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DETERMINATION OF HYPERBOLICITY BY
PARTIAL PROLONGATIONS

H. H. JOHNSON

In [3] it was shown that non-hyperbolic systems of partial
differential equations may sometimes be altered by partial
prolongations so they become hyperbolic. This paper solves
two problems concerning this process for normal systems with
two independent variables. First, if hyperbolicity is obtainable,
it can be obtained after a bounded number of steps, the
bound depending only on the algebraic structure of the given
system and easily calculated. Second, an explicit procedure
is described whereby any system which is absolutely equivalent
to a hyperbolic system can be changed into a hyperbolic
system. In addition much of the underlying algebraic structure
of such systems and their partial prolongations is analyzed.

These problems are local in nature, so we generally use local
coordinate expressions. Readers familiar with fibre bundle and jet
terminology will easily see how to express many concepts in the language

of modern differential geometry. All functions are assumed infinitely

differ entiable.

1* Systems* Let X denote a system of quasi-linear partial differ-

ential equations in dependent variables z1, , zm and two independent

variables x\ x2 which can be solved for the partials dzλ/dx2 — d2z
λ:

2z
λ = Afoz'' + B\ λ = 1, , m ,

a = C&z* + Da = 0, a = 1, , aλ ,
β ( x \ z λ ) = 0,β = 1 , -. , A .

Here we use the summation convention, dγz
λ = dzλjdz\ and Ajt, B\ C",

Da,fβ are (infinitely differentiate) functions of x\ x2, z\ , zm, on

some open set (J in J?m + 2.

The following notation will be useful. If F = F(x\ x\ z\ - , zm,

dλz\ •• ,91£
m) is a function on an open set V of R2m+2, then for (x\

x2,z\ « ,£m) in \J, we define

d*F = Fxi + Fz?d,zλ + FdlZ?dnz
λ ,

dtF = FX2 + Fzχ[AjAzμ + Bλ]

+ F*ltχd*[Aλ

μd1z« + Bλ] .

These are functions of x\ x2, z\ , zm, d,z\ , dγz
m, dnz\ , dnz

m

where dnz
λ = d2zλjdxιdx\

679
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DEFINITION 1. In this paper the collection Σ of equations will be
called a system when there are equations

( 1 ) d*Θa = Rfdfθ7 + Sa

rθr ,

( 2 ) dip = Tβ

aΘ« , dtp = U£θa ,

a = 1, , a,; β = 1, , ft; where JB?, S?, Γ£, C// are functions of
x\ zλ on U. Then ?7 is the domain of 2\ If z* = φ\xι), xι

0 ^ x1 ^ x\
is any solution of Θa = 0 for fixed Xo» where /^(#J, fic2> ̂ (^o)) = 0, this
1-dimensional solution may be extended to a full solution by solving*
the initial value problem d2z

λ = Aft^ + Bλ, λ = 1, , m, z\x\ x2

0) =
φλ(xr). Such systems are called "involutive".

We now define for each point (x, z) in U an associated vector
space V(xy z) to be that vector space over R with basis dλz\ , 3^m

We also define an associated linear transformation A(x, z):

V(x, z) — V(x, z) defined by A(x, z)(dLzλ) = Aλ

μ(x, z)d^ .

A vector field on an open subset W of \J is a smooth assignment of
a vector in the vector space at each point of W, that is, Cλ(x, z)dLzλ

in V(Xj z) where Cλ are infinitely differentiate on W.

PROPOSITION 1. If Σ is a system then the vector fields
Cl(x, z)d1z

λ, a = 1, , a19 span a subspace of V(x, z) which is invariant
under A(x, z).

Proof. Comparing coefficients of dnz
μ in equations (1) leads to

Ca

λAl = Ra

rC
r

μ all a, μ .

Hence

at each point of U
This subspace is the invariant subspace of Σ at (x, z) and denoted

C(x, z).
A change in the dependent variables of Σ results in a similarity

transformation on A(x, z), corresponding to a basis change of V(x, z).
The invariant subspace C(x, z) is preserved. Thus, A, V and C are
invariant under a change in dependent variables.

DEFINITION 2. A system 2\ in variables x\ x2, z\ , zmu\ , up'
is called a partial prolongation (which we abbreviate pp) of Σ if the
projection map π(x, z, u) = (x, z) carries its domain Ui on^° the domain
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U of Σ and if Σx contains the equations of Σ together with equations
for each uπ, namely,

( 3 ) u* = E;dιz
λ + F*,π = l, . . . , p ,

where E* and Fπ depend only on (x,z). Thus Σ1 contains in addition
to the equations of Σ equations (3) and

( 4 ) d2u
π = FfaW + G*Azλ + H*, π = 1, . . . , p .

