wvector space B and half-
transitively on B, Suppose that for all xeB¥, |G, =2. If & has
a central involution, then |B| = ¢ with q # 2 and q" + 1 = I(®).

2. Theorem A. The following assumptions hold throughout
this section.

AssumPTIONS. Group ® acts faithfully on vector space B of order
q" and half-transitively but not semiregularly on LBf. & is a group
of type E(p, m) with € A®. In addition & acts irreducibly on L
and @ is primitive as a linear group.

It is convenient to keep track of four separate possibilities.

DEFINITION. We define the type of & as follows.
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type I1: p>2

type II: »p=2, | Z(©@)| =2

type IIL: p =2, | ZG) | = 4, Z(€) & Z(®)
type IV: p =2, | Z(@) | =4, Z(€) £ Z(®).

LEMMA 2.1. Let s =1 be minimal with |Z(E)||q¢° — 1. Let M
be any subgroup of & with € < M & Ceo(Z(€)). Then M & GL(p™, g°)
and this representation of IN is absolutely irreducible. Furthermore
n = sp™ and we have the following

type I: s|(p—1)

type II: s=1

type IIl: s=1 or 2

type IV: s =2, and if M is a q'-subgroup of & with G <= M
and M & Cs(Z(C)), then M = GL(p™, q) and this is an absolutely
irreducible representation.

Proof. If s is defined as above then GF(g*) is clearly the minimal
splitting field of the representation of €. Hence 7 = sp™ since we
are dealing with finite fields here and since the absolutely irreducible
constituents of & have degree p™.

Now @ is primitive as a linear group so by Lemma 1.1 of [5],
Ce(Z(G)) = GL(p™, ¢°). Let M be a subgroup of & with

€ & M =Co(2(€))

so that M = GL(p™, ¢°). Since M 2 ¢ and the degree of this re-
presentation is p™, the representation is clearly absolutely irreducible.

The results on the value of s for types I, II and III are clear.
Let & be type IV. Then certainly s =1 or 2. If s=1, then since
® is primitive, Z(€) consists of scalar matrices and is therefore central
in ®, a contradiction. Thus s = 2. Let M be given with ¢ = I,
M & Cs(Z(€)). Since s =2, M S GL(p™, q). Clearly St is either
absolutely irreducible or it has two absolutely irreducible constituents
of degree p™. In the latter case, Z(&) would be central in each such

constituent and hence in M, a contradiction.

LEMMA 2.2. Let M be a p-group acting faithfully and absolute-
ly irreducibly on F-vector space B. Let dim, B = k. Then there
exists subgroups N and K of M and an N-subspace U of B with the
representation of M on B induced from that of | on U. Further-
more & = Cn(0) and either

(i) M:N] =k, dimU =1 and N/K s cyclic, or

(ii) [M:N] = k/2, dim W = 2, N/R is dihedral, semidihedral or
quaternion and p = 2,
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Proof. The result is trivial if char F' = p so assume this is not
the case. Applying Roquette’s theorem ([9]) repeatedly we can find
N, and U as above with N/ cyclic, dihedral, semidihedral or
quaternion. Since IN is absolutely irreducible so is the action of /K&
on U, Thus dimU =1 if N/ is cyclic and dim Ul = 2 otherwise.

LEMMA 2.3. Let w denote the period of a Sylow p-subgroup of
Cs(Z(€)). Then for all x<c B we have

type I: [©:6,], < pmmin{w,|¢ — 1]}

type 1I: [6:6,], < p"* min{w, |¢* — 1]}

type III: [6:6,], < p” min{w, | ¢* — 1.}

type IV: [8:6,], < p""' min{w, | ¢* — 1]}

Proof. We consider types I, II and III first. Let 9B be a Sylow
p-subgroup of . Then P 2 ¢ and Z(€) is central in L. By Lemma
2.1 we can view P as a subgroup of GL(p™, ¢°) and this representa-
tion is absolutely irreducible. Let N, & and U be as in the preceding
lemma with I = PB. Note that for y e ¥, B, 2 K. If R/K is cyclic,
then [P :N] = p™, [N:&] < min{w,|¢* — 1],} so

[$:§By] gpmmin{wy|qs—1|p}'

Suppose that N/K is not cyclic. Then p = 2. Now it is clear that
Z(®) = Z(P) & Nand Z(€) N & = <1). Thus since 2-groups of maximal
class have centers of order 2, & must be type II. Here [ : R] = p™*
and [N:&] < pmin{w,|g¢* — 1|,} since N/& has a cyclic subgroup of
index p = 2 which has a faithful irreducible representation in GF(q*).
Note that s = 1 here. Now by half-transitivity, for all x e %*

[6:6.], =[0:6,], = [B:B,] .

Thus the first three results follow.

Now let & be type IV and again let § be a Sylow p-subgroup
of . Let I =Cp(Z(€)) so that L >M2E and [P:IM]=2. By
Lemma 2.1, 3 is absolutely irreducible as a subgroup of GL(p™+,q).
We extend the field now to GF(¢°) = GF(q®). Thus we let § act on
BR GF(¢*) and this representation is again absolutely irreducible.
If the restriction to I were irreducible, then since 4|¢° — 1, Z(®)
which is central in 9@ would consist of scalar matrices and hence it
would be central in %3, a contradiction. Thus the representation of
B is induced from one of M. Let N, & and U = B R GF(¢°) be as
in the preceding lemma with # = M. Since Z(E) = N and | Z(€) | = 4
we see that /R is cyclic. Hence [N : &] < min{w,|¢° —1|,}. More-
over [P: %] = p™** so

[B:8] = p"H{w,|q° —1],}.
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Now all elements of & have a common nonzero fixed point in
L@ GF(g°). This means that a certain set of simultaneous linear
equations over GF(q) has a nonzero solution over GF(q®). Thus there
is a nonzero solution over GF(q) and hence there exists ye B* with
P, 2 & The result now follows as above.

LemmA 2.4, Let A = Cx(€). Then A is a mormal cyclic sub-
group of & which is central in Co(Z£(S)) and acts semiregularly on
B, Suppose that m =3 iof p=2. Then there exists xe B with
G, N AC =<1) and hence |G :G,], = | A, | p™ where A, is the normal
Sylow p-subgroup of A. This yields

type 1: wgpmf?[p[’ lqs”ltp_z__’pm.‘—l
type I w=p [N, ¢~ 1], ="
type Il : w = p’"]%{p!y lg* — 1 'p > pme?

type IV: wz=p |, |, |¢—-1|,=p"".

Proof. Since ¢ is irreducible, Schur’s lemma guarantees that 2
is cyclic and acts semiregularly. Clearly U = Cs(Z(€)). By Lemma
2.1, G < Cs(Z(C)) < GL(p™, ¢°) and this is an absolutely irreducible
representation of &, Since 2 centralizes &, A consists of scalar
matrices here and hence U is central in Ce(Z(®)).

If p>2 set ¢* =F while if p =2 we set G* = A*E where
A* ={AeU|A*=1}. Then G* is also of type E(p, m) and every
subgroup of AE of order p is in &*. With the additional assumption
that m = 3 if »p = 2, Lemma 1.5 applied to &* guarantees the existence
of a point x € V¥ with &, N €* = (1). This clearly yields &, N AE = 1.

Now A,E A G and [A,E| = |2, |p™. If = is as above then

!@ lp = l@rsztp@ 'p = I@x }plgtp@i = ]®xl?|2{11 Ip*"

and hence [®:®,], = |, |p*. By half-transitivety this holds for all
x € Bf,  Combining this with the results of Lemma 2.3 and noting
that |, | = » for type I and II groups and |2,| = p* for type III
and IV groups, we clearly obtain our result.

LEMMA 2.5. Let & = Cs(Z(€)). Then & has the following
structure.

(i) ©&/9 s cyclic

(i) Q/UAE acts faithfuly on T = E/Z(€) and as a linear group
on B we have H/ACE = Sp(2m, p)

(iii) AG/A 2s elementary abelian of order p*™™

(iv) A s cyclic.

Proof. All results but (i) are clear. Let B = Cp(W). Clearly
B 2 AE. The result will follow from Lemma 1.3 if we show that
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B = AC.

Suppose first that | Z(€)| = p so § is type I or II. By Lemma 1.3,
B)A < Z(E) x Z(E) x -+ x Z(€) (2m times). Hence [B:A] < p*™. Since
[AE: A]= p*™ we have B = AE here. Now let | Z(€)|=p*sop=2and €
is type IIl or IV. As above B/A = Z(€) x Z(€) x .- X Z(€) (2m times)
so B/A is a 2-group. Since A is central in H, B is nilpotent with Sylow
2-subgroup B,. Now & is primitive and B, A & so B, is of symplectic
type. Clearly Z(B,) = 2, and |%,| = 4 here. Hence 9B, is the central
product of 2, and a group of type E(2,r). Thus B,/, has period 2
and we can conclude again that [B: 2] < p*™™. The result follows.

LeMMA 2.6, We must have one of the following.
type I: p=3, m<2
type II: p=2, m<6
type IIl: p=2, m <3
type IV: p=2 m<5.

Proof. We first show the following.

type I: w=p@2m —1)[A,|
wZ |, form=1, p>3

type II: w =< p’2m — 1) |20, ]

type III: w =< p@m — 1) |2, |

type IV: w < p@2m — 1) |2, |.

Now the p-period of Sp(2m, p) is clearly at most (2m — 1)p. If € is
type I, III or IV, then the period of A€ is |2, |. If § is type II,
then the period of 2, & is at most p|2,|. Combining these facts
with the structure given in the preceding lemma yields all the above
facts except for the one concerning p > 3, m = 1.

Now let m =1 and p > 3. Let ¥ be a Sylow p-subgroup of
Cy(Z(€)) and hence a Sylow p-subgroup of &. Thus P 2 A,E and
since |Sp(2,p)|, = p we have [P:2,E] < p. Since € does not act
semiregularly we have p||®,| for all ze®B*. As we have seen,
there exists e ®* with ®&, N A,E = (1>. Let P be a subgroup of
&, of order p. By taking a suitable conjugate of % if necessary we
can assume that P S P. Then P = A, (EP). Now |EP| = p* and
this group is generated by elements of order p. Hence if p > 3,
then &P has period p. Since 2, is central in ¥ we see that P has
period |2,| and the above follows.

Combining the above with the lower bound for w given in Lemma
2.4 yields the following equations.

type I: p™ || = p@m —1)|A,]|

pI%, ||| for m=1, p>3
type II: p" [, | = p(2m — 1) |3, |
type IIT: p™|A,| < p2m — 1) |2, |
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type IV: p" U] < p@m — 1) | A, .
Note that the equations for types II, IIT and IV hold only for m > 8.
The result now follows easily.

We note that the above yields a stronger result than Proposition
2.1 of [6] and the proof is considerably less computational. We now
strengthen the above argument to eliminate additional cases. We first

eliminate » = 3.
LemMA 2.7. p =3, m = 1 does not occur.

Proof. Suppose p =3 and m = 1. Then & has the structure
described in Lemma 2.5, In addition, [®:C&(Z(€))]=1 or 2 and
Sp(2m, p) = SL(2, p). By Lemma 2.4, 2 is central in Ce(Z(€)) = H.

