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DETERMINATION OF HYPERBOLICITY BY
PARTIAL PROLONGATIONS

H. H. JOHNSON

In [3] it was shown that non-hyperbolic systems of partial
differential equations may sometimes be altered by partial
prolongations so they become hyperbolic. This paper solves
two problems concerning this process for normal systems with
two independent variables, First, if hyperbolicity is obtainable,
it can be obtained after a bounded number of steps, the
bound depending only on the algebraic structure of the given
system and easily calculated. Second, an explicit procedure
is described whereby any system which is absolutely equivalent
to a hyperbolic system can be changed into a hyperbolic
system. In addition much of the underlying algebraic structure
of such systems and their partial prolongations is analyzed.

These problems are local in nature, so we generally use local
coordinate expressions. Readers familiar with fibre bundle and jet
terminology will easily see how to express many concepts in the language
of modern differential geometry. All functions are assumed infinitely
differentiable.

1. Systems. Let >, denote a system of quasi-linear partial differ-
ential equations in dependent variables z', ---, 2™ and two independent
variables ', 2> which can be solved for the partials 0z%/0x* = 0,2*:

6221 = Aﬁla1z/l + Bly)" = 1’ cee, M,
3 @l'=C§a1zz+Dazora: 1’ ey Ay
[, ) =0,8=1,,8.

Here we use the summation convention, 0,2* = 02%/0z', and A%, B*, C%,

D=, f° are (infinitely differentiable) functions of «!, 2% 2', ---,2™, on
some open set |J in R™**.
The following notation will be useful. If F' = F(a!, % 2*, «--, 2™,

0,2', +++,0,2™) is a function on an open set V of R*™** then for (a!,
a? 7Y, «++, 2™ in |J, we define
0fF = Fa + F,07" + Falz;ﬁuzl y
0fF = F + F,i[|A0,2"* + B
+Fy 07 [AL0z" + B] .
These are functions of &, 2%, 2!, «++, 2™, 02", «+-, 0,2™, 0,&", =+ +, 0,,2"

where 0,2 = 0%*/ox'0x".
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DEFINITION 1. In this paper the collection 3 of equations will be
called a system when there are equations

(1) 310 = R23:6" + S0,
(2) 05 ff = Tho", offt = Uf6~,
a=1,---,a;8=1,---,8; where Rf, S;, T:, U{ are functions of

2%, 2* on U. Then U is the domain of 3. If 2* = p*(x"), 2 < o' < o}
is any solution of #* = 0 for fixed «%, where f#(x}, 2, p*(xt)) = 0, this
1-dimensional solution may be extended to a full solution by solving
the initial value problem 42" = A%02* + B, N =1, «+-, m, 2* (2", af) =
@*(¢'). Such systems are called “involutive”.

We now define for each point (x,2) in U an associated wvector
space V(x,z) to be that vector space over R with basis 9,2, -« -, 0,2™.
We also define an associated linear transformation A(x, z):

Viz, 2) — V(x,2) defined by Az, 2)(0,2") = AL(x, 2)0,2* .

A wvector field on an open subset W of |J is a smooth assignment of
a vector in the vector space at each point of W, that is, C,(x, z)0,2*
in V(z, z) where C; are infinitely differentiable on W.

ProposiTION 1. If 3 4s a system then the wector fields
Ci(w, )02, ¢ =1, -+ -, a, spam a subspace of V(x, 2) which is invariant
under A(x, z).

Proof. Comparing coefficients of 0,,2* in equations (1) leads to
CiAL = R:C), all a,p.
Hence

A(C30,2") = C3A(0,7)
= C7Ajo.z" = R:Cioz"

at each point of U.

This subspace is the invariant subspace of X at (x, z) and denoted
C(x, 2).

A change in the dependent variables of Y results in a similarity
transformation on A(x, 2z), corresponding to a basis change of V(x, z).
The invariant subspace C(x, z) is preserved. Thus, A, V and C are
invariant under a change in dependent variables.

DEFINITION 2. A system 2, in variables «', 2%, 2', - -+, 2™u', - -+, u?
is called a partial prolongation (which we abbreviate pp) of ¥ if the
projection map m(x, 2, v) = (v, 2) carries its domain |J, onto the domain
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U of 2 and if X, contains the equations of 3 together with equations
for each u*, namely,

(3) u”:Efalzz—{—F”’ﬂ':l,---’p’

where E7 and F'* depend only on (x,2). Thus X, contains in addition
to the equations of 3 equations (3) and

(4) azu”=F,§'31u”+G’{3122—|—H”,7z:1,...,p.

