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ON THE TENSOR PRODUCTS OF VON
NEUMANN ALGEBRAS

JUN TOMIYAMA

Let A and B be C*-algebras and let A®aB be their
C*-tensor product with Turumaru's ^-norrn. The author has pre-
viously defined mappings Rφ: A ®α B-+B and Lψ: A®aB->A
via bounded linear functionals φ on A and f on B, as follows:

Σ< ai9φ > bi ,

Σ < fo, f > at ,

and has shown how the families {Rφ \ ψ β A*} and {Lψ \ f e B*}
determine the structure of the tensor product of A and B.
Moreover, in a joint paper with J. Hakeda the author also
proved the existence of these kinds of mappings in tensor
products of von Neumann algebras and gave some of their
applications. Further applications of these mappings are
shown in the present paper.

Theorem 2 says that the product Λf ® N has property L if one
of the factors M or N has property L. This answers a question of
Sakai. It can be shown that the above families of mappings deter-
mine completely the tensor products of von Neumann algebras
(Theorem 3). Theorem 4 shows that if πλ and π2 are projection of
norm one from M1 and N± to their subalgebras M2 and JV2, then there
exists, without assuming their σ-weak continuity, a projection of norm
one π from Mλ <g) &(K) Π &(H) <g) N, to M2 <g) &(K) Π ̂ (H) (g) N2

such that ττ(α® 6) = π^a) (g) π2(b), where aeM1 and feeJV,.

We always denote by M 0 ΛΓ the tensor product of the von
Neumann algebras Λf and N and by ikί(g)αiV their tensor product as
C *-algebras. M* means the conjugate space of M and ikί̂  the
predual of the von Neumann algebra M.

The following theorem is the basic result cited in the above
introduction; it is a more precise version of Lemma 2.5 of [1], We
give the proof for the sake of completeness.

THEOREM 1. Let M and N be von Neumann algebras and
M0N their tensor product. Then for each φeM* (resp. f eJVJ
there exists a σ-weakly continuous mapping R9\ M£ξ) iV—> iV(resp.

satisfying the following conditions:
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(1) 1

resp. L
\

(2) i?9((l ® α)α?(l ® 5)) = aRφ(x)b for x

(resp. ^ ( ( α ® 1)#(6 ® 1)) = aLψ(x)b .
(3) <x, ^0α/r> = <i?.(^),^> = <L+(x),φ> for

Moreover, the families of mappings {Rψ\φeM*} and [Lψ \ ψ e N*}
are total in M (g) N.

Proof. Let φ (g) ψ be the product functional of φ and ψ which
is (7-weakly continuous in M<g)N. Put fΨtX{ψ) — < x, φ®^> for
xeMζ&N. Then fψtX is clearly a bounded linear functional on N*
and as (JV*)* = iV there exists a element jB̂ (ίc) in N such that

It is an easy verification by this definition that the mapping
R9:x^yRψ{x) is a σ-weakly continuous linear mapping. Similarly,
we get the mapping Lψ and it is easily seen that assertion 3 holds.

Next, take an element Σ?-=iα< ® &;

which implies 1. From these relations, we get

Rφ

and since i2^ is tf-weakly continuous, i2^((l ® α)a?(l ® b)) = aRψ(x)b
for all xeM(g)N. The argument for L^ goes similarly.

Now, suppose i29(#) = 0 for all <p in M*, then <a;, φ(£)ψ> =
<i^(αθ, ψ > = 0 for 9? e Λf* and ψeN*. Hence < E , Σ?=I^* ® ^ i> =
0 where φ{ e M* and ^ e iV* (ΐ = 1, 2, , n). Since the family
{ΣΓ=i9>i®til9ieM"s|β,tieiSΓ*} is dense in (M(g)N)* (cf. [13]), we
get x = 0. Similarly the family {L^ | ψ e N*} is also total in M® AT.
This completes the proof.

