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SOME REMARKS ON CLIFFORD'S THEOREM
AND THE SCHUR INDEX

G. J. JANUSZ

Some time ago Clifford described the behavior of an ir-
reducible representation of a finite group when it is restricted
to a normal subgroup. One interesting case in this description
requires that the representation be written in an algebraically
closed field. In this note we shall consider this case when
the field is "small". We describe conditions under which an
irreducible representation decomposes as the tensor product
of two projective representations. Our approach uses certain
subalgebras of the group algebra and the course of the discus-
sion makes it fairly easy to keep track of the division algebras
that appear. Hence we obtain some information about the
Schur index. We apply this information to the case where the
group is a semi-direct product PA of a p-group P and a
normal cyclic group A. If Ĵ "~ is an algebraic number field
and χ an absolutely irreducible character of PA, then there
normal subgroups Pi 2 P2 Ξ> P3 of P which contain CP(A) such
that the Schur index m> (χ) of χ over J^* divides 2[Pλ\ P2]e
where e is the exponent of P2/P3. The factor 2 can be omitted
if p Φ 2. Some conditions are available to restrict the Pi
further.

1* Preliminaries* In this section we summarize the results

about the Schur index and Clifford's theory that will be used later.
Let G be a finite group, j ^ a field of characteristic zero, M an

irreducible ^'(G)-module with character θ.

(1.1) There are absolutely irreducible (complex-valued) characters
χ19 , χk such that θ = m(χ, + + χk).

(1.2) Let ^"(Xi) denote the field generated over ^ by the
values of χ{ on G. Then ^(χγ) is a normal extension of &~ and for
each i = 1, •••, k, there is a unique element of the Galois group of

o v e r ^~ which carries χι to χ{. In particular (^~(χi): J^) = k.

(1.3) The integer m is called the Schur index of χι over
and is denoted by m^ίχj . The division algebra D = End^{G)(M) has
center isomorphic to ^^(χx) and the dimension of D over its center

One remark on terminology. A matrix ring over D is said to
have index m if D has dimension m2 over its center.
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The proofs of these statements are available in several places; see
for example Curtis and Reiner [2] or Fein [5].

Now let H be a normal subgroup of G. Clifford's theory tells
how M behaves as a module over

(1.4) MH = n(VΊ 0 0 Vs) where the Vt are mutually non-
isomorphic irreducible ^~(iJ)-modules, conjugate under the action of
G. Here the coefficient n means direct sum of n copies of VΊ 0 0 V8.

(1.5) Let I, = {xeG\xVι = Vx as j^(iϊ)-modules}. Then there
exists an irredubible ^^(/J-module W1 such that (Wj)H = nVΊ and
the induced module Wf = M.

In the case where s > 1, I, is a proper subgroup of G and the
original module is induced from the .^(/J-module. Hence some ques-
tions can be answered by induction. In case s = 1 there is no induction
but in its place we have the following.

(1.6) Suppose ^ is algebraically closed and s = 1 in (1.4). Then
the representation afforded by M decomposes into the tensor product
of two (irreducible) projective representations of G one of which can
be viewed as a projective representation of G/H. The one represen-
tation has dimension the same as the dimension of Vίy the other, has
dimension n.

2* Clifford's Theorem in the general case* We shall continue
to use the notation introduced in §1. However we assume MH = nV
with V = VΊ in (1.4). We shall made one assumption that will simplify
the following discussion considerably. Namely we assume that j ^ ~
contains the values of the character χlβ Then in view of (1.2) we
have θ = mχ where χ = χx in (1.1).