Suppose that $/AE has a normal Sylow 3-subgroup B/AE. Then
B/A is a normal Sylow 3-subgroup of &/A. Now both & and U act
half-transitively so by Lemma 1.7 B acts half-transitively on L%,
Since A is central in B, B is nilpotent and hence its normal Sylow
3-subgroup B, acts half-transitively. By Theorem II of [4], B, is
cyclic, a contradiction since B, 2 & Hence H/ACE is a subgroup of
SL(2,3) which does not have a normal Sylow 3-subgroup. This
implies that $/ACE = SL(2, 3), a group of order 24,

We show now that we cannot have 8||®,| for all x e B%. Assume
by way of contradiction that this is the case. Let B be a subgroup
of & of order 3 having a fixed point y = 0. Since U, = 1> we see
that 8| |AG,/A| so 4]|AH,/A|. Now a Sylow 2-subgroup of H/U is
quaternion of order 8 so £, has an element B of order 4. Since
B*¢ AE, B does not normalize PZ(€)/Z(€). Thus € = P, P> < G,
a contradiction since Z(€&) acts semiregularly.

Let 3 be a subgroup of & of order 3. We show that dim Cg(B) = 0
or s. Since P & GL(3, q¢°) we see that dim Cx(P) = 0, s or 2s. Suppose
the dimension is 2s. By Lemma 1.4, 3 & 2A€E. Since 9/ACE = SL(2, 3)
there exists Ge® such that P and P generate this quotient. Now
B is 3-dimensional over GF(q°) and Ca(P) and Cx(P¥) are 2-dimensional
subspaces. Thus there exists e ¥ with P, P < ®,. This implies
that 24||®,| and this contradicts the comments of the preceding
paragraph.

We now proceed to count., The group &/U is easily seen to
contain at most 40 subgroups of order 3. If P is a group of order
3 in ®, then PA being abelian has at most 3 subgroups of order 3
other than Z(€). Hence & has at most 3.40 = 120 subgroups of order
3 other than Z(&). Each such $ fixes at most ¢° — 1 points of B*
so since clearly 3||®,| we have

120(¢° — 1) = [B*| = ¢* — 1
and
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120 = ¢* + ¢° + 1.

Thus ¢° < 10. However by Lemma 2.4, 3*|(¢° — 1) so ¢° being a
prime power is at least 19, a contradiction. Thus p=3, m=1
does not occur.

LeEMMA 2.8. p =3, m = 2 does not occur.

Proof. The equation obtained in the proof of Lemma 2.6 is an
equality at »p = 3, m = 2. Thus all inequalities used in obtaining it
must also be equalities. Thus from Lemma 2.4 we must have
w=p™|A|. Furthermore if xecT with &, N AE =<1), then
|G, =16,[, | ALE|.

The latter fact implies that 2,& has a complement & in P a
Sylow p-subgroup of &. Since £ = Sp(4,3), ¥ has period at most
@Cm — Dp =9 and thus G has period at most 3.9 = 27. Since
B = A, (EL) and 2, is central here, we have clearly w < max {| 2, [, »’}.
But w = p*| %, | so we must have |2,| = p and £ has period 9.

Let ¥ = <{J) be a subgroup of order 9 with ¥ N AE =<L>. We
see clearly that the Jorden form of the matrix of J with respect to
its action on W = E/Z(€) is

o o o H
O O M
o M - O
==

Thus & has
(B3 =33+ (3 —-3)B8+3=17

orbits on W. Note that EF = GL(p™, ¢°) and the restriction to € is
absolutely irreducible. Thus if a, = dimgy(s, Cu(J) then by Lemma 1.6

A+ a, + - +a,=p"=9.
s+ a4 - +ai 17,

These yield easily a, < 3 and hence dim;,,, Cu(J) = sa, < 3s.

Let _7~ denote the set of subgroups of & of order 3 together
with the set of cyclic subgroup ¥ of order 9 with J N 2€,E = (1.
By the above and Lemma 1.4, if te_ s~ then dim Cg(N) < 3s. We
have also shown above that for all y ¢ B there exists Ne_s~ with
y € Ca(N), since in that argument, if G, N AE = A) then I == G,.
Hence B = Y., Cs(MN). If |_y" | = N, then this yields

¢" = B| = Ng*
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or ¢ =< N. On the other hand by Lemma 2.5,

O] =2[Ap*|Sp4, p)|
=2[Alp'pp' — Hp* = 1) = 2[Alp™.

Since 2 is central in the absolutely irreducible representation
AE = GL(p™, ¢*) we have || < ¢*. Thus

N< G2 < gpt.

Combining this with the lower bound we previously obtained for N
yields ¢** < p". Finally by Lemma 2.4, ¢° = p* so p" < ¢* < p", a
contradiction. Thus p = 3, m = 2 does not occur.

We now consider special cases with p = 2.

LEMMA 2.9. The cases type II, m = 6, type III, m = 3 and type
IV, m = 5 do mnot occur.

Proof. If we consider the inequalities obtained in the proof of
Lemma 2.6, we see that any of the above mentioned cases would be
eliminated if a strengthening of the inequalities by a factor of p =2
could be obtained. Let us suppose that one of the above occurs.

The results of Lemma 2.4 concerning |®:®,], and w must be
equalities. In particular this implies that for given 2e¢ ¥ with
®, N AE =<1> we must have |G|, = |GAE|,. Thus A,E has a
complement in a Sylow p-subgroup of & and thus also in 3, a Sylow
p-subgroup of . Let P = A,EL where ¥ N AE =<1)> and let w*
denote the period of the group G¥/E’. Since A, is central in L we
have

(A, | w* type II
w < max {2, |, 2w*} gJ{

l\:)')—‘ {\9

[, | w* types III, IV .

We consider w*, Let T* = §/E so W* is elementary abelian of
order p*™ or p*"*'. Since ¥ acts faithfully on &/Z(€), it also acts
faithfully on ¥*. If £ has period p?, then w* = p? or p’*'. Note
that R € GL(2m + 1, p). If w* = p?, then since p? < p(2m) we have
w* < p2m). If w* = p?*’, then there must exist an element Le &
of order p* whose minimal polynomial in GL(2m + 1, p) has degree
p%.  Thus we must have p* < 2m + 1 and w* < p(2m + 1). The
latter bound being the larger of the two holds in all cases. Now
w* is a power of 2 and in the three cases we are considering neither
2m + 1 nor 2m is a power of 2. Hence we have w* < p(2m — 1) and

w =< p@m — 1) | A, | for type II
w= @m — 1), | for types III, IV .
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This therefore improves the bounds on w given in the proof of
Lemma 2.6 by a factor of p =2 and, as we mentioned above, this
yields a contradiction.

LEMMA 2.10. The case type 1V, m = 4 does not occur.

Proof. We see that in the inequalities obtained in the proof of
Lemma 2.6, a strengthening by a factor of »p = 2 would eliminate
this possibility. Hence if this case occurs, then we must have the
following. If xe®B* then either z is fixed by a subgroup of & of
order 2 or a cyclic subgroup J & § of order 8 with & N AE = {1,
Let 7~ denote collection of such subgroups of both types.

We show now that if Je._ s then dim Ca(F) < n/2. We know
this to be the case if Y = € so suppose I =<J> has order 8. Then
J acts faithfully on T = §/Z(€). Since |J| = 8 we see that in its
action on ¥, J must have one Jordan block of rank at least 5. This
implies easily that & has at most

28— 2" 21— 28 25~24+

8 N 4 i 2

24:26

orbits on 2. We apply Lemma 1.6 to each of the two absolutely
irreducible constituents of X on B ® GF(¢*). Hence

a+ai+ o +ar =20,

Thus @, < 8 and since dim Cg(¥) is invariant under field extension
we have dim Cx(Y) < 2a, < n/2. Now

B = Uz CB(I)
and if N =|_4"|, then ¢ = |8 | < N¢*? and ¢** < N. By Lemma 2.5
|9 = q|2™[Sp2m, 2)]|.

Since || < ¢* and | Sp(8,2)| < 2 we have N < |®| < ¢°-2%. With
n = 2™s = 16s this yields

qu — qnlz é Né qs . 244

or ¢°<2% Now s=2 and by Lemma 2.4, 2° = 2"+ divides
¢ —1=¢ —1. Since s =2 and ¢* > 9 it follows (see for example
Lemma 4 of [4]) that ¢°* — 1 cannot be a power of 2. Hence
@ >q —1=3-2 so ¢ >3 .2% Combining this with the above
yields 3" .2% < ¢ < 2" or 3" < 2°, a contradiction. Therefore this
case does not occur.

LrMMA 2.11. The case type II, m = 5 does not occur.
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Proof. In the inequality in the proof of Lemma 2.6 for type II,
m = 5 we see that a strengthening by a factor of »* = 4 will yield
a contradiction. Hence if x¢€%* is such that &, N AC = (1> and if
B is a Sylow 2-subgroup of & extending one of ®,, then either (a)
B.E =P and w = 32 or (b) [P:B,E] =2 and w = 64. In the latter
case P,E AP so in both cases P,E has period = 32 and B, has
period = 8. Note |2[,| = 2 here by Lemma 2.6.
Let ¥ =<J)> be a cyclic subgroup of %, of order 8 and let
a, = dimg,,,Ca(J). Since JF acts faithfully on W = E/Z(€) and
| Y] = 8 we see that J must have one Jordan block of rank at least
5. This implies easily that & has at most
10 9 9 7 7 6
210 — 2 20— 2 2T — 2 n

- -

2 = 2°
8 4 2

orbits on 8. Hence by Lemma 1.6

G, +a,+ ++ + a, =p" = 32
@+ ai+ e+ a2,
Thus a, < 2' =16 and | Cg(J)| = q% < ¢*“.

Now if ¥ is a subgroup of UAE of order 2 then |Cx(T)| < ¢ = ¢".
We have shown that with the above notation

B = UsCz(I) U UzCa(T) .

Now 2 is cyclic and central and by Lemma 2.6, 4.1 |2[|. Hence the
number of choices for T is at most || = 2" and the number of
choices for & is at most 1/4|®/A,|. Here A, is the normal
2-complement of A and the 1/4 factor comes from the fact that I
has four distinct generators. Since |®/2L. | < |E| | Sp(10,2)| < 2%,
the above union yields

qSZ — !%I § 266q15/4 + 211q16 .
Putting ¢* < ¢'%/2 in the above we have
q32 < (263 _|_ 211)q16 < 264q16

so ¢¥< 2% and ¢ < 2*=16. On the other hand by Lemma 2.4
28| ¢*—1s0 16|g +=1. This yields ¢ = 17, a contradiction.

The following partial result will be completed later under the
additional assumption of solvability.

LEMMA 2.12. In the case type II, m =4 we have q =7 and
| GAE | > 10%
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Proof. In the inequalities of the proof of Lemma 2.6 for type
II, m = 4, we sée that a strengthening by a factor of p* =4 will
yield a contradiction. Suppose xe B* with G, N AE = (1> and let P
be a Sylow 2-subgroup of & extending one of ®&,. Using the same
argument as in the preceding lemma we conclude that PB,E has
period = 16 and hence $3,&/Z(€) has period = 8.

Suppose first that 9, has a cyclic subgroup J = {J) of order 8.
Then in its action on LW = G/Z(€), J has a Jordan block of rank at
least 5 so & has at most

28— 2" 21— 28 28— 2¢

2' =64
8 i 4 * 2 -

orbits on W. By Lemma 1.6 if a, = dim Cx(J) then

G+ akt e+ a0l < 64

and a, < 8.
Now suppose P, has period 4. Then since PB,E/Z(€) has period
8, P, must contain an element J of order 4 with a Jordan block of
rank 4. If & = <{J), then & has at most
28 28 26 28

+ 2 =96
4 2 *

orbits on . By Lemma 1.6 if a, = dim Cx(J) then

a, + a, + a, + a; = p™ =16
a+al+ai+ais96.