Finally, in order to satisfy the Definition 1 of a system (see equations
(2)), if L(x,z, %) = 0 is any equation which can be deduced from the
equations of ¥, then 0L = 0 and 0;L = 0 must be in 5,. The pp is
normal if it can be defined so the vector fields Efo,2* and C40,2* are
linearly independent at each point of |J. The invariant space as-
sociated with X, at (x, 2, u) is spanned by C4(z, 2)02*, ¢ =1, ---, a;, and
Efx, 202, 7t =1,--+, p.

Partial prolongations are the basic tool we shall use in modifying
given systems. It was shown in [3] that there is a natural corre-
spondence between the solutions of Y and X,. This correspondence
is what was behind Elie Cartan’s use of the term ‘absolute equivalence’
for systems which could be related by a sequence of partial prolon-
gations [1]. See [2] for a discussion of these general questions. We
first explore some consequences of Definition 2.

ProOPOSITION 2. If at each point of U the wectors C50,2*, and
E:0.2* are linearly independent then F; and S; depend only on (x, 2),
not u', - -+, u’.

Proof. Applying condition (1) of Definition 1 to the equations
U= =y — Efo,2* — F* =0 in Y, gives 0; ¥~ = 0 modulo (0;¥, 0}0<, ¥,
69), i.e.,
oF[uw* — Ef0z* — F*] = R0} [u® — Ef0z2" — F*]
+ Szor[Ce0.2* + D°]
+ Tru — Efoz" — F*]
+ UGz + D7l

(5)

for some R%, Sz, TF and |J;. Comparing coefficients of o,u* and 0,,2*
we have F7 = R;, and
—B;Al = —R:E{ + SiC;

(§
(6) _ _FE: + SC: .

Using the fact that A%, Ef and C; are functions of (x, 2) alone, if we
take the partial derivative of (6) with respect to w° we obtain 0 =
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—Ff, Ef + Si, .C;. The linear independence hypothesis now implies
the result.

PROPOSITION 3. If Y, is a mormal pp the invariant subspace
Ciz,z,u) of 2, at (x,z,u) s independent of u',---,u” and as a
subspace of V(x,2) is invariant under A(w, z).

Proof. Independence of ', -.-,u? follows from Proposition 2.
Invariance follows from equations (6).

Thus, the possible pp’s of ¥ depend on the subspaces of V(z, z)
which are invariant under A(z, z).

DEFINITION 3. A change in dependent variables will mean the
obvious system in new variables

2= hl(xly xzy zly "'7zm)y>" = 1’ e, M
defined on |J which must have inverse functions z* = g%(a*, 2*, 2", - - -,
z™). For example, in ¥, of Definition 2 we may replace v* by #" =
w* — F*. Then X, is a pp on %" = Ko,z
DEFINITION 4. If 3 contains equations of the form
Zrtk :fk(xlyxzyzly ""zr)vk = 1y e, — 7,

then by Definition 1 it contains
= 3 f¥, [Aiber + B + £,
A=1
dt = 3 Fr, 0t + fF, .
A=1

The system ¥ obtained from I by replacing z+*, 6,2+*, 3,2"+* by their
expressions in terms of «', «% 2, ..., 2", 02", ---, 0,2 is called an ad-
missible restriction of X,

PROPOSITION 4. If Y, is a pp of 2 and X, is an admissible
restriction of X, then there is an admaissible restriction of X, X,
which 1s a pp of X,

This follows from the definitions.

PropPOSITION 5. If X, is a normal pp of X then the equations of
3, are uniquely determined by the vector fields E70,z2* up to a change
of dependent variables. That is, G and H™ are uniquely determined
up to arbitrary linear combinations of the equations C30,2* + D* =0
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and Efoz* + F* — u™ = 0. (We say then that X, is the pp on E7.z.)

Proof. By changing variables make F~* = 0. Since E}3,2* and
C40,2* are linearly independent, F; and S7 are uniquely determined
by equation (6). Comparing coefficients of 0,2* in (5) using (4), we find

Gilr - EZIT! 22 E;(Aﬁty 22 + B/‘s zl)
= —RZEipy 7l + Sg(cir) Pt + Daa zl) - T;E{
+ UiCs% .
Thus, G5 is uniquely determined up to a linear combination of E{ and

C4¢. Comparing the terms (5) which are independent of 0,2 leads to
the same conclusion about H~".

