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PRODUCT INTEGRAL REPRESENTATION OF TIME
DEPENDENT NONLINEAR EVOLUTION
EQUATIONS IN BANACH SPACES

G. F'. WEBB

The object of this paper is to use the method of product
integration to treat the time dependent evolution equation
u/(t) = A(t)(u(t)), t = 0, where u is a function from [0, ) to
a Banach space S and A is a function from [0, ) to the set
of mappings (possibly nonlinear) on S. The basic requirements
made on A are that for each ¢ = 0 A(¢) is the infinitesimal
generator of a semi-group of nonlinear nonexpansive transfor-
mations on S and a continuity condition on A(t) as a function
of t.

The product integration method has been used by T. Kato in [5]
to treat evolution equations in which A(t) is the infinitesimal generator
of a semi-group of linear contraction operators. In [6] Kato treats
the nonlinear evolution equation in which A(#) is m-monotone and the
Banach space S is uniformly convex. For other investigations of non-
linear evolution equations one should see P. Sobolevski [9], F. Browder
[1], J. Neuberger [8], and J. Dorroh [3].

1. Definitions and theorems. In this section definitions and
theorems will be stated. For examples satisfying the definitions and
theorems below, one should see § 4. Let S denote a real Banach space.

DEFINITION 1.1. The function T from [0, ~) to the set of mappings
(possibly nonlinear) on S will be said to be a &-semi-groups of mappings
on S provided that the following are true:

(1) T+ y) = T(x)T(y) for z,y = 0.

(2) T(x) is nonexpansive for x = 0.

(8) If peS and g,(x) is defined as T(x)p for x = 0 then g, is
continuous and ¢,(0) = p.

(4) The infinitesimal generator A of 7T is defined on a dense
subset D, of S (i.e., if pe D,g,"(0) exists and Ap = g¢,"(0)) and if
peD,g, (x) = Ag,(x) for v = 0,9,(®) =p + S:Ag,,(u)du for © = 0, g,"
is continuous from the right on [0, ~»), and || ¢,! || is nonincreasing on
[0, o).

DEFINITION 1.2. The mapping A from a subset of S to S will be
said to be a Z“mapping on S provided that the following are true:
(1) The domain D, of A is dense in S.
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270 G. F. WEBB

(2) A is monotone on S, i.e., if ¢ > 0 and
p,geD,||(I—el)p—(I—cA)ll=llp—qll.

(3) A is m-monotone on S, i.e. A is monotone on S and if € >0
then Range (I —cA) = S.

(4) A is the infinitesimal generator of a «™-semi-group of map-
pings on S.

DEFINITION 1.3. Let each of m and % be a nonnegative integer
and for each integer 7 in [m, n] let K; be a mapping from S to S.
If m > n define [[r,.K;=1. If m <n define [[~,.K; = K, and if
m + 1 =7 =n define [[{_.K; = K;[[{=, K;. Define [[7"K; = [17.n Kot m—s-
If each of a and b is a nonnegative number then a chain {s;};”, from
a to b is a nondecreasing or nonincreasing number-sequence such that
s, = a and s,,, = b. The norm of {s;}i", is max {| s, — swu_.| | ¢ € [1, m]}.

DEFINITION 1.4. Let F be a function from [0, o) X [0, o) to the
set of mappings on S. Suppose that pe S, a,b =0, and « is a point
in S such that if ¢ > 0 there exists a chain {s;}", from a to b such
that if {¢;}i", is a refinement of {s;}:™, then

Then u is said to be the product integral of F' from a to b with respect
to p and is denoted by [[! F(I, dI)p.

REMARK 1.1. Let A be a &*mapping on S and define the function
F from [0, «) x [0, =) to the set of mappings on S by Fl(u,v) =
(I —vA)~" for u,v =0 (Note that (I — vA)™" exists and has domain S
by virtue of the m-monotonicity of A). The following result in [10]
will be used in the theorems below:

If A is a % mapping on S, T is the &>-semi-group generated
by A, and F is defined as above, then for pe S and x = 0 T(x)p =
115 F(I, dI)p.