It is easy to see that the possibility a, = 9 is excluded and hence in
both cases a, < 8.
We have

B = UCs(I) U UC(T)

where the subgroups & are as above and the subgroups £ have order
2 and are contained in &, This follows since 4} || by Lemma 2.6.
The number of choices for & or ¥ is clearly at most | &/, | where
A, is the normal 2-complement of 2A. Since 4} || we have
| &2, | = 2°|®/AE|. Therefore the above union yields

¢°=|B| = ¢°2'|GAC |

since |Cx(Y)| and |Cu(T)| are both at most ¢°. Thus | G/AC | = ¢°/2°.
By Lemma 2.4, 2*|¢* — 1 so ¢ = 7. This yields

| §/AC | = 75/2° = (2401)*/2° > 10*

and the result follows.
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We now temporarily drop the assumptions stated at the beginning
of this section and prove the first of our three theorems.

Proof of Theorem A. Let & be a linear group acting on vector
space B of order ¢* and suppose that & acts half-transitively but
not semiregularly on Bf*. Let P = 0,(®) be the maximal normal
p-subgroup of . By assumption & is primitive so P is of symplectic
type. Suppose first that » > 2. If P is not cyclic, then P contains
a characteristic subgroup €& of type E(p, m). By the Reduction
Lemma (Lemma 1.8) and Lemmas 2.6, 2.7 and 2.8 we have a
contradiction.

Now let p =2 so that @() is cyclic. Suppose [{3: D(P)] > 2°.
Then P has a characteristic subgroup € of type E(2, m) with m > 3.
Thus by the Reduction Lemma and Lemmas 2.6 through 2.11 we see
that m =4 and |[Z(€)]| =2. But then [O(B)| =2 so P'=E and
[B:d(P)] =< 2° here also. This completes the proof.

3. Solvable cases, m = 1. We have seen in the preceding section
that if ¢ is a group of type E(p,m) normal in a half-transitive
linear group ®&, then p = 2 and m < 4. We will consider these cases
in the next few sections under the additional assumption that ® is
solvable.

For convenience we restate Lemmas 1.3 and 1.4 of [5].

LeMMA 8.1. Suppose & is an irreducible linear group of degree
n over GF(q) and A = A> is a cyclic normal subgroup all of whose
wrreducible constituents are similar. Let { be an eigenvalue of A
with GF(@)(C) = GF(q") and n/r = k. Let p be a prime and suppose
that for all wectors =, p||®,|. Consider those subgroups L/UA of
®&/A of order p for which there exists an x % 0 with P N G, = L.
If », of the B are contained in Ce(NA) and N\, are not, then

. qkr . 1 { qr(k—-l) _— 1} {qu/p . 1}

(1) q,_1§>»11+———qr~1 +>»z—q,,p_1

(i) ¢ +1=20 + 07+ 1) for k=2

(iii) q" < 2(n; + N\y) Jfor k> 2.

This is a very coarse statement which we will have to strengthen
at times. The following assumptions hold throughout the remainder
of this section.

ASSUMPTIONS. Group & acts faithfully on vector space 8B of
order ¢” and half-transitively but not semiregularly on L. € is a
group of type E(2,1) which is normal in ® and acts irreducibly on 2.

Note that we do not assume that & is primitive here. The
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reason for this, is that part (v) of the Reduction Lemma does not
guarantee primitivity in this case.

LEMmA 3.2. Let €= Q (that is, € =isol). Then q" = 3%, 5%, 7%, 11*
or 17

Proof. Clearly ¢* = ¢* and hence Cg(E) consists of scalar matrices
so Cy(€) = Z(®). Note that Aut & = Sym,, the symmetric group of
degree 4.

Suppose first that 3/} |®/Z(®)|. Then |G/Z(S)| =4 or 8 and
hence & is nilpotent. Thus ®, = 0,(®) is half-transitive. Since
0,(®) S Z(®) acts semiregularly, we conclude that &, is not semi-
regular., Hence &, > ¢ and since [®,: Z(®,)] =4 or 8 we have by
Theorem II of [4], ¢ = 3%, 5* or T

We assume now that 3||®/Z(€)|. We consider the possibility
3/|®,| first. If € is a subgroup of & of order 3 fixing a vector x,
then |Cu(R)| = ¢ clearly. Also either ¢ = 3 or by complete reducibility
319 — 1. Now &/Z(®) has at most 4 subgroups of order 3 and since
Z(®) is cyclic, we see that & contains at most 4.3 = 12 subgroups
of order 8 not contained in Z(®). From B = [JCx(Y) we obtain easily

¢ —-1=[¥=12(¢ -1

o ¢ + 1 <12, Since either ¢ =8 or 3|]¢ —1 we have g =3 or 7
here.

We now assume that 34|®,|. If &, N Z(©®)E = 1> for all
2z € B¥, then by Lemma 1.5 ¢~ = 3% or 5°. Thus we can suppose that
some xe B, &, N Z(O)¢ = 1>. This yields |®,| =2 and by Lemma
1.9, I($) = ¢ + 1. We have actually shown above that |&/Z(®)]| is
divisible by 3-8 so ®/Z(®) = Sym, and this group has two conjugacy
classes of involutions, €, of size 3 and €, of size 6. If Te ®/Z(®) is
an involution then since Z(®) is cyclic of even order and central, the
coset corresponding to 7 will contain either 0 or 2 noncentral involu-
tions of ® and this number is the same for all conjugates of T.
Thus we have

q + 1 = I(@) = 51'2°3 + 52'2‘6

where 6,, 0, =0 or 1. Moreover since for some x € Bf, &, N Z(G)E={1>
we have 6, =1. Thus ¢ +1 =266, +12 and ¢ =11 or 17. This
completes the proof.

LEMMA 3.3. Let €= (that 1s, € = isoIl). Then q" = 3%, 5°
or T.

Proof. Clearly q" = ¢* so C(€) = Z(®) consists of scalar matrices.



690 D. S. PASSMAN

Now |Aut€| =8 so [®:Z(®)] =4 or 8 and hence ® is nilpotent.
Then &, = 0,(®) is half-transitive but not semiregular and [®,: Z(®,] =4
or 8. By Theorem II of [4], ¢" = ¢* = 3, 5 or T

LEmMMA 3.4, Let € = 3Q (that s, & = iso III). Then ¢ = 5%, 17*
or & is imprimitive and q" = 3

Proof. Hereq" =¢*if g =1 mod4 and ¢" = ¢* if ¢ = —1 mod 4.
Say q" = qu.

Suppose first that & is imprimitive. Here we can apply Theorem
1.1. Note that if ¢" — 1 is not a power of 2 then 0,(_.77(q")) is abelian.
Hence by Theorem 1.1 either ¢” = 3* or & = 7,(q) for Fermat prime
q. Here ¢ =1 mod4 so ¢ = 5. Let B be the diagonalized subgroup
of & of index 2 so B is abelian. Then & = BE and @ = (B, €) = .
Since ®' is cyclic of order (¢ — 1)/2 we have (¢ —1)/2<4s0¢ =<9
and hence since ¢ is a Fermat prime ¢ = 5 and ¢* = 5%

Now we assume that @& is primitive and we use the notation
of Lemma 2.5. Then [@:9] =1 or 2 where $ = Cy(Z(€)) and
9/AE = Sp(2, 2) = SL(2, 2), a group of order 6. Now & has precisely
3 abelian subgroups of order 8 and these are not cyclic. Since © is
primitive none of these groups is normal. Hence & permutes these
transitively so 3 || 9/AE|. Now &/AE also acts on &/’ and this action
is clearly faithful on $/AG. If F = F/AC is the normal 3-subgroup
of $/AC then F centralizes Z(F)/@ and acts faithfully on the com-
mutator &,/E, a 2-dimensional complement. Clearly ¢, = Q and
G AG®. If n =2, then by Lemma 3.2 and the fact that ¢ =1
mod 4 we have ¢” = 5% or 172

Let n =480 ¢g=—1 mod4. &/ acts on &, and the kernel acts
faithfully on Z(€). Thus we see that either &/ = Aut ¢, = Sym, or
GAS H/A x A= Sym4 x § where |J| = |YA| =2. We apply
Lemma 3.1 with » =2. We have clearly ), <9, », < 10 and since
r=2, k=2, n =4 we obtain

¢+ 1=<18 +10(g + 1)

or gq(g — 10) < 27 so ¢ < 13. Since ¢ = 3 mod 4 we have ¢ =3, 7 or
11. Suppose 3||®,|. Let T be a noncentral involution of €. By
Lemma 1.5 there exists a point zeB* with €, =<{T). Let & be a
subgroup of ®&, of order 3. Then LNACE =<1), LS H and L
normalizes &, N & = §,, a contradiction since & acts irreducibly on
G/Z(&). Hence 3} |®,| and since 3||® ] we conclude that ¢q = 3.
Let ¢ =7 or 11. By Lemma 1.5 there exists a point x e B¥ with
®, N ACE = ). Since 3t |S,| we see that |S,| =2 or 4. Suppose
|®,| =4. Then certainly 2||9,| for all xe®L* and Lemma 3.1



EXCEPTIONAL 3/2-TRANSITIVE PERMUTATION GROUPS 691
applies to . Here \, £9, \, =0, r=2, n=4, k=2 so
*+1<2.9+0,

a contradiction. Thus |®,| =2 and by Lemma 1.9, I(®) = ¢* + 1.
Let & be a Sylow 3-subgroup of ®. Then £ permutes by conjugation
the noncentral involutions of &. Since 3} (¢* + 1), & must centralize
such an involution. Now subgroups of Sym, of order 3 are self-
centralizing so this implies that &/ & Sym,. Hence /A & /A x J/A
where $/U < Sym, and |J/A|=2. Clearly $/A 2 Alt, and if
9/ = Alt, then in the notation of Lemma 3.1 with p =2, N, <3,
A, < 4 and

@+ =2n +@+DN=<6+4(q+1)

a contradiction for ¢ = 7,11. Hence 9/ = Sym, and &/ has five
classes €; of involutions. These satisfy €, €, < §/U with |€,| = 3,
|&,| =6 and Cs,@u@.’:%@/% with |€;| =1, |C,| =3, |&] = 6.

Let T be an involution of &/2. If the coset of 7 contains «
involutions, then the same is true for all conjugates of 7. If
T e /A then certainly @ = 0 or 2. If T¢ H/A, then by Lemma 1.1
of [5] T acts on U like a field automorphism of GF(¢?) of order 2
(that is, the map 2 — 2?). Suppose the coset contains an involution
T. Then for Be¥, BT is an involution if and only if B? = B” = B\,
Hence a = 0 or the number N of elements of U of order dividing
q + 1. Note that since | Z(€)| =4 we have N=4 or 8 for ¢ =7
and N=4 or 12 for ¢ =11. Now if §; =1 or 0 according to
whether the coset of Te @, contains an involution of & then we
obtain

¢ +1=I®) =65, + 125, + N5, + 35, + 65,) .
Considering this modulo 3 we have
2=¢*+1=No,mod3.

This shows that ¢ = 11. If ¢ =7 then N =8 so 8||%| and 4, = 1.
Furthermore 6, = 0 and then ¢, = 6, = 6, = J, = 1.