Let V have character 7 and suppose

(2.1) 7 = mH(φι + + φt)

is the decomposition of 7 into absolutely irreducible characters of H.
In the group algebra j^{G) let e(θ) denote the central idempotent

which acts as the identity on M and such that JΓ(G)e(θ) is a simple
algebra; let e(τ) denote the centrally primitive idempotent in ^(H)
corresponding to V. The condition that MH = nV implies j(h) =
j(x~ιhx) for all h in H and x in G. It follows that e(y) belongs to
the center of ^~(G). Also e(θ)e(y) Φ 0 because both act as the identity
on V so e(θ)e(y) is a nonzero central idempotent in ^(G)e(θ). By
simplicity we must have e(θ)e(j) — e(θ). Thus multiplication by e(θ)
sends the simple algebra ^(H)e(y) onto the nonzero subalgebra
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()() of ^~(G)e(θ) both having the same identity, e(θ). We note
that by (1.3) and (2.1) the center £f of J^(H)e(θ) is isomorphic to

So we have proved

LEMMA 2.2. J^(H)e(θ) is a simple algebra with center Jέf iso-
morphic to

Each element of G acts by conjugation on ^(H)e(θ) since e(θ)
is central and H is a normal subgroup. Thus G also acts on the
center £f of ^(H)e(θ) as a group fixing ^~. Let J denote the ker-
nel of the action of G on ̂  so that J is normal in G and G/I is a
group of ^automorphisms of Sf. Let {τ/Jl ̂  i ^ r be a set of re-
presentatives of the cosets of / in G and let y{ induce the automorphism
oi oh £f.

LEMMA 2.3. The elements yieiβ) are independent over j^~(I)e(θ)
and jT(G)e(θ) = Σ Jt~(I)e(θ)yi.

Proof. Suppose there exist elements {a3} in j^~(G)e(β) which
centralize ^f and with the properties

(a) ±ajyje(θ) = 0.

(b) otj Φ 0 for each j .
(c ) The integer s is minimal with respect to (a) and (b).

Then for any z in J5f we have Σ aJzVj — Σ ajVjz — 0. Then y3 in-
duces σ3 J£> so

(2.4) Σ OLfc - σ3(z))yj = 0 .

There is no loss of generality in assuming that yL = 1 since a change
of coset representatives can always bring this about. Thus z — σ^z) =
0 and the relation (2.4) has fewer than s nonzero terms. By the
choice of s it follows aά(z — σ3 (z)) ~ 0 for each j and all z in j^f. If
j > 1 then Oj Φ identity so there exists z in ^ with a3-{z) Φ z. But
then a3 = 0 contrary to (b). Hence s = 1 but this is also contrary to
(b). Thus no such relation exists. Since ^(I)e(θ) centralizes ^f
we have proved the independence of the y&φ) over ^r(I)e(θ). The
second part of the lemma is clear.

COROLLARY 2.5. J<r(I)e(θ) is the full centralizer of £^ in
J?~(G)e(θ) so j^~(I)e(θ) is a simple algebra with center Jί? and di-
mension (χ(l)/t)2 over Jέf.

Proof. The lemma shows the yieiβ) are independent over the
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centralizer of £f and so the proper inclusion of ^(l)e(β) into the
centralizer of £f would make the equality ^~(G)e(θ) = Σ ^(I)e(θ)yi

impossible. The remaining statements follow from Albert, Theorem
12, page 53 [1] and the facts that (J^(G)e(θ): ^) = χ(l)2 and

= t (see(1.2) and (2.2)).

COROLLARY 2.6. [G: I] = t so G/I = Galois group

Proof. The result follows at once if we use (2.3) and (2.5) to
compute the dimension of ^(G)e(θ) over ^" along with the fact that
this dimension is %(1)2.

Now let χ\H = a(φί + + φt). Since θ = mχ and θ \ H = nj,
equation (2.1) implies a = nmH/m. Let Ix denote the inertial group
of φv\ that is

I, = {x e G I φ^h) = φ^x-'hx) f or all heH} .

COROLLARY 2.7. IL = /.