PROPOSITION 6. Let X, be a normal pp of 5. Let V. (x, 2, u) and
V(x, z) be the vector spaces associated with 2, and X, respectively.
Let C.(x,z,u) = Cy(x,2) and C(x,2) be the itnvariant subspaces of X,
and X, respectively, and A,(x, 2, u), A(x, 2) their linear transformations.
Then there exist natural horizontal exact sequences such that the
following diagram is commutative:

Vi@, 2)/Clx, 2) —— Vi, 2, w)/Cy, 2) — Ci(x, 2)/C(, 2) —— 0
lA(w, 2) lA;(ac, Z, ) lB(z, 2)
V(w, 2)/Cw, 2) —— Vi@, 2, 0)/C.(@, 2) — Cy(x, 2)/C(z, 2) — 0

where

(02" + C(x, 2)) = 0,2* + Ci(x, 2) ,
B(0.z* 4+ Ci(%,2)) = 0 + C(x, 2) ,
lg(aluf7 + cl(xy Z)) = Elxalzl + C(w, Z) )

and B(x, 2) 1s the natural linear tramsformation induced by A(x, 2).

Proof. Let us omit the dependence on (x,z) or (x,z,u). We
have A(0,2") = Aldz¢ = A(0,7Y), A,(0w) = Fjou’ + G30,2*. Then C,/C
is spanned by E76,2* + C, where A(E02") = F;E{02" + C. By defi-
nition Ba = 0 and the kernel of B8 is V/C, since the E;0,2* are inde-
pendent modulo C. This kernel of £ is the image of «a. Hence
exactness. Commutativity is routinely checked.

DEFINITION 5. The eigenvalues of 3 at (v, z) are the eigenvalues
of A(x,z) on V(x,2)/C(x, 2).

ProPOSITION 7. If X, is a mormal pp of X then the eigenvalues
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of 2, at (x,z,u) are those of 3 at (x, 2).
Proof. Let w’ = W]o,2* fill out a basis of V(z, z) together with
v* = C50,2* and w* = Ef0,2*. Suppose
Aw?) = Fpu + Give, A(w') = MIw* + Niw + Tlv* .
The eigenvalues of ¥ at (x, z) are those of
lo )
0 M)’
where F' = (F;), N = (N}), M = (M?).

If vy =o0w" then A,(y°) = F7y* + Prfw’ + Qu° + Liv*, so the
eigenvalues of Y, on V,/C, are those of the

[0 7

We have found that a normal pp of 3 is completely determined
by vector fields E70,2* which together with C%0,2* span a subspace of
V(x, z) which is invariant under A(z,z). However, there need not be
pp’s on any given invariant vector fields. This is because of the
equations which must be satisfied in (5) for the coefficients of 0,2%0,2*:

where P = (P7).

_E}:Ty zuA:t - E;:’ szl/:. = -—R;(E;ay 2t + E,uﬂy zl)
—8:(Ch e + Ciiy L) -

One situation when these equations are always satisfied is when the
entire space V(z,z) is used for the pp.

DEFINITION 6. The total prolongation (abbreviated tp) PY of ¥
is obtained as the pp on vector fields which span all of V(x,z) at
each point.

PROPOSITION 8. The tp of 2 always exists.

Proof. The system PX is variables «f, 2% p', ---, p™ is obtained
by adding to the equations of ¥ the equations

P =02",
0.p* = Alop* + [AL, J[(ALp® + B) + A, .]p*
+ B, "+ B ., =1,---,m,
C:o.p* + (0FCHP* + 0fD* =0, =1, -+, ;.

(7)
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The last set of equations is added because p2X contains C¢p* + D* = 0
in order to satisfy conditions (2) in Definition 1 for functional equations
in systems. It is a calculation to check that equations (7) together
with those in X constitute a system.

The tp is not normal, but using the equations C¢p* 4+ D* = 0 it
is possible to find an admissible restriction of PY which is a normal pp
of 3. The invariant subspace associated with PJY is spanned by
02!, +++,02z" and Ci0p*, ¢ =1, ---, a,.

PropPOSITION 9. Let V, C and A denote the vector space, invariant
subspace and linear transformation associated with X at a point
(x,2). Let PV, PC and PA denote the same entities for P at (x, 2, p).
There is a natural isomorphism w:V/C — PV/PC satisfying wA =
(PA)r. In particular subspaces of PV/PC invariant under PA cor-
respond in a one-to-one way to those of V/C imvariant under A.