Finally, in order to satisfy the Definition 1 of a system (see equations
(2)), if L(x, z, u) = 0 is any equation which can be deduced from the
equations of Σ19 then d?L = 0 and d2*L = 0 must be in Σιm The pp is
normal if it can be defined so the vector fields Eχdxz

λ and C"dxz
x are

linearly independent at each point of \J. The invariant space as-
sociated with Σj. at (x, z, u) is spanned by C"(x, z)d1z

λ

9 a = 1, , a19 and
E;(xfz)dιz

λ

9π = 1, -- , p .

Partial prolongations are the basic tool we shall use in modifying
given systems. It was shown in [3] that there is a natural corre-
spondence between the solutions of Σ and 2\. This correspondence
is what was behind Elie Cartan's use of the term 'absolute equivalence'
for systems which could be related by a sequence of partial prolon-
gations [1]. See [2] for a discussion of these general questions. We
first explore some consequences of Definition 2.

PROPOSITION 2. If at each point of U the vectors C^z*, and
Efβ^z1 are linearly independent then Fp and Sa depend only on (x9 z),
not u\ , up.

Proof. Applying condition (1) of Definition 1 to the equations
Ψr = uz - Eld&1 - Fπ - 0 in Σ, gives d*Wπ = 0 modulo (d*?P, d?Θa, Ψp,
Θ«), i.e.,

d*[uπ - Efd,zλ - F*] = R*pd*[ufi - EξdyZ1 - Fp]

+ Sld*[CaA*λ + D"\
( } + T;[U? - EtW - F?\

+ \Jl[CaAzλ + D'] ,

for some Rπ

p, Si, Tp and Uΐ Comparing coefficients of djUp and dnz
λ

we have Fp = Rr

P, and

-E Aϊ = -Rπ

PE
p

λ + SJCJ
( } = -Fffl + SlC"λ .

Using the fact that Aμ

λ, E
p

λ and Ca

λ are functions of (x, z) alone, if we
take the partial derivative of (6) with respect to uσ we obtain 0 =
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— Fp, uoΈp

λ + Si, uoCa

λ. The linear independence hypothesis now implies
the result.

PROPOSITION 3. If Σx is a normal pp the invariant subspace
diXjZyU) of 2Ί at (x,z,u) is independent of u\ " ,up and as a
subspace of V(x, z) is invariant under A(x, z).

Proof. Independence of u\ *- ,up follows from Proposition 2.
In variance follows from equations (6).

Thus, the possible pp's of Σ depend on the subspaces of V(x, z)
which are invariant under A(x, z).

DEFINITION 3. A change in dependent variables will mean the
obvious system in new variables

zλ = h\x\ x2, z\ , zm), λ = 1, , m

defined on \J which must have inverse functions zλ = gλ(x\ x\ z\ •••,
zm). For example, in Σλ of Definition 2 we may replace uπ by ΰπ =

D E F I N I T I O N 4. If Σ contains equations of the form

zr+k = fk{x,9 χ^ ^ .. .y zr)i & = 1, . . . , m - r ,

then by Definition 1 it contains

d^k = ±f\ JAjAz^ + Bλ] + f\ χ2 ,
λ

The system Σ obtained from Σ by replacing zr+k, d1z
r+k

1 d2z
r+k by their

expressions in terms of x\x2,z\ •• ,zr,dιz\ •• ,312
r is called an ad-

missible restriction of Σ.

PROPOSITION 4. // Σλ is a pp of Σ and ΣQ is an admissible
restriction of Σ, then there is an admissible restriction of Σ1% Σ10,
which is a pp of Σo.

This follows from the definitions.

PROPOSITION 5. If Σιis a normal pp of Σ then the equations of
Σx are uniquely determined by the vector fields E^d^1 up to a change
of dependent variables. That is, Gπ

λ and Hπ are uniquely determined
up to arbitrary linear combinations of the equations Cjd^ + Da = 0
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and Eχdfi1 + Fπ — uπ = 0. (We say then that Σι is the pp on Eχd^z1.)