Since 6, =1 we can find an involution T ¢ § corresponding to a
transposition in /A = Sym,. Now 7T normalized &, = Q as mentioned
before and T does not fix @,/E, since T does not fix €/Z(€). Thus
{&,, T> is a maximal class group of order 16 and hence this group
has a cyclic subgroup B of order 8. The group U, B is abelian and
has period |2,| since B H and || = |B|. Also |BNA| =2 so
[AB| =4|A,|. Let U S B be an irreducible 2A,B-submodule and let
& S AB be the kernel. Then AB/R is cyclic so | WB/R | < |2, | and
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hence |R] = 4. If xe ¥ then &, 2 & and |G, | = 4, a contradiction.
This completes the proof.

ExAMPLES. The examples with ¢" = 3, 5% 7* and 11* can occur
as transitive groups and these are given in [3]. We consider the
case ¢" = 17. Let SL(2,17)* denote the subgroup of GL(2,17)
consisting of those matrices with determinant +1. Let $ = QW
where Q is the quaternion group of order 8, QA 9 and W = Sym,
acts faithfully on Q/Q’. Clearly & = QW = SL(2,3). This group
has a unique faithful irreducible rational character of degree 2.
Hence $ has a faithful character y of degree 2 with x|’ rational.
Now all elements of © — §’ are 2-elements and a Sylow 2-subgroup
of © has period 8. Thus Q()) < Q(¢) where ¢ is a primitive 8th
root of unity. Since 8||GF(17)?|, this representation of © is realizable
over GF(17) and hence we can assume $ & GL(2,17). All subgroups
of § of order 3 are contained in SIL(2,17) since 3} |GF(17)*| so
© < SL2,17) and § < SL(2,17)*. Let ¢ =1"-1eGF(17) and let
8= <(8 2)> Then 3 is cyclic of order 4, 3 & SL(2,17)* and 3
is central in GL(2,17). Set & = 39 so & & SL(2, 17)*.

We show first that & has precisely 17 + 1 = 18 noncentral
involutions. Now |[3| =4 and &/8 = Sym,. This quotient group
has two classes of involutions €, €, with |€,| =3, |E,| =6. If
T e @, and the coset of T contains an involution of &, then the same
is true for all conjugates of 7. Moreover the coset would then clearly
contain precisely two such involutions. Thus if §; = 0,1 has the
obvious meaning, then

I(®) = 26,6, | + 25,|6,| = 65, + 125, .

Let W < 8 have order 2. Then We@, so §,=1. Let Qe Q have
order 4 and let 3 = (Z>. Then QZ has order 2 and @Z¢c €,. Hence
0, =1 and I(®) = 18.

Let 8 be a 2-dimensional GF'(17)-vector space and let xe B*,

Since |®| is prime to 17 we can write ©, g{ g g) aeGF(17)*} by
taking a suitable basis. Now & & SL(2,17)* and det(g (1)) =a so

we see that |®,] =1 or 2. If T is a noncentral involution of @&,
then B > Cg(T) > {0} and hence |Cx(T)*| =17 — 1. By the above
the centralizer spaces for the involutions are disjoint. Hence

[ULC(T)| = KG)1T — 1) = (17 + 1)(17 — 1)
=17 — 1= [BF].

Thus U,Ce(T) =B and so for all zePB* |®,| =2. This yields
|®,] =2 and & is half-transitive but not semiregular. Finally
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& & 9 (17%), the semilinear transformations, since & does not have
a cyclic subgroup of index 2.

We close this section with some additional information about the
degree 17* group.

LEmMMA 3.5. If q" = 17, then |®| = 96.

Proof. These groups occur in Lemmas 3.2 and 3.4. However
the latter case was deduced from the former so we can assume & is
as described in the proof of Lemma 3.2. We showed there that
|®,| =2, &/Z(®) = Sym, and §, = §, = 1. The latter says that if T
is any involution of &/Z(®), then its coset contains an involution of .

Now U = Z(®) has order dividing |GF(17)*| =16. If || =2,
then an involution T in the four groups of Sym, would not have an
involution of @ in its coset. We assume that || = 8 and derive a
contradiction. Let T be an involution of & corresponding to a trans-
position of Sym,. Then {E, T')> is a maximal class group of order 16
and this group has a cyclic subgroup B of order 8. We see that
[ANB| =2s0 |AB| =4|A| and AB has period |A| since |A| = |B| = 8.
As in the last paragraph of the proof of the preceding lemma, this
implies that |®,| = 4, a contradiction. Thus |2[| =4 and since
/A = Sym, we have |&| = 4.24 = 96. This completes the proof of
the lemma.

4. Solvable case, m = 2. In this and the next section the
following assumptions hold.

ASSUMPTIONS. Group & acts faithfully on vector space T of
order ¢" and half-transitively but not semiregularly on Bf. € is a
group of type E(2,m) with & A ®. In addition & acts irreducibly
on B, ® is primitive as a linear group and & is solvable.

We will use the notation of Lemma 2.5. Moreover set $ = $/AE
so that § is a solvable subgroup of Sp@2m, 2). We let § = F(9),
the Fitting subgroup of $, and for each prime p we let &, be the
normal Sylow p-subgroup . By Fitting’s theorem, C3(g) S 3.
Recall the possible isomorphism classes for & namely: isol if
E=0Q-.--Q,is0llif F = DLV ---Q and iso III if € = B3QQQ .-+ Q.

LEMMA 4.1. Suppose §F,#<1>. Then |F| =2, G =isol or II
and & has a normal subgroup &, of type E(2, m — 1) with &, = iso III.

Proof. Let & be the complefe inverse image of ¥, in $ so
S/AC = F,. Then &/A is a 2-group and since A is central in §, &
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is nilpotent. If &, is the normal Sylow 2-subgroup of &, then &, 2 ¢
and &, A ®. Since @ is primitive, &, is of symplectic type. Suppose
4]]92,|. Then since A, is central in &, &, has a center of order at
least 4 and hence &, is the central product of Z(&, with a
number of nonabelian groups of order 8. Note that since € = &,
Z(S,) S Cs(€) = U so that Z(S,) = A,. Since |F,| > 1, S, = AE and
thus &, 2 A,EB where |B| =8, B Z A, and B = Ce(€), a contradic-
tion. Thus |2, | = 2 and hence | Z(€)| = 2. This implies that dim L8 =2~
and since &, acts faithfully on ¥L,&, has at most m nonabelian
factors. Since |Z(&,)| = |2,| =2 we see that &, =38, ---B,_,, a
central product of nonabelian groups with |8;| =8 if 7> 0 and %,
a maximal class group. Now B, N & is a 2-generator subgroup of &
s0|B, N E| <8, Thus |BE|=|B,| |&|/8=|B,| 2" =]&,|. Hence
we have equality throughout and |B, N E| =8. Now B, N EADB,
and B, N E is noncyclic. As is well known this implies that
[B,:B,NEI <2 s0 |B,| <16 and [&,:¢] <2. If |F,] =1, then
|%,| = 2. Finally &(&,) is cyclic of order 4 and from &, =B, we
see that &, = Cs(9(8,)) has the appropriate properties. Thus the
result follows.

We assume throughout the remainder of this section that m = 2.
Since § = Sp(4,2) here, we make some comments about this latter
group. Suppose Sp(4,2) acts on symplectic space LB. If U is an
isotropic subspace of ¥ of dimension 2, then the symplectic form
restricted to U is trivial. We see easily that 2 contains 15 such
subspaces. Note that | Sp(4, 2)| = 2¢.3%.5.

Let & be a Sylow 3-subgroup of Sp(4,2). Then & is abelian of
type (3,3) and contains the four subgroups %, %, &, <, of order 3.
We can take (see [10]) the following concrete realization for & Write
W=LW P W, a direct sum of two nonisotropic 2-dimensional sub-
spaces and then let 2, centralize T, and act irreducibly on 8, and
€, centralize 28, and act irreducibly on ,.

Let € =28 or &. Then B®=Cwu(® P (W, a direct sum of
2-dimensional subspaces. Let I be a 2-dimensional £-subspace of B.
If UN(W,L) ={0}, then certainly 1 = Cw(®) so U= Cwx®). If
U N (W, Q) # {0}, then since £ acts irreducibly on (W, L) we have
U2 (W, sol =(W,L. Thus U =B, or W,. In particular & and
€, do not normalize a 2-dimensional isotropic subspace of . If U is
a 1-dimensional €-subspace, then certainly 1l S Cw(2) so U < 3, or L&,.

Now let € = &, or 8,. Then & acts irreducibly on both 28, and
2, so L has no 1-dimensional invariant subspace. Let Il be a 2-dimen-
sional f-invariant subspace. If U = 8, or LB,, then U is nonisotropic.
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Suppose U = W, or W, and w, + w, e U with w,; e W,. Clearly w,, w, = 0.
It is now easy to see that we get precisely three subspaces 11 and since
@, and B, are orthogonal each such 1 is isotropic. Thus £ normalizes
two nonisotropic 2-dimensional subspaces and three isotropic ones.

If & is a subgroup of Sp(4,2) of order 5, then & acts irreducibly
on L. Then |C(I)||2¢—1s0o |C()| =5 or 15. In the latter case
let  be a subgroup of order 3 centralizing & Then I permutes
the two 2-dimensional nonisotropic subspaces normalized by £ and
hence & normalizes each, a contradiction. Thus Sp(4,2) has no
elements of order 10 or 15.

LEMMA 4.2. § s a normal 2-complement of © and |F| = 3,5
or F is abelian of type (3,3).

Proof. Suppose first that F, # <1>. By Lemma 4.1, & has a
normal subgroup &, = 30 and moreover 4} | Z(®)|. By the Reduc-
tion Lemma and Lemma 3.4 we have ¢ = 3,5 or 17. Suppose ¢ = 3.
Since | Z(€)| = 2 and € acts irreducibly, ¢ = 3* and thus &, also acts
irreducibly. By Lemma 4.1 & is imprimitive, a contradiction. Let
q=>5or 17. Then 4|qg — 1 and since ® is primitive and Z(€) A &
with | Z(G,)| = 4 we conclude that Z(E,) consists of scalar matrices
and 4| Z(®)|, a contradiction.

Now suppose § =<1>. Then $ = {1>. If Z(G) is central then
®& = AE is nilpotent so &, 2 ¢ is half-transitive. By Theorem II of
4], ©, = D0 and ¢" =38, Then |A|]¢g—1 so & =, = DYV and
this group is imprimitive, a contradiction. Thus Z(®) is not central
and in particular |Z(€)| =4. Since |[G/H| =2 we see that ©
normalizes a hyperplane in B = E/Z(€), say W, = E/Z(E). Then
€, A ® and @, has period 4. Since @ is primitive Z(&,) is cyclic so
Z(§) = Z(®) and then €/Z(F,) has odd dimension, a contradiction.

Using the fact that Sp(4,2) has no elements of order 15 we
conclude that ¥ is one of the three possibilities mentioned in the
statement of the lemma. Since § is abelian, $/F = Aut$ and from

this we see easily that § is a normal 2-complement.

LEmMA 4.8, € = isoI does not occur.

Proof. Suppose € = Q0 =DD. Then H =G and $ permutes
the involution vectors of 8 = G/Z(¢). By Lemma 1.3, 4(8) = 9 and
this clearly implies that |&| # 5. Thus § is abelian of type (8) or
{3,3). Since & = DD we see easily that & contains an abelian sub-
group B of type (2,2,2). If B, is an irreducible B-submodule of B
then by Schur’s lemma, [B:Cs(B)] <2 so for e B, 4||B,| and
hence 4||®,|. Moreover since €, is abelian and &, N Z(€) =<1) we
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see easily that & = B,. Suppose || =38. By Lemma 1.5 there
exists y € B* with @, N AG = (1>. Since 8 = $ and |H| = 8 or 6 by
Fitting’s theorem, we have |®,||6, a contradiction. Thus § is
abelian of type (3, 3).