Proof. Let m(0,2*> + C) = o,p* + PC. The rest is a calculation.

ProposITION 10. If 3, is an admissible restriction of 2, then
P2, is an admissible restriction of PX.

This follows from a calculation. The next result shows an im-
portant use of tp’s.

PropPoOSITION 11. Let Ef62', m =1, ---, p, be vector fields on the
domain of X which, together with C502*, span a subspace of V(x, 2)
at each point which s invariant under A(x,z). Then KEfo.p* =
n(E:6,2%) satisfy a stmilar condition wn PV(x,z,p). Moreover, there
always exists a pp of PX on the vector fields Ko, p.

Proof. If A(Ef02") = F;E6,2* + SiC%0,2%, let

w = Efop’,
o™ = F;ou’ + (05E7)0,0"
+ EF[(0FAL)o.p" + prof (05 Al) + (07 AL)o.p" + 0F(95BY)]
— F;(0FEf)o.p* .
Observe that 0/A47, 0; A%, 65 B?, 0FEY{ can be expressed in terms of «, z, p
using 0,2* = p*, while 0/(05A%) and 07 (3, B*) are linear in 4,p*. Conse-
quently the above equation is linear in 0,p*.

ProposiTiON 12. Let X, be a normal pp of 3 on Efo,2*, 1 =1,---,D.
Let (PX), be the pp of PY on the E7o,p*. Then (PX), is an admissible
restriction of P, and is a mormal pp of PX.



686 H. H. JOHNSON
This is merely a calculation.

COROLLARY. IfXY,cX¥ C .- C X, is a sequence of systems where
each X, 1s a normal pp of ¥,_,, 1 =1, «-+, h, then there exists a sequence
3t =PY,cX¥ ... C X, where X} is a normal pp of 2., and PX,
has X as an admissible restriction, 1 =1, ---, k.

ProrosiTION 13. If X, and X, are pp’s of 2, then X, U 2, deter-
mines a pp of 2,3, and 2X,.

Proof. All that needs to be added to X, U 3, are equations 9} L =
0,0;L = 0 for any equation L(x,z) = 0 which can be deduced from
the equations in X, and %,.

ProprosITION 14. If X, is a pp of X using vector fields which
lie in the invariant subspace C(x,z) of X at each point, then 3, has
Y as an admissible restriction.

Proof. Suppose X, contains
w* = K70,z = KrC%0,2" .
Then ¥, contains the equations
w = —K:D*
so the u™ may be eliminated by an admissible restriction (see Definition 4).

2. Hyperbolicity.

DEFINITION 7. Suppose that in a neighborhood of each point in the
domain of T there exist linearly independent vector fields v* = vj(x, 2)d,2%,
n=1,--.,m — «, which together with C30,2* span V(z, z) at each point.
Suppose further that

Al(x, 2)vi(z, 2) = K vj(x, 2)

modulo C(z, z). That is, v + C is an eigenvector of A on V/C at each
point with eigenvalue K=. Then X is called hyperbolic.

DEeFINITION 8. Let there exist a sequence Y cC ¥, c,c-..-CXY,
of systems in which each system is a pp of the preceding system
and in which Y, is hyperbolic. Then X is absolutely equivalent to a
hyperbolic system.

In this event ¥ has the same behavior as a hyperbolic system [3].

ProposiTioN 15. Hyperbolicity s preserved wunder admissible
restrictions and total prolongations.
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Proof. If zr+t* = frid(gt, 2%, 2, -+, 2"), A =1, --«, m — 7, define an
admissible restriction, then C(z, 2) contains 0,2"** — 0¥f"** = 0. Hence
v~ must be linearly independent when z'+* and 6,2"** are replaced by

f* and 0ff™+*, respectively. The second assertion follows from
Proposition 9.

ProPOSITION. 16. If X s absolutely equivalent to a hyperbolic
system the eigenvalues of X are real at each point.

Proof. Proposition 7.

DEFINITION 9. A vectorv e V(x, 2) is essential if for some eigenvalue
A of 3 at (x, 2) there is a vector u e V(x, 2) such that

(1) [A(x,2) —N]u = v,

(2) [A(x,2) —A]v=0,s=1,

(8) v =0 modulo C(z, 2).
(Here Iis the identity.) The essential vectors belonging to an eigenvalue
A generate a vector space V,(z,2) D C(x,z). Let

p(2)(x, 2) = 3., dim Vi(@, 2)/C(2, 2)

be called the degeneracy of ¥ at (x, 2).
When ¥ is hyperbolic, o(2) = 0 at all points.