In this case let T(x) be denoted by exp (xA) for x = 0.

Let A be a function from [0, ) to the set of mappings on S
such that the following are true:

(I) For each t = 0 A(t) is a Z™-mapping on S

(II) There is a dense subset D of S such that if ¢ = 0 the do-
main of A(¢) is D

(III) A is continuous in the following sense: If a,b =0, M is
a bounded subset of D, and ¢ > 0, there exists 6 > 0 such that if
u, v€|la, b] and |u — v| < J then || A(u)z — A(v)z|| < ¢ for each ze M.
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THEOREM 1. Let A satisfy conditions (1), (II) and (III). If pe S
and a,b = 0 the following are true:

(1) If T(u,v) = exp (WA)) for u, v =0, then [1: T, dI)p exists.

(2) If Lw,v) = { —vAwu)* for u,v=0, then [[!L{,dI)p
exists and [[! LI, dl)p = [[: T(L, dI)p.

THEOREM 2. Let A satisfy conditions (I), (II) and (III) and define
Ub,a)p =T1. T, dI)p for pe S and a, b= 0. The following are true:

(1) U(®,a) is nonexpansive for a,b = 0.

(2) UD,e)Ule, a) = U, a) for a,b=0 and ¢ < [a, b] and U(a, a) =
I for a = 0.

(3) IfpeS and a =0 then Ula, t)p is continuous in t

(4) If peS,0=a <t and U, a)peD, then 0TU(t, a)p/ot =
AU, a)p and if peS,0<s<b, and U(s,b)pe D, then

0~ Ul(s, b)p/os = — A(s)U(s, b)p .
2. Product integral representations. In this section, Theorems
1 and 2 will be proved. Before proving part (1) of Theorem 1 three
lemmas will be proved each under the hypothesis of Theorem 1.

LemmA 1.1, If peD,a,b =0, and {s;}i", is a chain from a to
b then

T T 50— s Dp = ]| = 350 = s [ AGp -

Proof.

ﬁl T(85i1y | 82 — Suia [)D — p”

]I;[Z T(S2j-1 | 825 — Saja|)D — jL_IH T(oi-1 | 825 — S2js I)p“

= | T(S5i1 | 80 — Saia )P — P

=1

LT A ) T, tpat]
0 I

= Z | Soi — Soia ||| A(S5i1)D [ .

i

LemMma 1.2. If peD,a,b=0,{s}" ts a chain from a to b, and
{si}., is a sequence in [a, b], then

I L5t I3 = 50D = 2] = 30 — sl 1 AP -

Proof.
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I Ztst, 5 = s 0w — 1)

< STLLG 15— smaDp — [T LG5 55— 525028
= g (| L(sy | 85 — Saia )0 — |
= 2 Lsh |8 — s )0
— L(s}y | 85 — Suio NI — |85 — Suio| A(s))p ||
= Z |82i - 32«£—2]'“ A(Si)p || .

i=

LEmMmaA 1.3. If M is a bounded subset of D,a,b = 0,7 >0, and
€ >0, there exists 6 > 0 such that if w,vela,b]l,|u —v|<6,0 <2<,
and ze M, then || T(u, )z — T(v, 2)z|| < x-¢.

Proof. Let M' = {[I7 L(v, 8y; — Sy n)z|2e M, vela,b],0 < e <,
and {s;}i", is a chain from 0 to «}. Let z,€ M, let ze M, let v e [a, b],
let 0 <2 <7, and let {s;}i", be a chain from 0 to x. Then,

=llz—=ll.