First suppose ¢ = 3. Then a Sylow 3-subgroup of & has a fixed
point in B* and thus by half-transitively &, 2 & where z is the
above mentioned point and & is a Sylow 3-subgroup of &. Note that
if ® is the image of & in  then = F. Since & =GN G, A G,
we see that & normalizes Z(C),/Z(€) = B/Z(€) a 2-dimensional iso-
tropic subspace of symplectic space . This contradicts our preced-
ing remarks about Sp(4, 2) since the subgroup &, of & normalizes no
such subspaces. Thus g # 3.

Now & acts on I = G/Z(G) and let W = W, P W, be the de-
composition of W given in our earlier discussion of Sp(4,2). If
Z@) S €, = E with ¢/Z(E) =2, then E; is nonabelian since LB,
is nonisotropic, and since &; admits an automorphism of order 3
we have @, = Q. Hence we can find a noncentral involution
Te@ — (¢ UE,). By Lemma 1.5 there exists xe%* with &, =<{T).
Now a Sylow 3-subgroup of & is not cyclic, since & is not cyclic
and hence it cannot act semiregularly. By half-transitivety ©,
contains a subgroup 2 of order 3. Then 2 N AE = (1) so if € denotes
the image of € in §, then |[€| =3. Since <TD>D =G, =CNG,AG,
we see that € normalizes the 1-dimensional subspace €, Z(€)/Z(€) = U..
Now T was chosen in such a way that 1 & 8, or ,. Hence in the
notation of our discussion of Sp(4,2) we see that £+ & or &. On
the other hand ¥, and &, do not normalize 1-dimensional subspaces..
Hence £ = &, 8, 8, or &, a contradiction.

LeEmMA 4.4. If G = isoll, then q" = 3.

Proof. Let us assume that ¢" + 3'. Since € acts irreducibly on
B we have |B| =q" = ¢* so ¢ = 5. We consider the possibilities for
X. Suppose & is abelian of type (3,3). Then & is a Sylow 3-subgroup
of Sp(4,2) and we can write B = B, P W,, the corresponding de-
composition of E/Z(E) = BW. If E,/Z(E) =W;, then since W, is
nonisotropic, ; is nonabelian of order 8. Now ¢, admits an auto-
morphism of order 8 so ¢, = Q and € = QQ, a contradiction. Thus
[¥| = p for p =3 or 5.

Note that § =@® and |®/F||(p —1). Thus $/F is a cyclic
2-group. Suppose p||®,| for all xeB*. Let T be a noncentral
involution of . Since g # 3 there exists by Lemma 1.5 an ze%*
with @, =<{T). Let & be a subgroup of ®, of order p. Since
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LN AG = 1), &, the image of L in H, has order p so & = F. Since
{TY> =6, =8,NE we see that I centralizes the involution vector
in BB corresponding to 7. By Lemma 1.2, § centralizes 0, a con-
tradiction. Thus pt|®,| and in particular p # q.

Suppose p = 3. By Lemma 1.5 there exists x € Bf with &, N AS = 1),
Hence |®,|||9]|. Since |$| =6 we conclude that |®,| =2. We
note now that 4 f|2|. Otherwise 2E contains ¢* = 39D and this
group contains an abelian subgroup of type (2,2,2). This easily
implies that 4||®,|, a contradiction. Let £ be a Sylow 3-subgroup
of @. Since H/F acts faithfully on F we see by the above that if
T is a noncentral involution of & and T < Cs(¢) then TeE. Now
€ = ¥ permutes faithfully the () =5 involution vectors of 8.
Thus € moves 3 such and fixes 2 such. Since each involution vector
corresponds to two noncentral involutions of & we see that € centralizes
precisely four noncentral involutions of &. Thus clearly I(®) = 4
mod 3. On the other hand by Lemma 1.9 we have I(®) =1 + ¢
Thus ¢* = 0 mod 3, a contradiction since ¢ %= 3.

We consider p =5 so ¢ = 7. Let I denote the number of involu-
tions of &/A. Since A is cyclic and central in &, each involution of
&/ corresponds to at most two noncentral involutions of & so
I(®) < 2I. Now BWF A &/A where Iy is elementary abelian of order
2', |¥| =5 and § acts irreducibly on . Furthermore (&/A)/(WF)
is a cyclic 2-group which acts faithfully on (F)/2W. Hence we see
easily that I <15 + 5-4 = 35 and I(®) < 70.

Let T be a noncentral involution of &. If T'eAE then certainly
|Cs(T)| = ¢*. Suppose T & AE. From the structure of  we see
that for some Fe®, (T, T*>2F. Since 5/|®,| we see that
Co(T) N Cx(T7) = {0}. Hence |Cx(T)| = ¢ here also. Now every
element of B* is fixed by some noncentral involution of & so
Bt = |J,Cu(T)* and hence

¢ —1=|B| = IB)(¢ - 1)

or ¢ +1=< I(®) <70. Since ¢ > 5, we have ¢ = 7.

For ¢ = 7 the argument is somewhat involved. Since || |qg — 1
we have || =2 or 6. Now O42) is central in @ and is a Sylow
3-subgroup of &. Thus & has a normal 3-complement. Since this
group is also half-transitive we see that it suffices to assume that
0, = (1> and hence |A| =2, AC = @.

We can now get a tighter count on I(€). Let I = I, + I, where
I, counts the number of involutions of G/ and I, counts those of
®&/U not in G/A. We have as before I, = 15, [, <20. If (&) =1 + I,
is the corresponding break up of I(®), then I, <2I,<40 and
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I, = I(&) = 10. Hence I(€) <50 here. As above B* = J,Cx(T)
yields 50 = ¢* + 1 < I(®) < 50. Thus we must have equality through-
out and hence |J,Cx(T) is a disjoint union. This implies that every
element x e B* is centralized by precisely one involution so &, has a
unique involution.

Let R be the subgroup of & with R 2 ¢ and [R:F] = 2. Since
®/F is cyclic, R contains all the involutions of &. We study the
group M. Note that N is dihedral of order 10 and ¥ acts irreducibly
on B = G/Z(E). Let L be a Sylow 5-subgroup of R so that |[&| =5
and let M = Nn(¥). From the above we see that I/Z(E) is dihedral
of order 10. Let € = <L) and let Ne N — Z(C) be a 2-element. Then
LY = L.

Now 9 permutes the 10 noncentral involutions of ¢ and the
corresponding five involution vectors of 0. Using (( )) to denote
cyclic permutations, it is clear that we can label the involutions by
X, Y, 1=1,2,-.-,5 such that Y, = — X, and as a permutation

L= ((Xu Xzy Xs; Xu Xa))((Y17 Y2) Y37 Yu Yb)) .

Here for convenience we denoted the central involution of & by —1.
We consider N. As a permutation, it has order 2. Since N acts on
the five involution vectors of B, N must fix at least one such, say
the one corresponding to {X,, Y,}. Then either N fixes both X, and
Y, or N interchanges the two. Since LY = L' this completely
determines the cycle structure of N and we have either

(@) N = (X)X, X)X, X)N(Y )Y, Y)Y, YY) or

() N = (X, )Xz, Yo))((Xs YX,, Y)I(Xs, Vo)) .
Note that it is easy to see that for 7+ 7, (X;, X;) = (Y, ¥;) = —1.
Now the sum of the five involution vectors of 208 is L invariant and
hence must be 0. Thus Z = X X, X, X, X,c Z(®). If N acts like (b)
above, then

Z = 7" = (X.X.X,.X.X,))" = V.Y,Y.Y.Y,
= —X(XXX.X) = —Z.

Thus Z* = —1, a contradiction and hence N must act like (a) above.

Suppose N has order 2. Then (N, X,, Y,> is elementary abelian
of order 8. This yields as usual an element xe®B* such that &,
contains a subgroup of type (2, 2) and this contradicts our preceding
remarks. Hence N* = —1.

Now & =<E,N) is a Sylow 2-subgroup of R. We show that
every involution of & is contained in . This will imply that &
contains only 10 noncentral involutions and this will yield the re-
quired contradiction. Suppose Te¢& — ¢ is an involution. Then
T = NE for some Ec@. Since N?= —1 we have
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1=7T*= NENE = —E"E

so EY = —E-*. In particular the image of E in T = E/Z(€) is
centralized by N. Now Cwm(NN) is a 2-dimensional subspace which is
clearly spanned by the images in 8 of X, and X,X,. Note that X,
and X,X, commute and X,X; has order 4. Hence Fe{X,, X,X;> = B.
We have XY = X, = X7! and (X, X)) = X, X, = (X, X;)™ so since B
is abelian, N acts in a dihedral manner on 8. Thus E¥ = E-! which
contradicts the previous relation Y = — E-!. This implies that T does
not exist and the proof is complete.

If g~ = 3* above then & = F(®) is half-transitive. Thus these
groups are given in [5] where uniqueness was proved. Since ® is
primitive, we see that & is transitive and hence it is one of the
groups given in [3].

LEMMA 4.5. & = iso III does mot occur.

Proof. Suppose € = 3QQ. Since [Z(€)| =4 and € acts irre-
ducibly we see that |¥| =¢* if =1 mod4 and |¥|=¢*if ¢g= -1
mod 4. If = Cs(Z(€)), then [G: ] = 1 or 2. Moreover if [$: ] = 2
then ¢ = —1.

We consider . Suppose |JF| =5 or 9 so that Cwu(F) = 1.
Clearly ¥ acts faithfully on G/G’ and centralizes Z(G)/6’. Let G, be
the commutator subgroup of €%. Then clearly |G,/ | = 2!, G, A G
and @, = isoI or II. By the Reduction Lemma and the previous two
lemmas, &, =isoll and ¢ = 3. Since as we have seen, this group
does not admit an automorphism group of type (3,3) we must have
|&| =5. Since ¢ =3, ¢ = 3.

Now @ has an abelian subgroup of type (2,2,2) so it follows
that 4||®,| and hence 2||9,| for all xe L. As in the proof of the
previous lemma we see that 5/|®,| and hence if T is a noncentral
involution of §, then |Cx(T)| < 3. Now /A contains at most
15 + 5.4 = 35 involutions and hence since 2 is central and cyclic we
have I(9) < 2-35 = T70. Since B = U,Cx(T) we have

3 =|B| = 3U(H) =370

or 3* < 70, a contradiction.

Finally let |&| =3. As above we see that 4||®,|. Since by
Lemma 1.5 there exists ze%* with ®, N AC = (1>, we conclude that
4||®/AG|. Hence |H|=6and [: 9] =2 so ¢ = —1 mod 4, ¢" = ¢°
and ¢ = 5. By Lemma 1.5, if T is a noncentral involution of & then
for some xe ¥’ €, = {T). Hence if 3||®,|, then & fixes all involu-
tion vectors of T and F centralizes LW, a contradiction. Thus
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3/1@®,| and this implies easily that if 7" is an involution of £, then
ICo(T)| =< ¢q'. Alsog=+#3s0oqg=7. We have clearly I[() < 2-2-16.3 =
192 and since ¥ = Y,Cx(T) we have

¢ =8| = ¢ L) < 192¢".

Thus 7 < ¢* £ 192, a contradiction. This completes the proof of the
lemma.

5. Solvable case, m = 3 and 4. We continue with the assump-
tions of the preceding section except that m = 3 or 4 here. First
let m = 3. Now | Sp(2m, 2)| = 2°-3*.5-7. We consider the possibilities
for .