Proof. By changing variables make Fπ = 0. Since Eχd^ and
Cχdfi* are linearly independent, Fp and SZ are uniquely determined
by equation (6). Comparing coefficients of dxz

x in (5) using (4), we find

Gπ

λ - El, χ2 - E*μ(Aϊ, χ2 + B% zλ)

= -Rπ

PE^ χl + S;(Cf, χl + D% zλ) - T El

Thus, Gj is uniquely determined up to a linear combination of 2£/ and
Cj. Comparing the terms (5) which are independent of dtz

x leads to
the same conclusion about H\

PROPOSITION 6. Let Σx be a normal pp of Σ. Let Vλ(x, z, u) and
V(x, z) be the vector spaces associated with 2\ and Σ, respectively.
Let Ci(#, z, u) = Cx(x, z) and C(x, z) be the invariant subspaces of Σ1

and Σ, respectively, and A^x, z, u), A(x, z) their linear transformations.
Then there exist natural horizontal exact sequences such that the
following diagram is commutative:

a
V(x, z)IC(x, z) > VAx, z, uyCάx, z) - ^ C,(x, z)/C(x, z) > 0

I A(x, z) Ai(x, z, u) B(x, z)

a
V(x, z)/C(x, z) > V,(x, z, uyCάx, z) - ί U C&, z)/C(x, z) > 0

where

λ + C(x, z)) = d,zλ + Cx(x, z) ,

z* + d(a;, z)) = 0 + C(x, z) ,

+ c^x, z)) = E^d,zλ + C(x, z) ,

and B(x, z) is the natural linear transformation induced by A(x, z).

Proof. L e t u s omit t h e dependence on (x, z) or (x,z,u). We
have Aid.z") = A\d^ = AAP&1), A^d^) - Fr

pd{wp + Gld.z1. Then CJC
is spanned by E&z* + C, where A(EldyZx) = F^E^z1 + C. By defi-
nition βa = 0 and the kernel of β is V/C1 since the Eldγz

x are inde-
pendent modulo C. This kernel of β is the image of a. Hence
exactness. Commutativity is routinely checked.

DEFINITION 5. The eigenvalues of Σ at (x, z) are the eigenvalues
of A(x, z) on V(x, z)/C(x, z).

PROPOSITION 7. If 2\ is a normal pp of Σ then the eigenvalues
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of Σ1 at (x, z, u) are those of Σ at (x, z).

Proof. Let wr = WfdjZ* fill out a basis of V(x, z) together with
v« = Cld^z1 and uπ = Efd^K Suppose

A(u*) = Fπ

pu
p + G*av", A(wr) = MJwε + Nr

πu* + Tr

av
a .

The eigenvalues of Σ at (#, 2) are those of

F N\

O M] '

where F = (Fπ

p), N = (Ni), M = (Ml).
If y* = a ^ , then Ax{yr) = ^^/^ + Pr

πwr + Qj^p + Lπ

av
a, so the

eigenvalues of Σ1 on Fi/Ci are those of the

M P

0 F

where P = (Pr

π).

We have found that a normal pp of I7 is completely determined
by vector fields EfdiZ* which together with C\d&x span a subspace of
V(x, z) which is invariant under A(x, z). However, there need not be
pp's on any given invariant vector fields. This is because of the
equations which must be satisfied in (5) for the coefficients of d^d^i

-Eϊ, zA; - E;, ZVA\ - -R*P(Eί, zμ + El, zλ)

One situation when these equations are always satisfied is when the
entire space V(x, z) is used for the pp.

DEFINITION 6. The total prolongation (abbreviated tp) PΣ of Σ
is obtained as the pp on vector fields which span all of V(x, z) at
each point.

PROPOSITION 8. The tp of Σ always exists.

Proof. The system PΣ is variables x\ zλ, p\ , pm is obtained
by adding to the equations of Σ the equations

pλ — dγz
ι ,

dφλ = Afap* + [Ajtf JAlp" + B") + Aλ

μ, Jp"

+ Bλ, zμp" + B?, χ2,X = 1, . . . , m ,

CΆpλ + (d?Ca

λ)pλ + d*Da - 0, a = 1, , ax .
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The last set of equations is added because pΣ contains Ca

λp
λ + Da = 0

in order to satisfy conditions (2) in Definition 1 for functional equations
in systems. It is a calculation to check that equations (7) together
with those in Σ constitute a system.

The tp is not normal, but using the equations Ca

λp
λ + Da = 0 it

is possible to find an admissible restriction of PΣ which is a normal pp
of Σ. The invariant subspace associated with PΣ is spanned by
dLz\ , dLzm and C&p*, a = 1, - -., a,.

PROPOSITION 9. Let V, C and A denote the vector space, invariant
subspace and linear transformation associated with Σ at a point
(x, z). Let PV, PC and PA denote the same entities for PΣ at (x, z, p).
There is a natural isomorphism π: V/C —> PV/PC satisfying πA —
(PA)π. In particular subspaces of PV/PC invariant under PA cor-
respond in a one-to-one way to those of V/C invariant under A.

Proof. Let πid^ + C) = dγp
λ + PC. The rest is a calculation.

PROPOSITION 10. // Σo is an admissible restriction of Σ, then
PΣQ is an admissible restriction of PΣ.