— Sy 9)% — I—I1 L(v, 85 — 8s_2)%
Further, by Lemma 1.2,

= @ max || A(u)z, || .

uel0,x]

m
_I—II L(Q), Sp; — szi—i)zo — 2
i

Then, || 17 L(v, sy — su 22 || S|l 2 — 20 || + 12 || + @ - maX,cp0, | A(w)z, I
and so M’ is bounded. There exists 6 > 0 such that if w,ve]a,b],
| —v| <0, and ze M’, then || A(u)z — A()z|| <e. Thenif 0 <o <7,
z2€ M, {s;}", is a chain from 0 to x, u, ve]a, b], and |u — v| < 9,

lﬁ L, 8; — 83.5)2 — ﬁ L(v, s,; — 32i~2)zH

f[ L(uw, s,; — Szj—z)ﬁ L(v, 8o, — 8y_5)%
J= k=1

- _H“ L(w, 85 — 83;_3) f[ L(v, 8y, — Spr_2)2

L(’M Sai — Sai— 2) II L(?] S — Sop— 2)2
- I_[ L(v, 83 — 8512)2

.l

H L(v, 83 — Sar9)?

— (1= (s — 5 DA@) TT L0, 50 — 5252

|
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AW [T LO, s — 57

i ‘

= g‘f (82 — Szi—z)l

— AW [T L(v, 8 — 5s02

Ms

< (321 Szi-2) €

1

8
N
.

Then, since T(u, x)z = [1¢ L(u, dI)z and T(v, x)z = [[; L(v, dI)z (see
Remark 1.1), || T(u, 2)z — T(v, 2)z|| < x-¢.

Proof of Part (1) of Theorem 1. Let pe D, let a,b =0, and let
€>0. Let M = (T, T(ryu_y, | 7% — 75 )p0 | 2 € [@, b] and {r;}i7, is a chain
from a to #}. Then M is a bounded subset of D by Lemma 1.1. There
exists 6 > 0 such that if u,vela,b],|u —v|<0,0=x<1and ze M,
then || T(u, )z — T(v, )z || < e-x. Let {s;}i", be a chain from a to b
with norm < min {d, 1} and let {¢;}:~, be a refinement of {s}i7, i.e.,
there is an increasing sequence w such that u, = 0, %, = %, and if
1=ismsy=1t,,. For 1<it=<m let K;= T(si_y, | 8 — Su|) and
let Jz = H?iui_l-HT(tﬁ—u |t2j - tzj—z |)- Then,

'f[l Tty |t — o) — iﬁ T(Ssi1y | 8o — Spis DpH

Jiso - fi o
JHlJ Tl K —]r;lJ 11 K.

= ” II T(toj_1y | 25 — tajz|) ;IZI? K,p

'Lljulll

I T(sz,-_l,ltzj — ty2 ) 1 Kup

i= ”1—1+1
é 2 Z " \ t2r - 2'r— \) H IT(tzh 19 I tzh - tzh—z I) H Kkp
= “1 1 h=u;_1+
- H (Szi—u 't2r - tZ'r—Z |)h H . IT(tzh—u | tzh - tzh—-z ]) kII Kkp
= =uj—1 =1

| i—1
]{Tszz_l,uw—tﬁ_zn T Tt |t = ta) [T Koo

11_7 =UG 1!1 h=u; 3t
i

= Tt [t = s T1 Tltuucs, [ — tae) 1T Koo

Au,Lll

Ui

<3 Sty —tyale=|b—ale.

=u;_1+1

Hence, [I. T(I, dI)p exists. Further, using the fact that D is dense
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in S and T(u, x) is nonexpansive for u, x = 0 one sees that if peS,
a,b =0, then []¢ T, dI)p exists and thus part (1) of Theorem 1 is
proved.

Before proving part (2) of Theorem 1 three lemmas will be proved
each under the hypothesis of Theorem 1.

LEmMMA 1.4, If p,qeS,a,¢c=0, and be|a,c], then the following
are true:

(i) ITIE T, dDp — 112 T, dD)g |l < ||» — q |-

(ii) I Td, dI) II. T, dD)p = [1: T(1, dI)p.