LEMMA 5.1. & is a 3-group.

Proof. If p is a prime, we let ¥, denote the normal Sylow
p-subgroup of §. We show here that &, = §; = F = <.

Suppose §, # (1>. By Lemma 4.1 & has a normal subgroup
¢, = 302Q0. By the Reduction Lemma and Lemma 4.5 this does not
occur.

Suppose F, # {1>. Then |F,| =7 and §, acts irreducibly on %8,
By Schur’s lemma, C%(®,) is a cyclic group of odd order and
[§:C3(F,)] 6. Hence if € =isol or II then 44[®:AE] while if
¢ = iso III, then 8} [®:AE]. Now if & =isol or II then & has an
abelian subgroup of type (2,2,2) so for some yeBf 4||®,|. If
@ = isoIII, then ¢ has an abelian subgroup of type (2,2, 2,2) so
8]]/©®,|. Finally by Lemma 1.5 there exists « € ¥* with &, N AC = 1>
so |®,]|[®: AE]. Since |G,| = |®,| we have a contradiction.

Suppose F, #= {1>. Then |F;| = 5 and we can write T = T, D B,
where |W,| = 2%, |W,| = 2!, both these spaces are J, invariant and
W, = Cu(F). Let € 2 @, 2 Z(G) with G/Z(C) = W,. Clearly & A G
and since & is primitive each &, is of symplectic type. By the Re-
duction Lemma applied to &, and Lemmas 4.3, 4.4 and 4.5 we have
g =3 and €, = ©DQ. Hence | Z(€)| = 2 so € == iso III.

Now B, and ¥, are nonisotropic and we know that $, is self-
centralizing in its action on 8,. Write C3(F,) = B x F; where B A Q.
Then B acts faithfully on 8, so since F, = (1), either B = (1> or B
has a normal 3-subgroup of order 3 which is clearly ¥.. Suppose
B = (1>. Then §/F; is a 2-group which acts on W, and hence there
is a 1-dimensional $-invariant subspace o, of W,. Note that § = ©
since & = iso Il and thus if ¢ 2 €, 2 Z(€) with E,/Z(C) = B, B W,
then ¢, A ®. By the Reduction Lemma and Lemma 4.5 we have a
contradiction since clearly &, = 3Q02.
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Thus B2 F, and |F,| = 3. Since ¢ = 3 we see that the Sylow
3-subgroups of & have order 3. Now &, centralizes I8, so clearly ®
contains precisely four Sylow 3-subgroups say &; for 7 =1,2,3, 4.
Since ¢ = 3 each &, has a fixed point on Bf so by half-transitivety
B = JiCxs(L). Hence since the &; are all conjugate in & we see that
each Cs(%;) has codimension 1 in 8. But | 8| = 3% so L, = NCs(L;) = {0}.
Since B, is clearly a proper &-invariant subspace of B we have a
contradiction.

LEMMA 5.2. ¥ is not cyclic and ¢q = 3.

Proof. We have shown that ¥ = ,. If § is cyclic (including
the possibility that § = {1>) then clearly 44|$|. If G =iso I or
II then & =9 so 41 |®/AE|. If ¢ =isoIll then 8} |G/AE|. If
& =isol or II, then & has an abelian subgroup of type (2,2, 2) so
we see that 4||@®,|. If € = isoIll, then & has an abelian subgroup
of type (2,2,2,2) so 8||®,|. Now by Lemma 1.5 there exists y e B*
with @, N AE = <1>. Hence |G, ||[® : AE], a contradiction.

Let ¢ = 3 so that for all x € B% ®, contains a Sylow 3-subgroup
of 8. Let § be the complete inverse image of ¥ in $. For any
x e B, let & be a Sylow 3-subgroup of &¥,. Then clearly € = 2AGE/AC = F
and since G, =GN G, A S, we see that ¥ normalizes &,Z(€)/Z(G).
If € = isoIl or III, then by Lemma 1.5 if T is any noncentral involu-
tion of & then for some x ¢ B*, ¢, = {T). This implies that F fixes
all involution vectors and & = <1>, a contradiction. If G =isol
then by Lemma 1.5, |&,| =1 or 4. However here it is easy to see
that for each such 7' we can find two points z,, x, € ¥* with {(T> =
€, N €,,. This again implies that & fixes all involution vectors and
the result follows.

LEMMA 5.3. & = iso 1l does not occur.

Proof. Here ¢ = QQQ and we see easily that Aut € contains
I ~ I where || = 3 and this is a full Sylow 8-subgroup of Sp(6, 2).
Then any 3-group acting on & can be embedded in this Sylow
3-subgroup. Let & be a Sylow 3-subgroup of Aut & Then R acts
faithfully on I = ¢/Z(¥). As a Sylow 3-subgroup of S»(6, 2) we know
that it has the following structure. We can write =T, H W, H LW,
a direct sum of orthogonal 2-dimensional nonisotropic subspaces. & has
a subgroup N of index 3 with M =& x &, x &. Here || =3 and
€, acts irreducibly on 28; and centralizes the remaining ;. Further,
any element of & — 9 permutes these three subspaces. Now let G;
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be the subgroup of & with &;/Z(€) = B,. Then E; is nonabelian of
order 8 and admits an automorphism of order 3. Thus G, = Q.
Suppose T = T,T,T, is a noncentral involution of & with T;c@,.
Since €; = Q we see that precisely one of the T is contained in Z(§),
say for example 7T,. Then we can write T = T,7T,. If some sub-
group £ of & centralizes the involution vector corresponding to T
then clearly € normalizes ¥8,. Thus £ = 9% so € normalizes ¥, and
W,. This clearly implies that £ centralizes I8, and 28, and thus € = &,.
Hence the only subgroups of & which centralize involution vectors
are £, 8, and &..

Now & is not cyclic and hence a Sylow 3-subgroup of & is not
cyclic. Thus 3||®,| for all xeB!. By the preceding lemma again
q # 3. Hence if Te@ is an involution, then by Lemma 1.5 there
exists v e ¥* with €, = (T'>. Let £ be a Sylow 3-subgroup of ®, so
|2/ =3 and & N ACE = {1>. Then € acts faithfully on G so we can
extend € to & as above. Since € normalizes the involution vector
corresponding to T we see that & = &, for some i. Thus |[Z]| =3
and 9/ |G, |.

Suppose & = &/AE contains a copy of N = K. Then let S be a
3-subgroup of & with SAE/AE = N. Certainly & = A. Now & acts
on B, a vector space of dimension n = 2!, Since & is a 3-group we
conclude that &' is in the kernel of some irreducible constituent and
hence &' has a fixed point in B¥. Since & = A we see that & = 1)
and & is abelian. Now &/& N A is abelian of type (3, 3, 3) and hence
& contains a subgroup of type (3, 3,3). But this implies that 9||®, |,
a contradiction. In particular we see that a Sylow 3-subgroup of &
has order < 3%,

Let T and 2 be as above and set € = {UAGE/AE. This time embed
3-group FL in 8. Again & =8, for some i. Now & is generated
by £ and any element outside 9. Since JFL < & we must have F = N
and hence L = N. Since ¥ centralizes F we have L = .

Now embed & alone in . We have shown that for each involu-
tion vector of ¥, ¥ contains a subgroup of order 3 centralizing it.
Thus §28,%,% and F 2N, a contradiction since & 2 N. This
completes the proof of this result.

LEMMA 5.4. € = iso Il and III do not occur.

Proof. Suppose Cn(F) = W, # {1>. Then W = W, P W, where
W, = (W, F). Since W, has even dimension (the nonprincipal irreducible
representations of a 3-group over GF(2) have even dimension) so does
W,. One of these two subspaces, say T®; has dimension equal to 4.
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Let @, be the subgroup of ¢ with €;/Z(€) = LB,. Then & A ® and
& is primitive so @; is of symplectic type. By the Reduction Lemma
and Lemmas 4.3, 4.4 and 4.5 we have ¢ = 3, a contradiction by
Lemma 5.2,

Now let € =isoll. By Lemma 1.3, § permutes the () = 35
involution vectors. Hence § must fix one of these and Cwn(gF) # (LD,
a contradiction.

Having already eliminated @ = isol and II we now eliminate

iso III. ¥ acts on &/G’ = U and centralizes Z(€)/E. Since Cx(F) = <1)>
we see that U =U, U, where U, = Cx@), U, =W, g), U|=2
[U,| =2 Let &, be a subgroup of & with &,/¢ =1,. Then ¢, A S
and G, is type E(2,3) and isoI or II. By the Reduction Lemma and
the above we have a contradiction.

We now consider m = 4. Here we have partial results in Lemmas
2.6, 2.10 and 2.12, Thus € # isolll, ¢ = 7 and |®/AE| > 10*. We

consider $.

LEMMA 5.5. All irreducible constituents of §, on LB have the
same degree. Thus F, =<1, F, =<1 if ptiB) and F, is
elementary abelian.

Proof. Suppose JF, # <1>. Then by Lemma 4.1, ® has a normal
subgroup &, of type FE(2,3) and isolIIl. By the Reduction Lemma
and Lemma 5.4 this is a contradiction.

If p+2 then §, acts in a completely reducible manner on 3.
If all its irreducible constituents do not have the same degree, then
certainly we can write I = %, P B, where BW; = <1> and W, is &
invariant. One of these two, say ¥, has dimension at least 4. If
G /Z(®) = W, then &, A & and since @ is primitive, &, is type E(2, m’)
with m’ = 2 or 3. Since ¢ = 7. the Reduction Lemma and the m = 2
and 3 results yield a contradiction. Now if p } ¢(%), then certainly
%, has a 1-dimensional constituent so they are all 1-dimensional and
over GF(2) this implies that %, centralizes T so &, = (L.

Finally we consider §.. If §, is nonabelian then the degree of
an irreducible representation of %, with ¥ not in the kernel is
divisible by 3. Since 3} dim B, ¥; is in the kernel of all constituents
s0 ¥ = <1> and §, is abelian. Let B, be an irreducible &,-constituent
of B with dimension j. Then j|dim T so 7 =1,2,4 or 8. In all
these cases 942 — 1 and hence clearly {, is elementary abelian.

LEMMA 5.6, & = iso1 does mot occur.

Proof. Here by Lemma 1.3, () = 3*-5 so only ¥, and F, can
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be nontrivial. We show first that &, = {1>. Note that a Sylow
5-subgroup of Sp(8, 2) is abelian of type (5, 5).

Suppose first that |F,| = 5°. Then &, is elementary abelian and
a Sylow 5-subgroup of &. We can write =B, P W, T = L,
where dim B; = 4, |€;| = 5 and @, acts irreducibly on 28; and central-
izes the other B;. Now a Sylow 5-subgroup of & is not cyclic so
5|18, for all xeB*. We have (W) =135 and |, U BW,| = 31.
Hence we can find a noncentral involution 7T'e @ with TZ(€)/Z(€) £
W, UW,. By Lemma 1.5 there exists xe¥* with €, =<T) and
if = @®, has order 5, then & normalizes &, N € =<{T). Thus
L = QAG/AC = F, centralizes the involution vector corresponding to
T. Since Cwn(8,) = W, and Cwx(L,) = W, we see by our choice of T
that € == &, or &. But then & acts irreducibly on 28, and T, so by
the Jordan-Holder Theorem, Cw(8) = <{1), a contradiction.