This follows from a calculation. The next result shows an im-
portant use of tp's.

PROPOSITION 11. Let E^d,zλ, π = 1, -, p, be vector fields on the
domain of Σ which, together with C^d^1, span a subspace of V(x, z)
at each point which is invariant under A(x, z). Then Eχd^1 =
^Eχdfi1) satisfy a similar condition in PV(x, z, p). Moreover, there
always exists a pp of PΣ on the vector fields Eχdφ1.

Proof. If A(E!dιz
λ) = F^Efoz* + Sπ

aC
a

λd^, let

d*(d*Bλ)\

Observe that d?Ajt, dfA]Λ, d%Bλ, d*E% can be expressed in terms of x, z, p
using dλz

x = pλ, while d^(d^Aλ

μ) and d*(d}Bλ) are linear in dj)v. Conse-
quently the above equation is linear in dtp\

PROPOSITION 12. Let Σγ be a normal pp of Σ on Eχd^1, π = 1, ,p.
Let (PΣ)1 be the pp of PΣ on the Eχdφ1. Then (PΣ)1 is an admissible
restriction of PΣι and is a normal pp of PΣ.



686 H. H. JOHNSON

This is merely a calculation.

COROLLARY. If Σo c Σ1 c aΣh is a sequence of systems where
each Σi is a normal pp of Σi_u i = 1, , h, then there exists a sequence
Σ'o = PΣ0 c Σ[ c c Σ'h where Σ\ is a normal pp of Σ\_γ and PΣ{

has Σ\ as an admissible restriction, i — 1, , h.

PROPOSITION 13. // Σ, and Σ2 are pp's of Σ, then Σx U Σ2 deter-
mines a pp of Σ, Σλ and Σ2.

Proof. All that needs to be added to Σx U Σ2 are equations d^L =
0, d}L = 0 for any equation L(x, z) = 0 which can be deduced from
the equations in 2\ and Σ2.

PROPOSITION 14. // Σι is a pp of Σ using vector fields which
lie in the invariant subspace C(x, z) of Σ at each point, then Σx has
Σ as an admissible restriction.

Proof. Suppose Σ1 contains

uπ = Efoz* = KzCΆzλ

Then Σx contains the equations

uπ = -K;Da

so the uπ may be eliminated by an admissible restriction (see Definition 4).

2» Hyperbolicity*

DEFINITION 7. Suppose that in a neighborhood of each point in the
domain of Σ there exist linearly independent vector fields vπ = vj(x, z)d1z

λ,
π = 1, , m — alf which together with Cχdβ* span V(x, z) at each point.
Suppose further that

Aλ

μ(x, z)vj(x, z) = K^vKx, z)

modulo C(x, z). That is, vz + C is an eigenvector of A on V/C at each
point with eigenvalue Kr. Then Σ is called hyperbolic.

DEFINITION 8. Let there exist a sequence Σ cΣι aΣ2(z cΣh

of systems in which each system is a pp of the preceding system
and in which Σh is hyperbolic. Then Σ is absolutely equivalent to a
hyperbolic system.

In this event Σ has the same behavior as a hyperbolic system [3].

PROPOSITION 15. Hyperbolicity is preserved under admissible
restrictions and total prolongations.
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Proof. If zr+λ = fr+\x\ x\ z\ , zr), X = 1, , m - r, define an
admissible restriction, then C(x, z) contains dιz

r+λ — dffr+λ = 0. Hence
vπ must be linearly independent when zr+λ and d1z

r+x are replaced by
fr+λ and d?fr+i, respectively. The second assertion follows from
Proposition 9.

PROPOSITION. 16. // Σ is absolutely equivalent to a hyperbolic
system the eigenvalues of Σ are real at each point.

Proof. Proposition 7.

DEFINITION 9. A vector v e V(x, z) is essential if for some eigenvalue
λ of Σ at (x, z) there is a vector u e V(x, z) such that

( 1 ) [A(x, z) - Xl]u = v,
( 2 ) [A(£, s) - Xl]sv = 0, s ^ 1,
( 3 ) v ^ 0 modulo C(x, z).

(Here / is the identity.) The essential vectors belonging to an eigenvalue
X generate a vector space Vχ(x,z)z>C(x,z). Let

p(Σ)(x, z) = Σ ; dim Vλ(x, z)/C(x, z)

be called the degeneracy of Σ at (x,z).
When Σ is hyperbolic, p(Σ) = 0 at all points.

THEOREM 1. Let Σ c 2\ c c Σh be a sequence of normal ppys
leading to a hyperbolic system Σh. Let

(X, Z), {X, Z, Uy), , (X, Z, Ul9 , Uh)

be points in their domains, let V3 (x, z,uu , uά) ID CJ(X, z,uly , uά)
be the associated and invariant spaces of Σjf where

V(x, z) c V^x, ^ , ^ ) c c Vh(x, z,uly , uh) .

