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ON ULAM'S CONJECTURE FOR SEPARABLE GRAPHS

J. A. BONDY

Ulam's conjecture, that every graph of order greater than
two is determined up to isomorphism by its collection of
maximal subgraphs, is verified for the case of separable graphs
which have no pendant vertices. Partial results are then
obtained for the case of graphs with pendant vertices.

Unless otherwise stated, the graphs dealt with in this paper will
be finite and undirected, and may have loops and multiple edges. Any
definitions and notation not given below can be found in Berge [1].

A part Gι of a graph G is a subset of the vertices and edges
of G. The end-vertices of edges in Gι need not themselves be in G\
If Gι is a part of G, G — G1 denotes that partial subgraph of G
which is obtained by deleting G1 and all edges of G which are joined
to vertices of G1. Now let S be some distinguished set of parts of
a graph, and let S(X) — {X1} be the labelled set of these parts in the
graph X We call two graphs G, H S-equίvalent if | S(G) \ = | S(H) | =
M« oo) and, possibly after relabelling, G - Gι ^ H - if*(l ^ i ^ M).
G\ Hι will be referred to as corresponding parts.

In [8] Ulam proposed the following conjecture.

CONJECTURE A. Vertex-equivalent graphs of order greater than
two are isomorphic.

Kelly [7] verified this conjecture for trees and, by exhaustion,
for all graphs up to order seven. A related conjecture, intuitively
simpler but also as yet unsolved, was suggested by Harary [4].

CONJECTURE B. Edge-equivalent graphs with more than three
edges are isomorphic.

Harary and Palmer [5] strengthened Kelly's theorem by showing
that pendant vertex-equivalent trees are isomorphic, and hence proved
as corollaries both Conjectures A and B for trees. In [2] the author
took this one stage further and showed that peripheral vertex-equivalent
trees are isomorphic. For directed graphs, Harary and Palmer [5,6]
have proved that vertex-equivalent weak tournaments of order greater
than four are isomorphic, that edge-equivalent tournaments are
isomorphic, and that pendant vertex-equivalent directed trees with at
least three pendant vertices are isomorphic. In [7] Kelly also stated
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that Conjecture A holds for disconnected graphs. A proof is given
by Harary in [4]. We here examine this conjecture for graphs of
connectivity one.

2* Separable graphs with no pendant vertices* Throughout
this section G, H will be taken to be vertex-equivalent graphs of
order N.

A cut-vertex of a graph is a vertex whose removal disconnects
the graph. A connected graph is separable if it contains a cut-vertex.
A block is a maximal connected subgraph that is not separable. A
pendant vertex is a vertex joined to just one other vertex.

THEOREM 1. Vertex-equivalent separable graphs with no pendant
vertices are isomorphic.

We first need two lemmas.

LEMMA 1.1. (Kelly [7].) Let Y be any graph of order less than
N. Suppose there are a distinct subgraphs of G isomorphic to Y
and that vertex u{ of G is in a{ of these subgraphs; that there are
β distinct subgraphs of H isomorphic to Y and that vertex v{ (where
Vi is the vertex corresponding to u{) is in β{ of these subgraphs. Then

a = β, and a{ = &(1 ^ i ^ N) .

LEMMA 1.1 remains true if 'subgraph' is replaced by 'partial
subgraph' throughout. We shall refer to this version as Lemma 1.1 (a).

Note. It is an easy consequence of Lemma 1.1 that corresponding
vertices have the same number of loops and are of the same degree;
it is also clear that G and H have the same number of pendant vertices.

LEMMA 1.2. Suppose G has blocks BLJ B21 , Bm (where m > 1)
and H has blocks C19 C2, , Cn. Then m — n, and the blocks can
be relabelled so that B{ ~ C{(1 <£ i <£ n).