Now let |¥,| = 5. By the preceding lemma & is abelian. Since
the irreducible nonprincipal representations of &, over GF(2) have
degree 4 we see that either & is irreducible or it has two irreducible

constituents of dimension 4. Thus & has two generators and § is
abelian of type (5), (3,5) or (3, 3,5). Hence

|&| < 3°|GL(E2,3)| -5-4 = 8640 < 10*

a contradiction.
Thus § = &, is elementary abelian. If |%,| < 8, then

|8 < 3 |GL(2,3)| = 432 < 10*,

a contradiction. If |JF,| = 8°, then |® | divides both | F;| | GL(3, 3)| =
25.3%.13 and | Sp(8, 2) | = 21%-3°-5°.7-17 so | & | divides 2°-3° = 7776 < 10¢,
a contradiction. Since the Sylow 3-subgroup of Sp(8, 2) is nonabelian
of order 3° this leaves only |%,| = 3%

Let & be a 3-subgroup of ® with SAE/AE = F,. Clearly & < .
The action of & on B is completely reducible since ¢ # 3 and since
dim B = 2¢ is not divisible by 3 it follows that &' is in the kernel of
some constituent so &' has a fixed point in B¥. Since A acts semi-
regularly, & = {1>. Now & is abelian and &/(& N A) is abelian of
type (3, 3,3,3). Thus & contains a subgroup of type (3,3, 3, 3) and
hence 3°||®,|.

Now @ = QQQQ so it is clear that the automorphism group of
@ contains & = I X (¥ ~ ) where || = 3. This group is a Sylow
3-subgroup of Sp(8,2) and hence is a Sylow 3-subgroup of Aut €.
We describe it more precisely. Write ¢ = §,¢,E,E, where each €, = Q.
Then & has an elementary abelian subgroup 9 of index 8 with
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N =L, Here L, acts nontrivially on &, and centralizes the
remaining &;. Every element of & — N normalizes & and cyclically
permutes €, €, and @, Let W=V, P W, P W. P W; be the corre-
sponding decomposition of 8.

Let T be a noncentral involution of &. Then there exists x e B¢ by
Lemma 1.5 with €, = {T). Since 3’| |®, | let & be a subgroup of &, of
order 3°. Then & normalizes &, N € = €, = (T). Since £ N AC = 1),
€ acts faithfully on €. Thus a suitable conjugate € of £ in Aut € is
contained in & and clearly € also centralizes an involution vector of
W, Let W= W,+ W,+ W,+ W,eld with W,e2,. Then we see
easily that W is an involution vector if and only if either none or
two of the W, are zero. Suppose two of the W, are zero. Then
clearly Cx(W) = 9t and then |Ci(W)|< 3. If none of the W, are
zero, then CR(W)NN =<1> so |CxRW)| < 3. This contradicts the
fact that |2| = 3° and € fixes an involution vector.

LEMMA 5.7. & = iso Il does mot occur.

Proof. Here (%) = 7-17 by Lemma 1.3. Hence only %, and &,
can be nontrivial. If &, # (1> then since 7°}|Sp(8,2)|, || =T.
But the nonprinecipal irreducible representations of this group over
GF(2) all have degree 3. Since 3 /dim 2 we have a contradiction.
Then & = &, has order 1 or 17 and |®| < 17-16 < 10¢, a contradiction.

We have therefore shown in this section that if & is solvable
then m = 3 and 4 do not occur.

6. Theorem B. The following assumption holds throughout
this section.

AssuMPTION. Group @ acts faithfully on vector space B of order
q", q a prime, and acts half-transitively but not semiregularly on
B*. Further ® is primitive as a linear group and & is solvable.

Let .7 (¢™) denote the group of all semilinear transformations on
GF(q") of the form = — ax® where a € GF(¢™)* and ¢ is a field auto-
morphism. Thus .7 (¢") is the stabilizer in the permutation group
S (q*) of the point 0.

LEMMA 6.1. Let § = F(®) and set A = Z(C(D(F))). Then A
18 a normal cyclic subgroup of &

(i) If A = CHO(Y)), then with suitable identification we have
G <. 7).

(ii) If A= Cx(D(F)), then CHP(F)) = AE where € is a group
of type E(2,m) and & A S. Moreover m =1 or 2.
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(iii) In the above if m =1 and 4} ||, then either & & 7 (¢™)
or q" = 3%, 7% or 11°

Proof. Let ¥, be the normal Sylow p-subgroup of ¥. By
Theorem A $, is cyclic for p > 2 and $, is a group of symplectic
type. Since A = Z(Cx(P(F))) is a normal abelian subgroup of a primi-
tive group it is cyclic.

From the structure of 2-groups of symplectic type we see that
if A = Cx(D(F)), then P, is either cyclic or maximal class of order
at least 16. Now §F = AF, so Co(N)/Z(F) acts faithfully on ..
Since Aut @, is a 2-group and Z(F) = A we see that Cs(A) is a normal
nilpotent subgroup of & and hence Ce() & . This yields easily
Ce() = A. By Proposition 1.2 of [5] we see that & = .7 (¢") and
(i) follows.

Suppose A = Cx(P(F)). Then as we pointed out in § 1, Cx(D(F)) =
A where € is a group of type E(2, m) and & A ®. By Theorem A
and the results of §5, m =1 or 2.

Let m =1 and suppose 4} |%|. Then F, =D orQ. If F =D
then ¥ has a characteristic cyclic subgroup B of index 2. Since
Aut ® is a 2-group, the above argument yields & & .7 (¢™) again.
If §, =2, then by Proposition 1.10 of [5] ¢" = 3% 7% or 11°. This
completes the proof.

We assume now that A = CHI(F)).

LEMMA 6.2, Let B = Ce()/ACE. Then O0,B) =<1>, B acts
Jaithfully on C/Z(€) and B = Sp(2m, 2).

Proof. Let 8/AC = 0,B). Since A is central in & and /A is a
2-group, we see that £ is a normal nilpotent subgroup of & and
hence L = F. Now O(F) = U and Cx(D(F)) = AE. Hence

2 S C3(A) < Cx(D(F)) = AC

so € = ACE and 0,B) = .

Let © = Ca(Y) and let & = Co(W) where W = E/Z(E). We have
of course & 2 AE. First K centralizes 0,.(F) S A. If F, = 0(),
then since clearly [§F.: 2.€] = 2, where %, = AN F., wWe see that &
stabilizes the chain &, 2 A,E 2 A, 2<1)>. Thus K/Ca(F) is a 2-group.
Since & 2 Z(¥), Ca(®) = Z(%) and hence K/Z(F) is a 2-group. But
Z(%) = A and A is central in K so & is a normal nilpotent subgroup
of @ and & = . This yields easily & = A€ and thus B = H/K acts
faithfully on 8. It now follows immediately that B = Sp(@2m, 2).

LEMMA 6.3. Let A =<A) and let { be an eigenvalue of A with
GF(q)(C) = GF(¢"). Then
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(i) CoA) S GL(njr,q), |AI|(@" — 1)
(ii) G/Cx(N) is cyclic of order dividing r.
(i) n = w2™r for some integer w.

Proof. Parts (i) and (ii) follow from Lemma 1.1 of [5]. Now
all irreducible constituents of & are faithful and the same is clearly
true if we view € & GL(n/r,q"). Thus n/r is divisible by 2™, the
degree of the nonlinear absolutely irreducible representations of &.

LEMMA 6.4. If m =1 and 4| |U|, then g~ = 5 or 17%

Proof. We can assume that |Z(€)| =4 so € = 83Q. By the
Reduction Lemma and Lemma 3.4, ¢ = 3,5 or 17. Set $ = Cws().
Then by the above $/AE =B is contained isomorphically in Sp(2, 2) =
SL(2,2) = Sym,. Since 0,(B) =<1), |B| =1, 3 or 6.

Suppose |B| =1. Now 2||®,| so we can apply Lemma 3.1 with
p = 2. Note that G&/UAE is cyclic of order dividing 7 and k = n/r =
2w. If r is odd, then A, <3, N, = 0 so by Lemma 3.1, (ii) and (iii),
we have ¢"< 6 so r=1. If r is even, then A, <3, A, <4 so we
get easily ¢ <5 and hence r = 2. Now & has precisely three
normal abelian subgroups of type (2,2). Since G/UE is a 2-group
one of these three abelian groups will be normal in &, a contradic-
tion since & is primitive. Thus |B] = 3 or 6.

Suppose 3||@,|. We again apply Lemma 3.1. If 3})» then
N =4, N, =0 while if 3|», then A, <4 and we see easily that
X =9. Let 3y7 so by Lemma 3.1 we have ¢" < 8. Since 4|¢" — 1,
¢" =5 and then by Lemma 3.1 (i) we have k¥ =2 and n = 2. But
3fq—1 so no element of GL(2,5) of order 3 can have a nonzero
fixed point, a contradiction. Let 3|». Then Lemma 3.1, (ii) and
(iii), yields ¢""* <4 so ¢"=3% This is a contradiction since 4} (3*—1).
Now 3||®| so we see also that ¢ # 8 and thus ¢ =5 or 17. We
assume that ¢” == 5 or 17 and derive a contradiction.

Suppose first that r is odd. We apply Lemma 3.1 with p = 2.
Then 2 =9, A, =0 so we have ¢" < 18. Thus ¢"=5 or 17 and
r=1. By Lemma 1.5, there exists xe® with &, N ACE = {1D.
Since » =1 and 3/|®,| we have |®,| = 2. Hence by Lemma 1.9,
I(®) = ¢"* + 1. Now U is central in & and cyclic so each involution
of &/A corresponds to at most two noncentral involutions of .
Thus

P+ 1=I8) <2.9=18

so ¢ = b* or 17%, a contradiction.
Now let » be even. We have easily ), =<9, », < 10. Thus if
k > 2 then Lemma 3.1 (iii) yields ¢" = 5 and then by Lemma 3.1 (i)
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with k# > 2 we have a contradiction. Thus £ = 2 and by Lemma 3.1
(ii), ¢ +1 <18 +10(¢"* + 1) so ¢"* < 13. Since r is even ¢ = 5%
By Lemma 1.5 there exists xe®* with &, N ACE = <1> and hence
since 34 |®,| we have |®,| = 2 or 4.

Suppose |®,| = 4. Since [G:9] =2 where = CA) we see
that 2||9,.| for all xe B! C(learly  acts irreducibly on B so by
Lemma 3.1 applied to § with p =2 we have A, <9, A\, =0 so 25 =
q" < 18, a contradiction. Thus |®,| = 2.

Now here n = kr = 4. By Lemma 1.9, we have I[(®) = 1 + ¢"* =
26. Let £ be a Sylow 3-subgroup of &. Since 3} |®,|, & is cyelic
and acts semiregularly so |¥||5*— 1 and |2| = 3. Since 3||B| we
have 8 N AE = <{1)>. Now L permutes by conjugation the noncentral
involutions of & and since 3} I(®) we see that L centralizes a
noncentral involution of &. The group &/AE acts on W = §/Z().
If the action is faithful then clearly &/ < Sym,. Since subgroups
of order 3 of Sym, are self-centralizing we have a contradiction.
Hence the action is not faithful so say /A€ is the kernel with
£ > ACE. Now H/AE does act faithfully so [R:AE] = 2. Note that
AG. Also 3|2 and |A||5* — 1 implies A is a 2-group and
hence & is a 2-group. Since @ is primitive, & is of symplectic type.
Moreover Z(G) A ®, |Z(E)| =4 and 4|q — 1. Hence Z(€) is central
in @ so & must be the central product of a cyclic group with a
nonabelian group of order 8. Now £ = § and since [F:AC] < 2 we
have & = §. Then O(F) is central in § and F = Cx(P(F)) = AE, a
contradiction. This completes the proof of the lemma.