(iii) IfpeDthen||II. T, dl)p —p|| = |b—a|-max,.q.,|lAwp].

Proof. Parts (i) and (ii) follow from the nonexpansive property
of T(w, x), ,x = 0. Part (iii) follows from Lemma 1.1.

LEMMA 1.5. If M is a bounded subset of D, a,b =0, and ¢ >0,
there exists 0 > 0 such that if w,vela,d],|v—u| <o, welu, v], and
ze M, then

HHZ T, dl)z — T(w,|v~u|)zi <|v—wul-e.

Proof. Let M’ ={I1" T(Ssi—1y |8 — Suiz 2|26 M, 2,y € [a, b], {s:}i%
is a chain from y to 2}. Then M’ is a bounded subset of D by Lemma 1.1.
By Lemma 1.3 there exists 0 > 0 such that if w,ve]a,b], |u —v]| <
0,zeM’ and 0Zx=<1, then | T(u,2)z— T, x)z|| <x-c. Let
u,vela,b],|v—u| < min {0, 1}, w € [u, v], z € M, and let {s;}i", be a chain
from % to v. Then,

[ (s |50 = 8s Dz = Tw, [0 — w |>z“

T 6 150 = 50002 = [T T, (52 — 505
§ Z T(Szx—n lSZ'L Sois I) H T(szj—-n lszj — Sy |)Z
i=1 j=1

= T, |8 = 52 ) L TCsusoa | 5 — 554 )3

m

= Zu I S — Sp2 I €
=

=|v—ul-ec.
Thus, || 11X T, d)z — T(w, |v —u)z|| < |v — u]-e.

LEMMA 1.6. If M is a bounded subset of D,a,b =0, and € >0,
there exists 0 > 0 such that tf u,vela,d],we]lu,v],|v —u|<0,zeM,
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and {s;}:", s a chain from u to v, then

T Lo (50 — 5ua )2 — TT L0, (85 — sss)e]] = [0 = ufoc.

Il =

Proof. An argument similar to the one in Lemma 1.3 proves
Lemma 1.6.

Proof of Part (2) of Theorem 1. Let peD,a,b =0, and & > 0.
Let M ={[1: T, dI)p|x€]a, b]}. Then M is a bounded subset of D
by Lemma 1.4. By Lemmas 1.5 and 1.6 there exists 6 > 0 such that
if w,vela,bd],welu,v],|u —v|<d,zeM, and {s;}i", is a chain from
% to v, then

lﬁ L(szi—u Iszi — Spi2 I)z - ﬁ L('Ll), Iszi — Sy DZH § |’U - u"5/3| b - (ll

and || T2 T, d)z — T(w, |v —u|)z|| < |v — ul|-¢/3]b —a|. Let {r;}?,
be a chain from e to b with norm < . Let {s;}", be a refinement
of {r;}¢, such that there exists an increasing sequence w such that
U =0, =m, if 1< i1=qry,; =5, and if 1<17=<q and {t,}i*, is a
refinement of {s;}}*,,, , then

n

1T L(rs s |t — tua) [T T, dD)p

k=1

(a7 — s ) 11T, dI)pH < |7y — Tus]e/3)b — al .

(Note that if

1< 62 q 0w |7a — 7 ) 11 T, dlyp

Il

H L(ry_,, dI) H I, dl)p = II L(ry_, dI) H I(I, dI)p

—see Remark 1.1). Let {¢;}?%, be a refinement of {s;}", and let v be

an increasing sequence such that v,=0,v, =%, and if 1 <1< m
Szi = t2111;’ Then,

b
e [t — tu o )p — 1] T, dlyp)

q % V5
H H H L(t2k~1v |t2k - tzk—z |)p

1=1j= ul_«l-{lk =v5_q-+1

gi‘.