THEOREM 1. Let YC XY C.--C 2, be a sequence of normal pp’s
leading to a hyperbolic system 2X,. Let

(x’ Z), (x’ z, ul)y ct Y (xy Ry Uyy * v, uh)

be points in their domains, let Vi(x, 2, wy, «++, u;) DCH, 2, Uy, +++, U;)
be the associated and invariant spaces of 3;, where

V(x’ Z) c Vl(xy <, ul) (G - Vh(wy By Uy **, uh) .
Then if ve V(x,z) is an essential vector of X, ve Cy(x, 2, Uy, <, Uy).

Proof. By Proposition 6, if A,(x, z, u,, + -+, u;) is the linear trans-
formation of X,, then A,(x,z, 4, ---,u;) | V(x,2) = A(x, 2) modulo
C(x, z). Hence v satisfies (1) and (2) of Definition 9 as an element in
V.. Being hyperbolic X, can have no essential vectors, so veC,.

ProprosiTiON 17. Let Y C X, --- C X, be a sequence of normal pp’s
where X, is hyperbolic. Let v = v30,2* be linearly independent vector
fields of X modulo C(x,z) which are essential and which generate a
subspace of V(x,z) ] C(z, z) invariant under A(x,z). Let 3 be the pp
of X on the vector fields v*. Then there exists a sequence of pp’s
YcY¥cl .-, where Y, is a pp of 3 and X, has X, as an admissi-
ble restriction, hence is hyperbolic.
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Proof. Set ¥; = 3; U3 and use Proposition 18 repeatedly. The
hyperbolicity of 3, follows from Theorem 1 and Proposition 14.

As a result of this proposition it can be supposed that any sequence
of pp’s leading to a hyperbolic system begins with a pp on essential
vectors. We shall show that this sort of pp is the optimal way of
obtaining hyperbolicity. We next examine more closely those essential
vectors.

DEFINITION 10. A system X has a Jordan basis if there exist on
its domain vector fields

Ui = Ugi(x, 2)0,2% , 1<s=zm,, E=1,.-e,7
and eigenvalues \.(x, z) of A(zx, z) modulo C(x, z) such that

[A(z, 2) — Ny (2, 2)]]ui(x, 2) = 0 modulo C(x, 2) ,
[A(x, 2) — Ny (x, 2)I|ui(x, 2) = w ' (x, 2) modulo C(x, 2) ,

for 2<s<m,,1<k<r and these vector fields determine a basis
of V(z,2)/C(x,2). We also assume the functions \,(x, z) are infinitely
differentiable.

PropPOSITION 18. Suppose X has a Jordan basis ui. Then a
vector in V(x, 2) s essential with respect to an eigenvalue p if and
only if it is a linear combination modulo C(x,z) of those ui(x,z)
where N(x,2) = p,m, >1land 1 <s<m, — 1. Moreover, o(X)(x,2) =

ZZ=1 (mk - 1)

Proof. “If” is immediate. Suppose

k
a*y; modulo C

MS

w

i

r
>
k=1 s=1

is essential at (¢, 2). Now, observe that
h
(A = pD)'ui = Qo — ' ui +{ 0w — "7 Ui A e

h o
v (j)(xk — g e g
)
(A = pD'u = S, ah (v — @'ups + L
k=1
where L involves only u for s < m, — 1. Hence, if (A — pl)'u = 0,
ay, = 0 whenever \, # p. Then

(A — //‘I)hu = Zka/fnk—-l(xk _ /’C)hu;cnk—dl .
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where L' involves ui, s < m, — 2. Again these coefficients a}, _, =0
unless A\, = g¢. Continuing we find % depends only on ui, 1 < s < m,,
A = . But w = (A — pl)v, so this same result must hold for w.
This implies that % depends only on u;,1 < s < m, — 1.

PRrOPOSITION 19. If X has real eigenvalues, then there exists a
dense open set V in its domain such that every point of V has a
netghborhood on which ¥ has a Jordan basis and the invariant
subspace C is spanned by linearly tndependent vector fields.

Proof. This is a matter of examining various systems of linear
and polynomial equations with coefficients which are functions of (z, 2).