Then if v e V(x, z) is an essential vector of Σ,ve Ck(x, z,ulf , uh).

Proof. By Proposition 6, if Ah(x, z,u19 , uk) is the linear trans-
formation of Σh1 then Ah(x, z,u19 , uh) \ V(x, z) = A(x, z) modulo
C(x, z). Hence v satisfies (1) and (2) of Definition 9 as an element in
Vh. Being hyperbolic Σh can have no essential vectors, so veCh.

PROPOSITION 17. Let ΣaΣ1' aΣhbea sequence of normal pp's
where Σh is hyperbolic. Let vπ = vπ

λdLzλ be linearly independent vector
fields of Σ modulo C(x, z) which are essential and which generate a
subspace of V(x, z) / C(x, z) invariant under A(x, z). Let Σ be the pp
of Σ on the vector fields vπ. Then there exists a sequence of pp's
Σ c Σ c Σγ a Σh where Σx is a pp of Σ and Σh has Σh as an admissi-
ble restriction, hence is hyperbolic.
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Proof. Set Σ ά — Σά U Σ and use Proposition 13 repeatedly. The
hyperbolicity of Σh follows from Theorem 1 and Proposition 14.

As a result of this proposition it can be supposed that any sequence
of pp's leading to a hyperbolic system begins with a pp on essential
vectors. We shall show that this sort of pp is the optimal way of
obtaining hyperbolicity. We next examine more closely those essential
vectors.

DEFINITION 10. A system Σ has a Jordan basis if there exist on
its domain vector fields

Uξ = Uξλ(x, z)d1z
λ , 1 ^ s ^mk , Jfc = 1, , r

and eigenvalues Xk(x, z) of A(x, z) modulo C(x, z) such that

[A(x, z) — \k(x, z)I]uk(x, z) = 0 modulo C(x, z) ,

[A(x, z) — Xk(x, z)I]ui(x, z) = WJΓ^X, Z) modulo C(x, z) ,

for 2 ̂  s ^ mk, 1 ̂  k ^ r, and these vector fields determine a basis
of V{x, z)/C(x, z). We also assume the functions \k(x, z) are infinitely
differentiable.

PROPOSITION 18. Suppose Σ has a Jordan basis us

k. Then a
vector in V(x, z) is essential with respect to an eigenvalue μ if and
only if it is a linear combination modulo C(x, z) of those uk(x, z)
where Xk(x, z) — μ, mk > 1 and 1 <L s ^ mk — 1. Moreover, p(Σ)(x, z) =
Σ U i (m4 - 1).

Proof. "If" is immediate. Suppose

r ™k

u = Σ Σ aksul modulo C
k—l s—l

is essential at (x,z). Now, observe that

h
(A - μl)hus

k = (Xk - μ)hus

k + [

+ ί . j(λ/c - μ)h~juΓj + + uΓh ,

so

(A - μlfu = ±ak

mk(Xk - μfu^ + L

where L involves only u\ for s ^ mk — 1. Hence, if (A — μl)hu = 0,
ak

mk = 0 whenever Xk Φ μ. Then

(A - μlfu = Σ.at^iX, - μ)huΐ^ + U
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where U involves u'k, s ^ mk — 2. Again these coefficients α«Λ_i = 0
unless Xk = μ. Continuing we find u depends only on uk, 1 ̂  s ^ mk,
Xk = μ. But u = (A — μl)v, so this same result must hold for v.
This implies that u depends only on u'k, 1 ̂  s S mk — 1.

PROPOSITION 19. If I7 &αs real eigenvalues, then there exists a
dense open set V in its domain such that every point of V has a
neighborhood on which Σ has a Jordan basis and the invariant
subspace C is spanned by linearly independent vector fields.

Proof. This is a matter of examining various systems of linear
and polynomial equations with coefficients which are functions of (x,z).

DEFINITION 11. If each point in the domain of Σ has a neighbor-
hood on which the C^d^z1 are linearly independent and on which a
Jordan basis can be found, let EΣ be the pp of Σ on the essential
vector fields. This is called the essential pp of Σ. (Note that EΣ
may be defined locally. By Proposition 5 two pp's on local essential
vector fields must coincide on the overlapping neighborhoods.)

We recall that EΣ need not exist due to quadratic conditions, but
by Proposition 9 the essential vector fields of Σ and PΣ correspond.
By Proposition 11, there always exists a pp on these vector fields
which come from Σ. Thus we prove

PROPOSITION 20. Any system Σ may be restricted to a dense open
set in its domain on which EPΣ exists as a normal pp of PΣ.
Similarly for EPkΣ,k^l.