We notice that the families {Rψ \ φe M* and positive} and
ψe N* and positive} are also total.
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Recall that a factor M (on a separable Hubert space) has the
property L if there is a sequence {un} of unitary elements in M such
that σ-weak limit un = 0 and strong- limit u*aun = a for all a e M.

Sakai proved that if one of the factors M or N is finite and has
property L, then ikΓ(g)JV has property L, and asked whether the
restriction of finiteness could be dropped [4, Th. 6.4 and Remark
6.2], Here we shall answer this question as an application of the
above mappings.

THEOREM 2. Let M and N be factors and suppose that M or
N has property L; then M(&N has property L.

Proof. Suppose N has property L; then there is a sequence
{un} of unitary elements in N such that σ-weak limit un — 0 and
strong-limit u*aun = a for all aeN. Put un = l(g)t&n, then {un} is
a sequence of unitary elements in M (g) N and for φ e M* and ̂  e N*,

limΛ < δ n , φ (g) α/r> = limΛ <1, cp> <^w, π/r> = 0 .

Hence, limn <un, Σf= 1^ (g) ̂ <> = 0 where ^ 6 ilf* and ψieN* (i =
1, 2, « ,m). Since {iiw} is uniformly bounded, this implies σ-weak
limits ί?Λ = 0.

Next, take an arbitrary x in M (g) iV, then for φe M* and ψ e N*
we get by Theorem 1

limn <uϊxun, φ 0 ψ> = lim

= limw <utRo(x)un, ψ> = <Rφ(x),ψ> =

Hence limΛ <uixun1 ΣΓ=i9< Θ 'ft > = < α* ΣΓ=i^ ® ̂ i> where
9?i G ikΓ̂  and fi^N* (ΐ = 1, 2, , m). Since {^*OT%} is uniformly
bounded, this implies σ-weak limits ^Jα;^ = a;.

Let φ be a normal positive functional on M§§N, then

x*x, φ>

<X*X, φ> = 0 .

That is, strongest-limits ntxun = a?, and strong-limit^ ffiJa;Sn = x for
all xeM(g)N. Hence M(g)N has property L.

Let M and 7^ act on H and if. Denote by &(H) the algebra
of all bounded linear operators on a Hubert space H. Then
is naturally considered as the subalgebra of &(H) (g)

and as is easily seen the mappings Rψ and L^ in
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are nothing but the restrictions of those mappings R^(φ
and L+(ψ e .<^(K)*) in &(H) (g) ^(K) where φ and ψ are exten-
sions of φ and ψ. Now the following question naturally arises. Let
31 be a von Neumann algebra on H (g) K and suppose §1 satisfies the
following condition: Rψ{%)(zN for all φe<^{H)* and 1̂ (31) c M for
all ψe^?(K)*, then what is the relation between 31 and M(g)iV?
All we know is that SI is contained in ikf(g) 3?{K) Π ̂ {H) (g N.1

In fact, let #eSI and take an arbitrary element aeN' then we get

Rφ((l ® Φ) = aRψ(x) = Rφ(x)a = Rφ(x(l (g) α))

for all <pe&(H)*. Hence (1 <g) α)« = a?(l <g) α) and x e (1 (g) N')' =
JV. Similarly a? e (AP (g) 1)' = M®&(K). Thus

SI c M (g) ^ ( i f ) Π &?(H) (g) iV .

Now let us consider the situation described in Theorem 1.
Putting Rψ(x) — l®Rφ(x) and Lψ(x)Lψ{x) (g) 1 we see that for commuting
subalgebras M(g)l and 1 ® N which generate M(£)N there are sufficient-
ly many σ-weakly continuous M (g) 1 — module (resp. 1 (g) N— module)
linear mappings from M(g)N to Λf(g)l (resp. 1 (g) N) which induce
σ-weakly continuous functional on each component algebra. We shall
show that this situation completely determines the tensor product
structure of von Neumann algebras. Namely

THEOREM 3. Let % be a von Neumann algebra and M and N
be subalgebras satisfying the following conditions:

(1) SI = R(M, N), i.e., M and N generate SI,
(2) M and N commute with each other,
(3) There is a total family of σ-weakly continuous N — module

mappings [Ra \ael} from SI to N such that Ra(o) = λ£l for ae M
where λ£ is a complex number associated with a.