DErFINITION 11. If each point in the domain of 3 has a neighbor-
hood on which the C40,2* are linearly independent and on which a
Jordan basis can be found, let EX be the pp of Y on the essential
vector fields. This is called the essential pp of 3. (Note that EX
may be defined locally. By Proposition 5 two pp’s on local essential
vector fields must coincide on the overlapping neighborhoods.)

We recall that EY need not exist due to quadratic conditions, but
by Proposition 9 the essential vector fields of Y and PX correspond.
By Proposition 11, there always exists a pp on these vector fields
which come from . Thus we prove

PROPOSITION 20. Any system X may be restricted to a dense open
set in its domain on which EPXY exists as a normal pp of PX.
Simalarly for EP*Y k= 1.

PROPOSITION 21. Let YT X, C---C X, be a sequence of mormal
pp’s where X, is hyperbolic. Then on an open dense subset of the
domain of 3 there is a sequence of pp’s

EPYc XY c...Cl)

where 2, 1s hyperbolic.

Proof. Use corollary to Proposition 12, Proposition 20, and Propo-
sition 17.

PROPOSITION 22. Let YC X, C---C X, be a sequence of pp’s.
Suppose the vector space V(x,2) associated with X is contained in
the invariant space C,(x, 2, U, -+, U;) associated with X,. Then
there exists a sequence

YcP¥cl,c..-Clj
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where X}, has ¥, as an admissible restriction.

Proof. Let¥} =%, UP¥=2%;U(2;_,UPX). Clearly 3/ =3 U
PY has PY as an admissible restriction. The result follows from
Proposition 13 and 14.

PROPOSITION 23. Let X, be a normal pp of P*3,k = 1, on vector
fields with coefficients which are functions of (x, z). Then the essential
vectors of X, can be spanned by vector fields having coefficients which
are functions of the variables of PX.

Proof. This is a tautology for £ = 1. For k£ > 1, assuming the
result for £k — 1 to be true, by Proposition 12 X, is an admissible
restriction of a pp P23’ where 3’ is the normal pp of P*'Y on the
corresponding vector fields in P*~'¥. By induction the essential vectors
of 3’, hence of PJX’, hence Y, are spanned by vector fields with
coefficients functions of the variables of PJX.

DEFINITION 12. A pp 2, of X is complete if X, has no essential
vectors which involve only the variables of Y, i.e., of the form a,;0,2%.
For example, PY is a complete pp of 3.

THEOREM 2. Let Y X C..--C X, be a sequence of normal pp’s
where X, 1s hyperbolic. For any k= m — a, — p(2) + 1, there exists
a sequence of pp’s on an open demse subset of the domain of X,

P C E'PYcly¥ c...ClX

where ' is hyperbolic, X1 is a pp of P*Y, K'P*Y is normal complete
pp of P*Y and o(2) is the mawimum value of the degemeracy of X.
(Recall m = no of dependent variables z*, &, = dim C(x, 2). Thus, m —
a, = dim V(x, 2)/C(x, 2).)

Proof. Let ui(z, 2)0,2* be vector fields which span the essential
vectors of X on an open set in the domain of Y. By Proposition 9,
w0,p; span the essential vectors of P*Y, where p; are the variables
in P*3 which are analogous to the p? in Proposition 9. Sincek > 1,
EP*Y exists and is a normal pp of P*Y for a suitable restriction by
Proposition 20.

Now, by the corollary to Proposition 12, there is a sequence of
normal pp’s PY c 5, c ... < 5, where £, is hyperbolic. Repeating, we
get a similar sequence P*Y¥ C Y¥cC -..C X} where Y} is hyperbolic.
By Proposition 21 there is a sequence of pp’s P*Y c EP*Y 8/ c ... c 5}
where 3" is hyperbolic and 5 is a pp of PX3.
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If EP*Y is a complete pp of P*Y, the theorem is proved. Other-
wise there exist essential vector fields of EP*Y of the form v30,p}.
By Proposition 23 the coefficients v can be supposed to be functions
of the variables (x, z, p,) of PY. By further restricting the open dense
domain if necessary we can assume the v{0,p} and wjo,p; are linearly
independent. They determine an invariant subspace of P*Y modulo
C, (the invariant space associated with P*JY), because the v0,p; are
determined by the intersection of the space of essential vectors in
EP*Y with the image of V, (the total space associated with P*Y) in
EP*Y, at each point. That is, they are merely those essential vectors
in EP*Y which depend only on o,pi, the variables of P*X.