M Ltwos, |t — tws)) 11 T, dD)p

J=u;_+1 k= ”—1 1

— 11 7, dI) II (1, dI)p“

T2i—2



276 G. F. WEBB

IA

S5 17 = Taal /316 — a|

Ug vj

+3 L(rsy |t — tus) 1T T, dDp

T 7 — 7 ) 11 T |

J=ui_g+1 k=v; 141

J'Q

+ I/"zi_Tzi—zl'e/3|b_a‘]

-
-

se¢.

Thus, [[!L(I, dI)p exists and is [[! T(I, dI)p for peD. Further,

using the fact that D is dense in S and L(u, ) is nonexpansive for

u, = 0 one sees that [[: L(I, dD)p = [[. T, dI)p for all pe S.
Define U(b, a)p = 1! T(I, dI)p for pe S and a,b = 0.

Proof of Theorem 2. Parts (1), (2), and (3) of Theorem 2 follow
from Lemma 1.4. Suppose that peS,0<a <t and U(t, a)pe D.
Let ¢ > 0. There exists 6, > 0 such that if 0 < h < 9,

A@TE, WU, a)p — AQ U, a)p || < &/2

(see Definition 1.1, part (4)). By Lemma 1.5 there exists d, > 0 such
that if 0 < h < 6,|| U + h, t)U(t, )p — T(t, h)U(E, a)p || < h-g/2. Then,
if 0 < h < min {d,, 6,},
Il A/R)(U(E + h, a)p — U(t, a)p) — A@)U(t, a)p ||
= [|A/p)(U{ + h,OU(E, a)p — Ut, a)p) — A@)U(t, a)p ||

h
— 2+ Hl/hSO[A(t) T(t, w)U(t, a)p — A@B) U, a)p]du“ <e.
Hence, 0*U(t, a)p/ot = A(t)U(t, a)p. Suppose that peS,0 < s <b,
and U(s,b)pe D. Lete > 0. There exists 6, > 0 such thatif 0 <k < 4,

then 0 <s—h and || A(s)T(s, h)U(s, b)p — A(s)U(s, b)p|| < ¢/2. By
Lemma 1.5 there exists 0, > 0 such that if 0 < & < 0,

|| U(S - h’a S)U(Sy b)p - T(Sy h)U(S’ b)p H < h°€/2 .
Then, if 0 < & < min {3,, 6,}

11/ =m)(U(s — h, D)p — U(s, b)p) — (—A(s)U(s, b)p) ||
= [A/h)(U(s — h, s)U(s, b)p — U(s, b)p) — A(s)U(s, b)p |
< ¢f2 + || A/R)(T(s, B)U(s, b)p — U(s, b)p) — A(s)U(s, b)p ||

— /2 + Hl/hS:[A(s) T(s, w) U(s, b)p — A(s)Us, b)p]du“ <e.

Hence, 0-U(s, b)p/os = — A(s)U(s, b)p.
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3. Product integral representation in the uniform case. For
Theorem 8 A is required to satisfy, in addition to conditions (I), (II),
(III) of §1, the following:

(IV) TFor each ¢ = 0 A(t) has domain all of S.

(V) If 0<a=<b, M is a bounded subset of S, and ¢ > 0, there
exists 6 > 0 such that if wela,d],2, we M, and ||z — w|| < d, then

| A(u)z — Aw)w|| < ¢.
THEOREM 3. Let A satisfy conditions (I)—(V) and define
M(u, v) = (I + vA(w))
Jor wu,v=0. If peS and a,b =0, then [[. MU, dI)p = U(b, a)p.

Before proving Theorem 3, three lemmas will be proved each under
the hypothesis of Theorem 3.

LEMMA 3.1. Let pe S and let a,b = 0. There is a netghborhood
N,,; about p, a positive number v, and a positive number K such
that if e N,;, x,yela,b], |y — x| <7, and {s;}i", is a chain from
x to y, then

f[ M(ssi_1s | 82 — 802 )q — qH <|ly—=[-K.