Then 31 is isomorphic to M (g) N.

Proof. Take an element ΣΓ=iαi&< where ^ G J I i and b{e N (i =
1,2, •• ,w). We assert that the mapping

is well defined and one-to-one. So, let Σ?=iαA = 0. We may assume that
[bi I i — 1, 2, , n) are linearly independent. Then, from the relation

1 According to the recent result [8] by Tomita about the general standard form
of von Neumann algebras, the commutation theorem in the tensor products of von
Neumann algebras follows as the corollary. Hence SίcM(g)iV, i.e., M®N is the
largest von Neumann algebra having M and N as its components in H and K. A
similar remark should also be added to Theorem 4.
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we get λ£. = 0 for i = 1, 2, , n and α e / . Therefore RJjii) = 0 for
all a e I and this means that a{ = 0 for ί = 1, 2, , π and Σ?=iαtΘ 6̂  =
0. Since the fact that Σ?=iα* ® b» = 0 implie Σ?=iα*&» = 0> the above
result shows that Φ is a well defined one-to-one mapping. Therefore
the C*-algebra C* (M, N) generated by M and N is isomorphic to
the C*-tensor product of M and N with the compatible C*-norm β
defined by

I i3
(cf. [7]) .

Next consider the functional <α, φa>=Xa

a on α G l ί for a
mapping Ra. One easily sees that this is a σ-weakly continuous
linear functional on M, i.e., φaeM*. Now, for ψeN*, we get

Hence for a; e C*(Jkf, iSΓ)

<Ra(x),Ψ> = <n,ι

Therefore if <Φ(a;), φ β 0 f > = 0 for all φa and ψeN*, then
jβα(aθ = 0 for all α e / and x = 0. That is, Φ(x) = 0. Thus in
Mζ2)βN the family of all product functionals φ®ψ (φe M*, ψ e N*)
is total, hence the norm β must coincide with Turumaru's α-norm
and C*(M,N) ~ M®aN. (see [7, Th. 2]).

Let V = Linear span of {'RaiΨ): ael,ψe AT*}. Since {Ra \ a e 1}
is total in 21, V is uniformly dense in 2ί*. On the other hand,
let V = linear span of {φa (&f\ael, | e i \ ί j , then V is also
uniformly dense in (M(g)N)* and by the equality (*) we get
'Φ[ V I M (g)α N] = VI C*(M, N) where V'\M®aN and V\ C*(Λί, iSΓ)
are the restrictions of elements in V and V to ikf ®α iV and C*(M, N)
respectively. Now by Kaplansky's density theorem, V and V are
isometric to V\C*(M, N) and V'\M(&aN, so that ιΦ induces the
isometry between V and V, hence the isometry p between (Λf® AT)*
and 21 .̂ It is not difficult to see that *p is the extended isomorphism
of Φ between 21 and M(g)N. This completes the proof.

In the above theorem, the case where 21 is a finite factor is due
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to Nakamura [2] and the case where 21 is a (general) factor is
proved in Takesaki [6].

Our next result is somewhat different from those treated above
and is included essentially in Lemma 2.3 and in the proof of Theorem
3.2 of the author's joint work [1] with Hakeda. However, it may
be useful to reformulate these results in the simple form shown
below. We give its proof for completeness.