By Proposition 11 we can form the normal pp of P*Y on the
vector fields vj0,p; and wui0,p; provided that k= 2. But if k=1,
that means m — a, — p(2) = 0, so every vector in V(x,z) would be
essential, which is impossible by the very Definition 11 of essential.

Letting # P*Y denote this pp, we see that & P*Y is a pp of
EP!Y on some of that system’s essential vector fields. Applying
Proposition 17 there exists a sequence

P:YCEPYc#PScilc...cSy
where 37 is a pp of P*Y and 37 is hyperbolic.

If o(3) = m — a, — 1, all vectors of P*Y are essential except one,
which must have been added in forming & P*Y. Hence & P*Y is an
admissible restriction of P*+'3 and is a normal complete pp of P*X.
Otherwise m — a, — p(2) + 1 = 3 and so the process above may be
repeated for any further essential vectors in & P*Y of the form
w30,p} in the variables of P*X.

This process must end since there are at least o(2) + % linearly
independent vector fields added at the h‘* stage of the form «,;0,p7,
so we must arrive at P*"Y for h =< m —a, — p(2) < k — 1.

REMARK. Observe that E’'P*Y is explicitely constructed.

ProrosITION 24. If k=m —a, — 0(3) + 1,7 =0, then P'E'P*Y
has E'P*Y as an admissible restriction, where E'P*Y and E'P*7Y
are constructed as in Theorem 2.

Proof. This follows by applying Proposition 12 at each stage in
the process described in Theorem 2 and using Proposition 9 repeatedly.

PROPOSITION 25. Let Y C XY C---C 2, be a sequence of pp’s.
Then there exists a sequence X C X C ---2' of normal pp’s on an
open dense set of the domain of X where X is an admissible re-
striction of X;.
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Proof. By restricting the domain if necessary, X, is obtained by
vector fields linearly independent of 3 and possibly some in C(z, 2).
Use Proposition 14 to obtain Y] and make the same admissible re-
striction in all succeeding systems. Repeat this reasoning starting
with Y, ete.

THEOREM 3. Let SCE'XCX¥ C---C 2, be a sequence of normal
pp’s leading to the hyperbolic system %,. Let E'Y be a complete pp
of X and suppose X, is a pp of Y. Then on an open dense set,
either o(E'2) < p(2) or else there exists a sequence of mormal pp’s

PY¥cl,c-.---Cc2)
of one shorter length, leading to a hyperbolic system 2.

Proof. Let uj = uj,(x, 2)0,2* be a Jordan basis on an open set U,
1ss=mu,k=1,--c,r(A—NDu, =uy, (A —NMDup, =0

modulo C(x, 2). Let W(x, 2z) be the subspace of V(x,2) used in the
pp E'%, i.e., W(zx, z) is the invariant subspace of E’Y by Proposition 3.
Since {u;|m, > 1,1 < s < m, — 1} are all essential, they are contained
in W(x, z).

Let W.(x,2) be the subspace of Wi(x,z) associated with the
eigenvalue p(x, 2) of A(x, 2), modulo C(x, z). Then W.(x, z) D{u |\, =
u,m,>1,1<s<m,— 1}, where )\, is the eigenvalue associated
with ;.

If W.(x,2) contains vectors independent of these vectors, then on
an open dense set we can find a factor field of the form

2% Culm, 2upre Ww, 2) .

A=t
Let m; = sup {m, |\, = f, Cy(®, 2)  0]. Denoting

w;,"j = Z Cku’}cnk ’
(A — pI)yw™s S Cauli T = wli,

mkgmj-—'r

1]

r=1,---,m; — 1, we can replace »; by w$ and obtain a new Jordan
basis. Repeating this process we find that in a neighborhood of any
point in an open dense set one can find a Jordan basis for 3 of the
form wi,1 <s<m;,1 <k <r where for 1 <s<m,,1 <k <7 and
1<s<m, — 1,7 <k <", these elements span W(z,z). Moreover,
m,=11if k> »".

There are two cases.

Case 1. For some m, > 1, wrt¢ W(x,2). Then E’Y is obtained
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locally by a pp of the form 2z} = w021 <s<m, for 1 <k < r';
1<s<m, -1 for » <k < 7" where some m, >1 for » < k < »".