Proof. There exists a positive number K such that if « € [a, b]
and ge N,, then ||A(u)q|| =< K. Let 6 =1/2 and let v = 1/2K. Let
qeN,,x,yela,bl, |y — x| <7, {s;}i" a chain fromzx toy,1 <j < m —
1, and suppose that || J[i, M(sy_,, |S: — Su2)q — ¢l = [ 825 — 80| K.
Then, [[7{., M(Ss_1s |8 — Su_2)g€N,,, and so

Jt !
i]_;[LM(Szi—n | Sy — Sz s |)q — QH

|

i
1T Moy [ 52— 5020 —
J
+ | 32j+2 - 32]‘ |'HA(52]’+1) LILM(Szi—n }Szi — Spi_2 i)qH
= |8se — S| K
LeEmMA 3.2. If peS and a =0 then U(t, a)p s continuous n t.

Proof. Let peS and a,b=0. In a manner similar to Lemma
3.1 one proves the following: There is a neighborhood N, , about ¢ =
U®, a)p,v >0, and K > 0 such that if ze N,;,z,y€[e,b], |y — x| <,
and {s;}i", is a chain from z to y then
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T = 80— sasl At — 2 = |y — 0] K.

Let ¢ > 0, let x€[a, b] such that | — b| <7, let {s;}i", be a chain
from a to b and & < m an integer such that s,, = 2 and

|00, @)p — I Lisu-ss |55 — 8.2 || < min (e, 3
and
k
U@ @p = [T Lisus, [ = s || <.

Then,
|| U@, a)p — U(b, a)p ||

t=k+41

<2t | T = Jsw = suslAGa ) T Lo, |5 — DD

- zl_I_l L(32i~17 lszi — S |)pH

<2+ |b—2|-K.
Then, lim,_, U(x, a)p = U(b, a)p for x < [a,b]. Further, by Lemma 1.4
lim,_, Uz, a)p = U(b, a)p for x ¢ [a, b].

LEmMMA 3.3. Let peS and a = 0. There exists a metghborhood
N, ; about p and v > 0 such that the following are true:

(1) If ¢>0 there exists @« > 0 such that if e Ny,asaec=<a+7,
and {s;}i*, is a chain from a to x with norm < «, then

1 Mo 52— 590 — Ulwr, )| < e

and
(2) If ¢>0 there exists a>0 such that if q€ N, ,, max{0,a—7} <
x < a, and {s;}i" is a chain from a to x with norm < «, then

”ﬁ M(s5i—s | S5 — S22 )g — Uz, a)q“ <e.

Proof. By Lemma 3.1 there exists ¢ > 0 and v > 0 such that if
geN,;,,a <o =a-+7 and {s;}i", is a chain from a to x then

m
IIl M(Ssi—1s S2i — S22)0 € Np s -
i=

Let ¢ > 0. By Lemma 1.5 there exists «, > 0 such that if

u,velg,a +7,0=v—-u<a,u=w=v,
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and ge N, ,;,, then || U@, uw)qg — T(w,v —uw)q|| < (v — u)-¢/2y. There
exists @, > 0 such that if ge N, wela,a + 7], and 0 < ¢ < a,, then
|| A(u) T(u, x)qg — A(u)q|| < ¢/2y (Note that
1T 9)g — a1l = ||| 4@ T, tadt| < w11 Awyg | = -
x (max || A@®)z|], tela, a + 7], 2€ N,)) -

Let @ = min{a, &}, let geN,;, let a <2 < a + v, and let {s;}}", be
a chain from o to x with norm < «. Then,

I M5 52 = 5100 — UG, a)g

I Msai sy 55— 549a — 11 Uls szi_z)q“

=3

U(S3, 82i_s) ﬁIM(Szj—u Spp — Spj—)q
l

. l

}T(szi—u Sz — Szia) LII M8, S25 — 835000

it
— M(83_1s S — S5is) H1 M(825-15 825 — S25-2)q
it

<ef2+ 3

i—1
= M5 85— ) [ M(si500 805 = 5500

= ¢/2 + 3,

824
0

—80_ i—1
L A ) Ty ) T M(sis sy 525 — 52500
— A(8s-1) ﬂ M(82j1y S25 — Szj—z)Q]dt“
g1
<2+ 3 (s — )27 <6
A similar argument proves part (2) of the lemma.