Proof. Let Bi have order δέ and Cι have order ct. We may
assume that bL ĵ> b2 ^ ^ bm and cL}> c2 :> ;> cn. The proof will
be by induction. Suppose we have already shown that B1 = CΊ, B2 =
C2, , Bk = Ck. Since G and H have the same order, k — m if and
only if k = n, and in that case G ~ H. Otherwise k < min (m, n) and
we may suppose that bk+1 ^ ck+1. In Lemma 1.1 take Y to be isomorphic
to Bk+1. If Y occurs 7 times in \J[ B^ then Y also occurs 7 times
in U? Ci Now Y occurs at least 7 + 1 times in G, since Y = Bk+1.
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Hence Y occurs at least once in JJί+i C% Therefore Y is isomorphic
to a subgraph of C3- for some j > k. But

order of Y — order of Bk+ι = bk+ί ^ ck+1 ^ c3- = order of C,

and hence F = C,. Without loss of generality we may take j — k + 1.
Hence, Bk+1 — Cfc+1. Induction is started by the same argument, with
k — 0. Therefore, m — n and B< = C; for all i.

Proof of Theorem 1. Let Bγ be a 'pendant' block of G (that is,
a block containing just one cut-vertex of G) such that no pendant
block of G or H has order less than b19 the order of Bλ. (The as-
sumption that Bλ is in G results in no loss of generality.) Let u be
the cut-vertex joining Bι to the rest of G. Write Gt = G — {Bι — u)
and denote by G{ the graph obtained from Gλ by adding s isolated
vertices and joining each to u by one edge. Then G\ is a proper
partial subgraph of G and hence, by Lemma 1.1 (a), there is a partial
subgraph H[ of H isomorphic to Gί, i.e., ψ(G\) = H[, ψ(u) = v, say.
(Note: u and v are not necessarily corresponding vertices.) Let Hx be
the graph obtained from H\ by deleting its pendant vertex. Then it
is clear that Hι — ψ(Gt) and, by Lemma 1.2, Hι has one block fewer
than H, that block, d say, being isomorphic to Bγ. Now H is obtained
from H[ by adding bλ — 2 vertices and some edges. Since no pendant
block of H has order less than that of B19 and since H has no pendant
vertices, it is easy to see that those edges can only be incident with
v, p (the pendant vertex of H[) and the bι — 2 new vertices. Thus v
is a cut-vertex of H and it follows that the subgraph of H on v, p,
and these bx — 2 new vertices is isomorphic to CΊ. It now remains
to show that there is an isomorphism of Bx and CΊ mapping u onto
v. Denote by B[ the graph obtained from Bx by adding an isolated
vertex and joining it to u by one edge. Define C[ analogously. It
will suffice to prove that B[ ^ C[.

By Lemma 1.1, G and H have the same number of cut-vertices
of the same degree, and hence u and v have the same degree, say
r + s + 2t, where t is the common number of loops at u and v. Suppose
that, apart from loops, r edges of d and s edges of Bλ are joined
to u. Then it is clear that r edges of H^ and hence s edges of Cu

are joined to v. If B\ occurs a times in Gf, it occurs a + r times in
G. But then J51 occurs a times in if; (since G\ = if;) and a + r times
in £Γ (by Lemma 1.1). This implies that B\ ~ C[ and hence G ~ H.

3. Graphs with pendant vertices. The trunk T{G) of a graph
G is that subgraph of G which remains after repeated removal of
pendant vertices. A limb L of G is a nontrivial maximal connected
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subgraph of G having just one vertex in common with T(G). This
vertex is called the root of L. G is the union of its trunk and limbs.
The situation is illustrated in Figure 1.

Note. It is clear that these definitions only have meaning for
graphs containing cycles of length greater than two.

Figure 1.

Suppose G and H are vertex-equivalent graphs. We omit the
case when G and H have two blocks, one of which is of order two.
This seems to be very difficult to deal with, and is not amenable to
the methods used here. If G has only one pendant vertex, on a limb
of order greater than two, then H also has these properties and G — H.
For let u be the pendant vertex of G, and suppose that there are I
loops and m other edges incident with u. Then G is obtained from
G — u by adding an isolated vertex with I loops, and joining it by
m multiple edges to the unique pendant vertex of G — u. If vertex
v of H corresponds to u, then H can be reconstructed from H — v
in the same way. Now suppose that G and H have exactly two
pendant vertices such that (i) each maximal subgraph of G obtained
by the deletion of a pendant vertex has just one limb, of order two;
(ii) there is a maximal subgraph of G containing two isolated vertices.
Then, by an argument similar to that used above, we again have
G = H. These cases will be excluded from the following discussion.