PROPOSITION 21. Let Σ c Σλ c c Σh be a sequence of normal
pp's where Σh is hyperbolic. Then on an open dense subset of the
domain of Σ there is a sequence of pp's

EPΣ c Σ[ e c Σ'h

where Σ'h is hyperbolic.

Proof. Use corollary to Proposition 12, Proposition 20, and Propo-
sition 17.

PROPOSITION 22. Let Σ c Σ1 c c Σh be a sequence of pp's.
Suppose the vector space V(x, z) associated with Σ is contained in
the invariant space Ch(x, z,uly , uh) associated with Σh. Then
there exists a sequence
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where Σ\ has Σh as an admissible restriction.

Proof. Let Σ'f = Σs U PΣ = Σs (j (Σ 5_x (j PΣ). Clearly Σ[f = I,U
PΣ has PΣ as an admissible restriction. The result follows from
Proposition 13 and 14.

PROPOSITION 23. Let Σι be a normal pp of PkΣ, k >̂ 1, on vector
fields with coefficients which are functions of (x, z). Then the essential
vectors of Σγ can be spanned by vector fields having coefficients which
are functions of the variables of PΣ.

Proof. This is a tautology for k = 1. For k > 1, assuming the
result for k — 1 to be true, by Proposition 12 Σx is an admissible
restriction of a pp PΣr where Σf is the normal pp of Pk~1Σ on the
corresponding vector fields in Pk~ιΣ. By induction the essential vectors
of Σ', hence of PΣr, hence Σ19 are spanned by vector fields with
coefficients functions of the variables of PΣ.

DEFINITION 12. A pp Σ1 of Σ is complete if Σι has no essential
vectors which involve only the variables of Σ, i.e., of the form aλdλz

λ.
For example, PΣ is a complete pp of Σ.

THEOREM 2. Let ί c I Ί c c ^ be a sequence of normal pp's
where Σh is hyperbolic. For any k ;> m — ax — p(Σ) + 1, there exists
a sequence of ppJs on an open dense subset of the domain of Σ,

PkΣ(z EfPkΣ c ί c . . c i ;

where Σ\ is hyperbolic, Σ[ is a pp of PkΣ, ErPkΣ is normal complete
pp of PkΣ and p(Σ) is the maximum value of the degeneracy of Σ.
(Recall m = no of dependent variables zλ, ax = dim C(x, z). Thus, m —
a, = dim V(x,z)IC(x,z).)

Proof. Let ul(x, z)d1z
λ be vector fields which span the essential

vectors of Σ on an open set in the domain of Σ. By Proposition 9,
wldiVl s P a n the essential vectors of PkΣ, where pi are the variables
in PkΣ which are analogous to the pλ in Proposition 9. Since k ^ 1,
EPkΣ exists and is a normal pp of PkΣ for a suitable restriction by
Proposition 20.

Now, by the corollary to Proposition 12, there is a sequence of
normal pp's PΣ c l j C c l i where Σh is hyperbolic. Repeating, we
get a similar sequence PkΣ c Σ* c c Σi where Σt is hyperbolic.
By Proposition 21 there is a sequence of pp's PkΣ c EPkΣ aϊ[ c c Σ'h
where Σ'h is hyperbolic and Σ[ is a pp of PKΣ.
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If EPkΣ is a complete pp of PkΣ, the theorem is proved. Other-
wise there exist essential vector fields of EPkΣ of the form vσ

λdj>l.
By Proposition 23 the coefficients v\ can be supposed to be functions
of the variables (x,z, px) of PΣ. By further restricting the open dense
domain if necessary we can assume the vσ

λdj)l and ujd^l are linearly
independent. They determine an invariant subspace of PkΣ modulo
Ck (the invariant space associated with PkΣ), because the Vχd&l are
determined by the intersection of the space of essential vectors in
EPkΣ with the image of Vk (the total space associated with PkΣ) in
ΈPkΣ, at each point. That is, they are merely those essential vectors
in EPkΣ which depend only on djpi, the variables of PkΣ.

By Proposition 11 we can form the normal pp of PkΣ on the
vector fields vldφi and u&pl provided that k ^ 2. But if k = 1,
that means m — ax — p(Σ) = 0, so every vector in V(x, z) would be
essential, which is impossible by the very Definition 11 of essential.