Proof of Theorem 3. Let peS and 0 < a < b. Suppose that if
a<e<bl[:M,dl)p exists and is U(x, a)p. Let a < x < b, let {s;}i™,
be a chain from a to b, and let j < m such that s,; = 2. One uses
the inequality

|, 9p — 1 sy 3 5.0

< “U(b, ap — T M, dl)pH

+ |11 32, anyp — T Mo 525 = 5008
+ f—I1 M(SZ‘i—U 8o — 32i—2)p

m 7
— IT M(Sp_1s 82i — S2i2) II1 M(Syi—1y S35 — Spi_5)D
=

i=jt1

|
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and Lemmas 3.1 and 3.2 to show []:M(I, dI)p exists and is U(b, a)p.
Suppose now that for ¢ <z < b[[: M, dl)p = Uz, a)p. Let b < x,
let {s;}", be a chain from a to =, and let j < m such that s,; = b.
One uses the inequality

“U(x, a)p — IjIL M35 82 — SZi-z)pH
< UG, b U, ayp — UG, b [1 Mo 50— 5009)
+ || U, 8 11 M5y 50— s

- ﬁ M(32i~1y S — 524:—2) 11[ M(32i~u Sg; — Szi—z)pl[
=741 =1

and Lemma 3.3 to show that there exists v >0 such thatif b <z <b+ v

then [z M(I, dI)p exists and is U(x, a)p. Thus, if peSand0<a <b

then [ M(I, dI)p exists and is U(b, a)p. With a similar argument one

shows that for pe Sand 0 <a < b [[¢ M(I,dl)p exists and is U(a, b)p.

4. Examples. In conclusion two examples will be given.

ExampLE 1. Let S be the Hilbert space and let A be densely
defined and m-monotone on S (Definition 1.2). In M. Crandall and A.
Pazy [2] and in T. Kato [6], it is shown that B is the infinitesimal
generator of a &-semi-group on S (Definition 1.1). Let X be a function
from [0, ) to S such that X is continuous. Define A(t)p = Bp + X(¢)
for p e Domain (B) and ¢t = 0. Then A satisfies conditions (I)—(III).

ExaAmpPLE 2. Let S be a Banach space and let B be a mapping
from S to S such that B is m-monotone S and uniformly continuous
on bounded subsets of S. In [11] it is shown that B is the infinitesimal
generator of a “-semi-group of mappings on S. Let C be a continuous
mapping from [0, =) to [0, =), let D be a continuous mapping from
[0, =) to (0, ), and let each of E and F be a continuous mapping
from [0, =) to S. Define A(t)p = C(t)-B(D(t)-p + E(t)) + F(t) for t = 0
and peS. Suppose t =0,¢ >0, and p,geS. Then,

(I — eA(t)p — (I — €At))q ||
= (1/D@)) || (I — eC(t)D(&)B)(D(t)p + E(t))
— (I — eC(t)Dt)B)(D(t)q + E(t)) ||
= (1/D@) || (D(t)p + E@)) — (D(t)g + E)) ||
=|lp —qll

and so A(t) is monotone for ¢ = 0. Suppose t =0,¢e >0, and pe S.
Let ¢’ be in S such that (I — eC(¢t)D(t)B)q’ = D(t)p + E(t) + eD(t)F(t).
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Let ¢ = (1/D(t))(¢’ — E(t)). Then (I — cA(t))g = p and so A(t) is m-
monotone. Then A satisfies conditions (I)—(V).
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