For the rest of this section we make the weaker assumption that
G, H are pendant vertex-equivalent connected graphs. Since Harary
and Palmer's theorem for trees extends quite easily to graphs with
cycles of length at most two, we consider here only graphs having
cycles of length greater than two. It is immediate that G and H have
isomorphic trunks. We now look at their limbs. Θ, φ, φr, respectively
will denote isomorphisms of G — uL onto H — v19 G — u2 onto H — v2

and G — vf2 onto H — v'2, where (u191\), (u2, v2), and (u'2, v'2) are pairs
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of corresponding pendant vertices, and v2 = θ(u2).

LEMMA 2.1. Let G and H have limbs Ku K2, — ,Km1 and Lx,
L2, , Ln, respectively, where Ki has order ki and Li has order li%

Assume that kx^k2S S km, and that lγ ^ l2 ^ ^ ln. Then
m = n and ki = ^(1 ̂  i ^ n).

Proof. Suppose that ki = ^(1 <̂  i < r) but that kr Φ lr, say kr < lr.
Let ^i e Kr. If kr > 2, the combined order of the r smallest limbs in
G — ux is Σ<=i «̂ ~ 1> a n d the combined order of the r smallest limbs
in H — vι is at least Σί=i ϊ* — 1 > Σ<=i ^ ~~ l This contradicts the
fact that 0((? - wO = H - vx. Therefore kr = 2 and ίr > 2. Now there
is a pendant vertex w2 in some ^ ( 1 ^ i ^ r) such that ^2 g Lά for all
j" < r. Then G — u2 has m — 1 limbs and H — v2 has w limbs. There-
fore m = n + 1 and this implies that li > 2(1 ^ i ^ n) and that
&; = 2(1 ^ ί <L n + 1). Since G and H clearly have the same order

and therefore n = 1 and ^ = 3. But this is precisely the case excluded
at the beginning of this section.

In the light of Lemma 2.1 we now assume that G and H have
limbs {Ki)y and {LJΓ respectively, arranged so that kxSk2^L <̂  kny

where k{ is the (common) order of K{ and L{; also that if̂  has root
a{ in T(G) and that Li has root b{ in T(iϊ). The notation (U, u) =
(y, v) (or a( U,u) = ( V, v)) will be used to denote that graphs U and
V are isomorphic under an isomorphism (a) mapping vertex ue U onto
vertex v e V.

THEOREM 2. The limbs of G and H can be arranged so that
(Ki, a,) s (L^ bi)(l Hi tin).

Proof, (a) n Ξ> 2. Let ^ e Kίf u2 e K2. Then G — uγ has limbs of
order kγ — \,k2, , &„, and hence so has H — vt. We may therefore
assume that vγ e 2^. Then ^(G — u j = H — vγ =>

at) = (Lίy bd ( 2 ^ i £ n ) .

There are now three subcases:
( i ) k2 > k, + 1. Then φ(G - u2) = H - v2 ==> φ(Kλ, ax) = (Lίy b,).
( i i ) k2 = k, + 1. From (1), θ(u2) = v'2eL2 and hence Θ(K2 — u2,a2)

= (L2 — v\, b2). φ(G — u2) = i ϊ - v2 => either ^(iΓi, αx) = (L1 ? 6^ or
^(j^ 2 - %2, α2) = (Lx, δ j . ^'(G - %5) = £Γ - t J => either ^'(iΓ ly αx) - (Lx, 60
or Φ'(KU a,) = (L2 — v2, b2). Therefore a t least one of φ, φ', φθ~ιφr

(product of isomorphisms) maps (Kly a,) onto (Llf bλ).