0,21 = N0i25 + 0257 + D, Rpwir + T3,

h=r’+1

for s > 1,
02, = M0,2; + 2, Ruwir + T} .
h=r’+1

‘We shall show this system has lower degeneracy than Y. The space
V'(x, 2%, z) associated with E’Y is spanned by 0,2%, 0,z;. Its invariant
subspace C'(z, 2%, z;) is spanned by C$0,2* together with w;,1 < s < m,
forl<k=<7r;1<s<m, —1forr <k<+". Thus V'/C'is spanned
by 0.2;, wrr, b > v'. Set t, = 0.2; + Doy fwrn, 1 < s <m, for 1 <
E<rand 1<s<m, —1 for v <k <", where for \, # N\,

fi= B Sl — Rl

Xk'_ xh Kk_‘ kh
al“i for K% :::Nhyjfh = iza quen

(A" — N Dty =t if s>1,
A —=NDti= >, RLywre =1t .
A=Ak k>

Then these ¢, must be essential vectors. But they depend only on
0,2" and by hypothesis E’Y is complete. Hence R}, = 0, N, = N, b > 77,
Hence a Jordan basis of E'Y is t{,1 <s<m, for 1<k <785, 1 <
s<m, —1 for ¥ <k < wpre for v <k <r. Since (A — N\ )t =
7 (A — N D, =0 and (A4 — N )wpr = 0, it follows that p(E'Y) =
i m, — 1) + 252, (m, — 2). Since some m, >1 for » <k <",
this number is smaller than p(2) = 3;%(m;, — 1). (Recall m, =1 for
k> ")

Case 2. Every m, =1 if wpr¢ W(x, 2z). Thus, E'Y is obtained
by prolonging on the vector fields wj,1 <s < my, k=1, ---, 7', where
m, = 1for k > 7. In Y the vectors wit, k > ' satisfy (A — N, [)wi*r =
0. If we prolong E’Y on these vector fields wpx, k > 7', we shall add

( 8 ) Zp = @v?k9a2zk = >\‘kalzk %" ]u? k :> T,‘

This in no way alters the degeneracy of K'Y, whose essential vectors
are 0,z;,1 < s < m, — 1, and whose degeneracy is o(X). Moreover, if
we add these equations to each of the systems in the sequence

EYcYc-..CcX,
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observe that E’Y becomes PX. Then since Y, is a pp of ¥ which
contains K'Y, when we add these equations X, must have PY as an
admissible restriction. Taking this admissible restriction in each
succeeding systems leads to a sequence of pp's

P¥Xcl¥,c...cX,.

Now X’ is an admissible restriction of the pp of X; obtained by adding
(8) to X,. The essential vectors of ¥; do not depend on 42" since
E’'Y is a complete pp of X, hence they do not depend on z,. The
vectors 0.z, are not essential, so adding (8) in no way effects the
degeneracy of Y, since degeneracy measures the number of essential
vectors. Since admissible restrictions do not effect degeneracy, o(27) =
0(¥;). In particular X} is hyperbolic. Finally, use Proposition 25.

THEOREM 4. Let XC X, C ---C X, be a sequence of pp’s leading
to a hyperbolic system Y,. Then on an open dense set for some k
there is a complete normal pp E'P*Y of P* Y having lower degeneracy
than 3, unless X is itself hyperbolic.

Proof. By Proposition 25 we can suppose the sequence is normal.
By Theorem 2, if k = m — a, — p(2) + 1 there exists a sequence of pp’s
on an open dense set, P*Y C B'P*Y cC ¥/ c ... C X} where E'P*Y is a
normal complete pp of P*Y X is a pp of P*Y and 23 is hyperbolic.
By Theorem 3 either o(E'P*Y) < p(2), in which case the theorem is
proved, or else there exists a sequence P*+'Y C Y} C -.- C X} of normal
pp’s where 37 is hyperbolic. Repeating this, there must be some
E'Pi3 of lower degeneracy than Y unless Y is itself hyperbolic.

THEOREM 5. If YC X C..-.-CX, is a sequence of mormal pp’s
leading to the hyperbolic system X ,, then on an open dense set, for
all k=2m — a, — p(2) + 1, there exists a complete pp E'P*Y such
that o(E'P*3) < p(2).

Proof. By Theorem 4 this is true for some k£ + j. By Proposition
24, o(E'P*S) = o(P'E'P*Y) = o(E'P*i5) < o(%).

COROLLARY. If X is absolutely equivalent to a hyperbolic system,
then the proceedure in Theorem 2 for successively constructing E'P*Y
will result in a hyperbolic system.
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