LEMMA 6.5. If m = 2, then q" = 3%,

Proof. By the Reduction Lemma and Lemmas 4.3, 4.4 and 4.5
we have ¢ =3 and G =DQ. Hence 4} |2A|. We consider & =
F($/2AC). By Lemma 6.2, & = 0,(&) = {1>. Suppose &; = O4R) = {1>.
Since ¢ = 3, a Sylow 3-subgroup of & has a fixed point in B* and
hence by half-transitivety @, contains a Sylow 3-subgroup of & for
all xeB* Let T be a noncentral involution of €. By Lemma 1.5
there exists « e B* with & = {T>. Now we can find 3-subgroup £ of
®, such that € = QAE/AE = R,. Since L normalizes E NG, = €, we
see that R, centralizes the involution vector corresponding to 7.
Thus &, centralizes all the involution vectors of W = G/Z(F) so by
Lemma 6.3, & = (.

Now B < Sp4,2) and |Sp(4,2)| = 2'-3*.5. Since & = O,B) by
the above we have |&| =1 or 5 and hence |B|=<20 and |H/A| <
16-20 =320. We use Lemma 3.1 with p =2, Note that k=n/r=2"=
4 so Lemma 3.1 (iii) always applies. Certainly ), < 320. From the



EXCEPTIONAL 3/2-TRANSITIVE PERMUTATION GROUPS 709

structure of § = $/2A we see that A, < 15 + 5-4 = 35. Hence
0" < 200 + \g) = T10 .

Since ¢ = 3, this yields » < 5. However if » = 5, then [®: §] is odd
S0 A, = 0 and then ¢" < 2\, = 70, a contradiction. Thus » < 4.

Since » <4 we see that & is a Sylow 5-subgroup of &/AE.
Hence if 5||®,|, then as in the preceding argument with &, we
conclude that & fixes all involution vectors of ¥ = /Z(®) and thus
& = {1). This certainly contradicts 5||@®,|. Hence 5} |®,|. Let
T be a noncentral involution of &. We show that |[Cx(T)| < ¢
This is certainly the case if Te AE. Let Te 9 — AG. Then || =5
since §/AE =+ {1). Clearly there exists Ke§ so that the image
of (T, T%> in $/AC contains K. Since 5/|G,| we see that
Cs(T) N Ce(T*) = {0}. Thus the result follows here. Finally if
Te® — 9, then there exists AeW with (T, T*>NA=LL). Since
A acts semiregularly the result follows.

We show that » is not even. If » is even, then » = 2 or 4. If
r=2 then |¥||¢g"—1 and ¢"—1=28. Since 4} |UA| we have
|2 =2 and ||| g — 1. This violates the definition of r and hence
r=4. Here |A||¢g"—1landqg — 1= 2530 |A||10. Since |A| < 10
each involution of (@ — §)/A comes from at most 10 of & — . Thus

I(S) < 2-35 + 10-320 = 3270 .
Since 2||®,| we have B = JCs(T') over involutions T and hence
" = |B| = I(G)g"* < 3270¢""

so ¢"*<38270. Thus n<16. But r =4 and n = 2™ = 16 so we
have a contradiction. Thus r is odd.

Since = is odd, all involutions of & are contained in . Now A
is cyclic and central in § so each involution of £/ comes from at
most two of . Hence I(®) < 2-35 = 70 and since 2| | @, | we have

¢" =|B| = I(®)g"” = 70¢™"

or ¢** < 70. Since 4|n we have n =4 and thus » = 1. This com-
pletes the proof of the lemma.

Combining Lemmas 6.1, 6.4 and 6.5 we obtain

THEOREM 6.6. Let ®& act faithfully on vector space B of order
q" and let & act half-tramsitively but mot semiregularly on Bf. If
S s primitive as a linear group and if & s solvable, then &
satisfies one of the following.
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(i) < 7 (@.
(ii) " =&, 5,7, 115, 17 or 34

The proof of the main theorem now follows easily.

Proof of Theorem B. Let & be the given solvable 3/2-transitive
permutation group and assume that & is not a Frobenius group. By
Theorem 10.4 of [11], ® is primitive. Let ¥ be a minimal normal
subgroup of &. Since & is solvable, LB is elementary abelian of
order ¢". Since & is primitive, LB is transitive and hence regular.
If a is a point being permuted, then by Theorem 11.2 of [11], @, is
an automorphism group of B which acts half-transitively but not
semiregularly on Bf, By Theorems 1.1 and 6.6 we have &, = .7,(¢™"?),
&, S 7 (q") or ¢~ = 3,5, 7%, 113 17 3*. Note that the exception of
Theorem 1.1 of degree 2° is a subgroup of .77 (2%. Since deg & = ¢*
and © = BOG,, the result follows.

7. Theorem C. We can now obtain several easy corollaries.

COROLLARY 7.1. Let & be a solvable 3/2-tramsitive permutation
group. Then for all points a +# B the stabilizers ®,; are isomorphic.
In fact if q» + 3%, then ®,; is cyclic, while if ¢ = 3%, then G, S
Sym,.

Proof. The result is clear if ® is a Frobenius group, & & .&“(¢")
or ® = .(¢"). Thus we need only consider the exceptions. Here
®, acts on B and ®,; is the stabilizer of 8¢ Bf. Suppose ¢" = 5, T¢, 11*
or 17, Since we see easily that |®,| is prime to ¢ it follows by
complete reducibility that ®&,; has a faithful 1-dimensional represen-
tation and hence is cyclic. Suppose ¢" = 3%, Since G, 2 E = QO we
see that ®, is transitive on Bf. Also @,/ = Sym; and G, N E =<1)
so the result follows here. Finally let ¢ = 3* so that & A &, with
G =DQ. Then € = 0,6,). If =0, then |G| =2. If G, > €
then as we have seen 5||®,/€|. This implies that &, acts transi-
tively on B%. The result now follows by Lemma 2.4 of [5].

COROLLARY 7.2. Let & be a solvable linear group acting on
GF(q)-vector space B. Suppose & acts half-transitively on Bt If
q # 2 and |®| is even, then & has a central involution.

Proof. The result is well known if & acts semi-regularly and
obvious in all of the remaining cases with the exception of & = .7 (g").
Here the argument of Step 1 of the proof of Proposition 2.7 of [8]
yields the result.
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Finally we consider the transitive extensions of these exceptional
3/2-transitive groups.

Proof of Theorem C. Let & be a 5/2-transitive permutation
group on the set 2 and assume that & is not a Zassenhaus group.
Let o,0e 2 and assume that ®. is solvable. Thus ®. is a solvable
3/2-transitive group which is not a Frobenius group. If ®. & .&7(¢%)
or ®.,= %q"?) then by the results of [8], I'(¢") <& & I'(g").
Hence we need only consider the exceptional groups. We show that
these have no transitive extensions.

Set = ®., so that G. = 9B where B is a regular normal
elementary abelian subgroup of order ¢". Let Z denote the central
involution of . Then Z fixes 0 and o and moves all the rest.
Since ® is doubly transitive we can find a suitable conjugate T of
Z with T = ((0, 0)) -+ . Thus T normalizes $. By Lemma 1.3 of
[8], 19] = (¢~ — 1)/2. If ¢ = 17, then by Lemma 3.5

% =19=z07—-1D/2.

a contradiction.
We will use results of §3 and § 4 about these exceptional groups

which were not explicitly stated. Let & = 0,(9) so that T normalizes
. Suppose T fixes the point a. Since T centralizes Z we see that
(@Z)T = aTZ = aZ so T also fixes 8 = aZ and these must be the
two points of 2 fixed by T. Since T is conjugate to Z and 7 is
central in ®., we see that 7' is central in ®,;. Thus 7T centralizes
Dap. Note that 9., = 9, = 9; since aZ = . Conversely let T
centralize He . Then («H)T = aTH = aH so «H = « or 8. Hence
HelZ, $,.y and hence Co(T) = {Z, Ho)-

Suppose 3] 9,.| for xecBf. This implies easily that ¢ = 3 or
7* and € = Q. Since € acts semiregularly on ¥, Cs(T) =<Z)> and
‘thus T acts nontrivially on €/Z(€). Let & be a subgroup of 9, of
order 3. Then (T,J> is cyclic of order 6 and acts faithfully on
'§/Z(€), a contradiction. Thus |9,| is a cyclic 2-group. Note that
if ¢ =38, then 3})|9| so clearly <= 7 (3% and ©. is not ex-
ceptional.

Set R =GN At Q2. Since R 2%, T, Z K is doubly transitive and
K., has a central involution. Also [G:8] < 2. Let ¢ =T or 11%
Then | .|| q¢ — 1 so clearly |$,| = 2. If H is a noncentral involution
of © then H moves ¢* — ¢ points and hence H is a product of
.q(q — 1)/2 transpositions. Thus with ¢ =7 or 11, H¢ & and there-
fore & is a Zassenhaus group. Since &., has a central involution
the results of [12] yield & S .7 (¢*) and hence R., has a normal
Sylow 3-subgroup, a contradiction. This leaves only ¢ = 5° and 3.

Let ¢ = 5°. Suppose He $ has order 4 and fixes a point of B¥,
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Since H and H* fix the same set of points here, we see that H is a
product of (5° — 5)/4 = 5 4-cycles. Thus H¢ R. Now &, is exceptional
so 3||®.,] and hence by the above remarks |f.,] = 16-3 = 48,
Thus |R] = 26-25-48. Let B be a Sylow 13-subgroup of R. Then
[f:B] =2.25-48 = 8 mod 13. If N = Na(P), then by Sylow’s theorem,
[t :PB] = 8 mod 13. We see easily that 5 has two orbits of size 13.
If A is an abelian subgroup of & containing B, then either A has
two orbits and then U = P or A is transitive. In the latter case A
is regular so if A€ has order 2, then 4 is a product of 13 trans-
positions and A ¢ Alt 2, a contradiction. Hence 2 = L and P = Cs(P).
Thus N/P S Aut P so [t :P]|12. Since [ : P] = 8 mod 13, we have
a contradiction.

Finally let ¢ = 3* so that & has degree 3*4 1 =2.41. Now
|9 = (q" — 1)/2 = 40 so we cannot have $ = DQ. Hence we must
have 5|/ 9| so  is transitive on B* and we thus see easily that &
is triply transitive. Now |9.| = 2,4 or 8 so write | &, | = 2-2° where
2° =1,2 or 4. Then

|R| =82(82 — 1)(82 — 2)-2.2° .

Let ¥ be a Sylow 41-subgroup of & so that [®:B] = 8-2° mod 41.
Hence if N = Ng(PB), then [N :P] = 8-2° mod 41. As in the ¢* = 5°
case we see easily that 9 is self-centralizing so /P < Aut P and
[9:P]|40. Since 2° < 4 this yields 2’ =1 and [ : P] = 8.

The fact that 2° = 1 implies that € = ©Q is normal in &., and
[Reo: €] = 5. Since N/P is eyclic, let € = L)> be a subgroup of N
of order 8. & permutes the two orbits of P. If it fixes each then L
clearly has fixed points in each orbit. Thus some conjugate of L is
contained in &, a contradiction since ¢ = DQ has period 4. Thus
¢ interchanges the two orbits. This implies easily that L is a
product of ten 8-cycles and one transposition. Hence L is an odd
permutation, a contradiction. This completes the proof of the
theorem.
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