286 J. A. BONDY

(iii) k2 = kλ. Suppose v2 e Lt. Then φ(G — u2) = H — v2 =>

{Φ(Ki, <)}^ 2 = {(L2, bi)}^. Put φr = ίK0~W We shall show that, for
some r, either

(2 ) ^ ( I ζ , α j = (L,, δA) or ^ ( I ξ , α j - (L2, 62) .

For assume otherwise. Then φr(Kιy aL) is well-defined for all r and
we may put φr(Kx, aL) = (Ljr, bjr), where j r > 2. Thus

( 3 ) θ-'φr(Kly αx) - θ-\L,r, bjr) = (Kjr, aJr) .

Since n is finite there are integers p, q, (p < q) such that (Ljp1 bj ) =
(Ljq, bjq). Then φp(K19 a,) = φq(K19 aL), i.e., 0-V?-*-i(#i, αx) = 2 ( ί : Jα 1 ) ,
contradicting (3). Hence (2) follows. From (1)^ e I/2 and, by an an-
alogous argument to the above, φ'(G — u,'z) = H — vί ==> either ^'(i^, αL) =
(Lx, 6J or Φ'S{K2J α2) = (L :, 6X) for some s, where φ's = φ'(θ~-ιφf)s. There-
fore for some r, s, at least one of φr, φ's, φ

fβ~γφr maps (Ku aγ) onto
(Lx, 6J. (i), (ii) and (iii) together imply that an isomorphism θ1 exists
such that

This completes the proof of part (a).
(b) n — 1. If at is not pendant in Kly apply the methods of

Lemma 2.1 and part (a) of this proof to the sublimbs of Kγ and Lι

branching from a, and b, respectively. Otherwise let a[ be the first
vertex along Kγ from aL that is joined to more than two other vertices
of Kγ (such a vertex exists since G has at least two pendant vertices).
Similarly let b[ be the first vertex along Lλ from bL that is joined to
more than two other vertices of LL. It is not difficult to see that
the subgraph of Kγ lying between αL and a[ is isomorphic to the
subgraph of Lγ lying between bL and &'. Now apply the methods of
Lemma 2.1 and part (a) of this proof to the sublimbs of KL and Lι

which branch outwards from a[ and b[ respectively.

COROLLARY 2.1. // kL > 2, then G = H.

Proof. L e t uL e KL. W e m a y a s s u m e t h a t vL e L λ . T h e n θ:G — uι—>
H — vL induces an isomorphism of T(G) and T(H) mapping ai onto
6̂ (1 ^ i ^ ri), possibly after some relabelling. In addition it is clear
that θ(Ki, α{) = {Li, b%){2 <^ i <L n), and hence also, by Theorem 2, that
(K19 α,) ~ (Lιy b,). Therefore G ~ H.

In the same way one can prove:

COROLLARY 2.2. If, for some i, ki+ι - k% > 1, then G = H.
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When there are limbs of order two, one has in general (that is,
except for the situation in Corollary 2.2) to deal with a problem con-
cerning the automorphism group of the trunk. Some progress in this
direction has been made by Greenwell and Hemminger [3]. However,
we have one result which by-passes this difficulty.

COROLLARY 2.3.

G == H.
If the trunk of G is a complete subgraph then

Proof. By Theorem 2 (Kiy a{) ^ (L*, 6<)(1 ̂  i ^ n). Since T{G)
and T{H) are complete, this isomorphism can be extended to an
isomorphism of G and H by mapping the vertices of T{G) which are
not in the set {αjΓ onto distinct vertices of T(H) not in the set {6Jf.

We conclude by proposing a conjecture analogous to Conjectures
A and B.

CONJECTURE C. Pendant vertex-equivalent graphs with at least
k pendant vertices are isomorphic (k to be determined).

For this conjecture to be true we must obviously have k > 2.
I am indebted to Dr. Peter M. Neumann for pointing out a counter-
example when k — 3. Figure 2 pictures the two non-isomorphic pendant
vertex equivalent graphs.

Figure 2.

Dr. Neumann informs me that he has also found a counter-example
when k = 4.
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