Letting %?PkΣ denote this pp, we see that c^PkΣ is a pp of
EPkΣ on some of that system's essential vector fields. Applying
Proposition 17 there exists a sequence

PkΣ c EPkΣ c &PkΣ c Γ / c . . c Σ'i

where Σ" is a pp of PkΣ and Σ" is hyperbolic.
If p(Σ) = m — aL — 1, all vectors of PkΣ are essential except one,

which must have been added in forming &PkΣ. Hence c<gPkΣ is an
admissible restriction of Pk+1Σ and is a normal complete pp of PkΣ.
Otherwise m — a, — p{Σ) + 1 ^ 3 and so the process above may be
repeated for any further essential vectors in cg'PkΣ of the form
wldφl in the variables of PkΣ.

This process must end since there are at least p(Σ) + h linearly
independent vector fields added at the hth stage of the form axdxply

so we must arrive at Pk+1Σ ΐor h <; m — ax — p(Σ) ^ k — 1.

REMARK. Observe that EfPkΣ is explicitely constructed.

PROPOSITION 24. If k^m- a,- p{Σ) + 1, j ^ 0, ίλew PjErPkΣ
has EfPhΔrjΣ as an admissible restriction, where ErPkΣ and E'Pk+jΣ
are constructed as in Theorem 2.

Proof. This follows by applying Proposition 12 at each stage in
the process described in Theorem 2 and using Proposition 9 repeatedly.

PROPOSITION 25. Let Σ c 2\ c c Σh be a sequence of pp's.
Then there exists a sequence Σ c Σ[ c Σ'h of normal ppys on an
open dense set of the domain of Σ where Σ] is an admissible re-
striction of Σj.
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Proof. By restricting the domain if necessary, Σ1 is obtained by
vector fields linearly independent of Σ and possibly some in C(x, z).
Use Proposition 14 to obtain Σ[ and make the same admissible re-
striction in all succeeding systems. Repeat this reasoning starting
with Σlf etc.

THEOREM 3. Let Σ c E'Σ c 2Ί c aΣhbe a sequence of normal
pp's leading to the hyperbolic system Σh. Let E'Σ be a complete pp
of Σ and suppose Σι is a pp of Σ. Then on an open dense set,
either p{E'Σ) < p(Σ) or else there exists a sequence of normal pp's

of one shorter length, leading to a hyperbolic system Σ'h.

Proof. Let ul = u*kλ(x9 z)dιz
λ be a Jordan basis on an open set \J,

1 <£ s ^ mk, k = 1, , r: (A — XkI)us

k = uf\ (A — XkI)uk = 0

modulo C(Xj z). Let W(x, z) be the subspace of V(x, z) used in the
pp E'Σ, i.e., W(x, z) is the invariant subspace of E'Σ by Proposition 3.
Since {us

k \ mk > 1,1 <g s ^ mk — 1} are all essential, they are contained
in W(x, z).

Let Wμ(x, z) be the subspace of W(x, z) associated with the
eigenvalue μ(x, z) of A(x, z), modulo C(x, z). Then Wμ(x, z) Z) {us

k \ Xk —
μ, mk > 1, 1 ίg s ^ mk — 1}, where λ*. is the eigenvalue associated
with uk.

If Wμ(x, z) contains vectors independent of these vectors, then on
an open dense set we can find a factor field of the form

Σ Ck(x, z)uΐ* e Wμ(x, z) .
λk = μ

L e t rrtj = s u p {mk \Xk — μ, Ck(x, z) Φ 0 ] , D e n o t i n g

v>V = Σ Cku^ ,
(A - μiywp = Σ cku7/-r = wγ-r,

mk^m,j — r

r — 1, , ΎΠj — 1, we can replace u) by w) and obtain a new Jordan
basis. Repeating this process we find that in a neighborhood of any
point in an open dense set one can find a Jordan basis for Σ of the
form w%, 1 ^ s ^ mk, 1 ^ k ^ r where for 1 ^ s ^ mk, 1 ^ k ^ rf and
1 <; s ^ mk — 1, rr < k ^ r", these elements span W(x, z). Moreover,
mk = 1 if k > r".

There are two cases.

Case 1. For some mk > 1, w™k g TΓ(a;, 2). Then ϋ " ! 7 is obtained
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locally by a pp of the form zs

k = wiχdjZ*; 1 ^ s ^ mk for 1 ^ k < r';
1 ^ s ^ mA — 1 for r' < A; rg r" where some mk > 1 for r' < k tί r".