THEOREM 4. Let Mt and Nλ be von Neumann algebras on H
and K and M2 and N2 be their von Neumann subalgebras respectively.
Suppose there are projections of norm one πγ and π2 from Mι to M2

and from Nλ to N2. Then there is a projection of norm one

π: M1 <g) ̂ (K) n &{H) ® N, -> M2 <g) <&{K) Π &{H) <g) N2

such that π(a (g) b) = π^a) (g) τr2(5) where ae M1 and b e Nlm

It is known that in the above case there is a unique projection of
norm one π^π2 from MΊCĝ Λ̂  to M2(&aN2 such that πλ(g)π2(a(g)b) =
πλ(a) ®π2(6), and if πι and π2 are σ-weakly continuous it can be also
shown that we can extend the above πι (g) π2 to the σ-weak continuous
projection of norm one from M1 ® Nλ to M2 0 N2 which is a posteriori
unique (cf. [10]). However, it is the crucial point of the above
theorem that even if we lack the condition of σ-weak continuity of
πλ and π2 we get still the extension of πx ® π2 to the algebra

Proof of the Theorem. Let {βi\ie 1} be the family of orthogonal
minimal projections in .^(K) corresponding to the orthogonal basis
in K. Put g; = 1 ® ei9 e3 = YΛi^Jei and g> = 1 ® βj = ΣiieΛ where
J is a finite subset of I. Then

ejM, ® .^(iOβV = Mi ® e J ^ ( i ί ) e J = M1 ®*ej&(K)ej

(the last equality holds, since ej^{K)βj is a finite dimensional
algebra). Let πj be the projection of norm one from M1 ®a ej^(K)ej
to M2 ζZ)a ej.^(K)ej defined by πd(a ® 6) = π^a) ® 6 where aeMx

and fcee^ίϋΓK, (cf. [10, Th. 1]) and put ττ̂ (a ) = ^(e^β/)
for & e Mi (g) ̂ ( Z " ) . Then {π](x) \ J is a finite subset of /} is a family
of elements in M2®&(K) bounded by | |α;| |. Put π\x) = Lim^TΓ .̂τ)
(operator Banach limit in the sense of Schwartz [5] with respect to
the subsets J). By the property of the operator Banach limit shown
in [5], we have

π\x) e M2 ® &(K) and || π1^) || ^ || x \\ .



ON THE TENSOR PRODUCTS OF VON NEUMANN ALGEBRAS 269

Moreover, for xe M2(g) &(K), x = σ-weak limit/ βjXβj implies

Kj(®) = Lim(/ πj(ejXej)

— σ-weak limit βjXβj = x .

Therefore πι is a projection of norm one from Mι ® &(K) to
M2 (g) . ^ ( i f ) . Take an element α (g) 6 e il^ (g) ^ ( i f ) . We have

π^α) (g) e,7bej

= σ-weak limits 7rL(α) ® ê ftβ^ = π^α) ® b .

Similarly we get a projection of norm one π2 from &(H) ® JV"X to
&{H) ® iV2 such that ττ2(α (g) 6) = α (g) π2(6).

Now take an element α e ilίi(g)^(ίΓ) Π £%(JEL)%NX. For arbitrary
l /e i l ί j ' 01 we get, by Theorem 1 in Tomiyama [9],

yπ\x) = π\yx) = π\xy) = π\x)y

because M[ ® 1 c ^ ( 2 Ϊ ) (g) ΛΓ2 and (Mi (g) 1)' = Mi ® ̂ ' ( i f ) . Hence
ΊZ\X) 6 ^ 0 ^(JSΓ) Π ̂ ( J B Γ ) (8) ΛΓ2. Therefore, put π(x) = ττV(^)A-and
take an element yel(g)N!. Since 1 ® JVa c M2 (g) &(K) we get again
by [9, Th. 1]

Thus π(a;)eΛf2® ^ ( ϋ Γ ) Π ̂ {H)®N2 and it is clear that this
mapping π is a projection of norm one from M^^(K) Π ^{H)^Nι

to Mo (g) ^ ( ί Γ ) Π .^'(-ff) (g) Λ 2̂. Finally for α (g) 6 e M, (g) iVL we have

τr(α ® 6) = τrV(α (g) 6) = ^ ( α (g) π2(b)) = πx(α) (g) τr2(6) .

This completes the proof.
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