Σ
- r ' +

for s > 1,

d2z\ = xlcdxz\ +

We shall show this system has lower degeneracy than Σ. The space
V'(x, zλ, z%) associated with E'Σ is spanned by 3 ^ , 3 ^ . Its invariant
subspace C'(x, zλ, z'k) is spanned by Ca

λdγz
ι together with ws

k11 <^ s ^ mk

for 1 ^ k ^ r'; 1 ^ s ^ mA - 1 for r' < k ^ r". Thus F '/C is spanned
ΐ>y 3i»ί, ^ΓS h > r'. Set ίj = dγz\ + Σ f c > r , Λ s X s 1 ^ s ^ mΛ for 1 ^
k ^ r' and 1 ^ s ^ mk — 1 for rf < k ^ r", where for λ̂  ^ λfc,

pi -Ts —1 Z?s
f 1 __ -Kjch fs __ /fcfe - f̂efe

λk — λh Xk — Xh

and for Xk = λΛ, fs

kh = Bίί1. Then

(A' - λfc/)ίj = ί r 1 if s > 1 ,

Then these t°k must be essential vectors. But they depend only on
djZλ and by hypothesis E'Σ is complete. Hence Rι

kh = 0, λΛ = λΛ, h > r''.
Hence a Jordan basis of E'Σ is £{, 1 ^ s ^ mfc for 1 ^ k ^ r'; ίj, 1 ^
s ^ mfc - 1 for r' < ί: ^ r"; tί;Γ/c for r" < k ^ r. Since (A' - λfc7)ίί Ξ
tΓ\ (Af ~ XkI)t[ = 0 and (A - XkI)wtk = 0, it follows that ρ(E'Σ) =
Σr

kL±{mk ~ 1) + Σί'lr'+iimk ~ 2). Since some mk > 1 for r' < k ^ r",
this number is smaller than ^(J) = Σl'^iπij, — 1). (Recall mfc = 1 for
k > r".)

Case 2. Every m& — 1 if wΐk g TΓ(ίc, «). Thus, iϊ'27 is obtained
by prolonging on the vector fields w*k, 1 ^ s ^ mA, k = 1, , r', where
mfc = 1 for ife > r'. In I7 the vectors wΐk, k > rf satisfy (A - XkI)wΐk =
0. If we prolong E'Σ on these vector fields wk

nk, k > r', we shall add

< 8 ) zk = wΐk, d2zk = XΛzk + Tk, k> r' .

This in no way alters the degeneracy of E'Σ, whose essential vectors
are dxzk, 1 ^ s ^ mk — 1, and whose degeneracy is ^(I7). Moreover, if
we add these equations to each of the systems in the sequence

E'Σ c ^ c . c ^
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observe that E'Σ becomes PΣ. Then since Σ1 is a pp of Σ which
contains E'Σ, when we add these equations Σ1 must have PΣ as an
admissible restriction. Taking this admissible restriction in each
succeeding systems leads to a sequence of pp's

Now Σj is an admissible restriction of the pp of Σ3 obtained by adding
(8) to Σd. The essential vectors of Σ3 do not depend on d&x since
E'Σ is a complete pp of Σ, hence they do not depend on zk. The
vectors dLzk are not essential, so adding (8) in no way effects the
degeneracy of Σβ, since degeneracy measures the number of essential
vectors. Since admissible restrictions do not effect degeneracy, p{Σ'ά) =
p(Σό). In particular Σ'h is hyperbolic. Finally, use Proposition 25.

THEOREM 4. Let Σ a Σ1 c cz Σh be a sequence of pp's leading
to a hyperbolic system Σh. Then on an open dense set for some k
there is a complete normal pp E'PkΣ of Pk Σ having lower degeneracy
than Σ, unless Σ is itself hyperbolic.

Proof. By Proposition 25 we can suppose the sequence is normal.
By Theorem 2, if k ^ m — aί — p(Σ) + 1 there exists a sequence of pp'&
on an open dense set, PkΣ c E'PkΣ c ^ c c ^ i where E'PkΣ is a
normal complete pp of PkΣ, Σ[ is a pp of PkΣ and Σ'h is hyperbolic.
By Theorem 3 either p(E'PkΣ) < p(Σ), in which case the theorem is
proved, or else there exists a sequence Pk+1Σ a Σ' J c c Σ" of normal
pp's where Σ" is hyperbolic. Repeating this, there must be some
E'PjΣ of lower degeneracy than Σ unless Σ is itself hyperbolic.

THEOREM 5. If Σ c Σ1 c c Σh is a sequence of normal pp's
leading to the hyperbolic system Σh, then on an open dense set, for
all k 2: m — aλ — p(Σ) + 1, there exists a complete pp E'PkΣ such
that p(E'PkΣ) < p(Σ).

Proof. By Theorem 4 this is true for some k + j . By Proposition
24, p(E'PkΣ) = p(PjE'PkΣ) = p{E'Pk+jΣ) < p(Σ).

COROLLARY. // Σ is absolutely equivalent to a hyperbolic system,
then the proceedure in Theorem 2 for successively constructing E'PkΣ
will result in a hyperbolic system.
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