Proof. The irreducible characters of H appearing in χ \ H are
conjugate under the action of G so that [G: JJ = ί = [G: / ] . Thus it
is sufficient to show Iι g /. Let Jβ*ΐ= ̂ (φλ) and notice that in ^[(H)
we have β(τ) = e(φι) + + e(φt) where e{φ]) is the central idempotent
of J?Ϊ(H) corresponding to φ{. Recall from above that e{i)e(θ) = e{θ)
so

jr{H)e(θ) = JΓ(H)(e(φί) + + e(φt))e(θ) -^ ^(H)e(φι)e(θ)

where R denotes right multiplication by e(φ1). The map R is a ring
isomorphism. One point requires further comment. The obvious range
of R is ^r(H)e(φί)e(θ) rather than ^~[{H)e(φι)e{θ). However we can
prove these are equal in the following way. Certainly j ^ * Q ά?Ί so
J^(H)e(φι)e(θ) s ^(H)e(φ])e(θ). We prove equality by computing
the ^dimension of both sides. Since multiplication by e(θ) gives an
^-algebra isomorphism of ^(H)e(φ1) onto jfr

ι(H)e(φ1)e(θ) we see the
latter algebera has J^-dimension equal to φ^l)2 and ^^dimension
^^(l)2. To compute ^dimension of ^r(H)e(φι)e(θ) we first note ^
dimension of j^~(H)e(y)e(θ) equals ^v-dimension of J^(H)e(y)e(θ) be-
cause the latter algebra is obtained by extending the scalar field from
^ to S\. Now the algebra ^(H)e(y)e(θ) equals Σ ^~[{H)e{φi)e{θ)
and this has J^dimension tφι{lf as we wanted.

For an element x in Iλ we have x"ιe(φ^)x = e{φ^ so the map R
commutes with the action of I, on the two algebras in question. It
is clear that ^ is the center of ^[(H)e(φ1)e(θ) because ^[(H)e(φ^)
is simple with center j ^ \ . Moreover I, fixes ̂  since ^ 7 is the scalar
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field. But R maps £f onto J ^ since the center is preserved. Thus
I, fixes Sf and I, Q I.

We can now give the analogue of (1.6).

THEOREM 2.8. The representation of I into ^"(I)e(θ) given by
x —-> xe(θ) decomposes into the tensor product of two protective re-
presentations over £/p, Ux and Tx, which map I onto ^(H)e(θ) and
& respectively where c^ is the centralizer of\^(H)e(d) in ^{I)e(θ).
The dimensions over S^ of these two algebras are φ^lf and α2 re-
spectively.

Proof. Each element of / acts by conjugation on ^(H)e(θ) in
such a way that the center is left fixed. Every such automorphism
of this simple algebra is inner. Hence for each x in / there is an
element Ux in tβ

Γ(H)e(θ) such that x~ιwx = U~ιwUx for every w in
^(H)e(θ). Clearly the element a(x, y) = UxUyU~y induces the identity
automorphism so a(x, y) is in ̂ f and it follows that x —> Ux is a pro-
jective representation of / with factor set a having values in J*f.

Now let έΓ denote the centralizer of J^(H)e(θ) in ^(I)e(χ). By
Theorem 13, page 53 of [1] it follows

(2.9) ^-(I)e(θ) = J^{H)e(θ) ώ = JΓ(H)e(θ) <g> ^

because J^{H)e{θ) and ̂ "{l)e(β) both have center £f. We also know
then that c^ is simple with center ^f. Set Tx — xU~ι so Tx is in <&.
Then x —•* Tx is a projective representation of / with factor set a~ι

and xe(θ) = UX®TX as required.
We know (^r(H)e(θ): J^f) = φ^ΐ)2 and from (2.5) that

{^(I)e(θ): &) = (χ(l)/ty .

We also have χ(l) = atφXl) so that we easily obtain from (2.9) the
dimension of ^ over Jif is α2.

COROLLARY 2.10. // S^(φ^ = ̂  then the algebra
decomposes as the tensor product ιβ

Γ(H)e(θ) 0 r^' and the represen-
tation offered by M decomposes as the tensor product of two projective
representations into js~(H)e(θ) and cέ? respectively.

Proof. Since Jsr(φv) = ̂  we have £^ = J^ and so G = I by
(2.6).

3* The Abelian case. We continue with the same situation
except that we now suppose G/H is abelian.

Since I is the subgroup fixing φlf there is an absolutely irreducible
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character ζ of I such that ζG = χ and ζ | H = aφγ. Now I < G so that
in fact we obtain

(3.1) χ | / = C i + ••• +ζt,ζi\H=aφi

where the ζ< are irreducible characters of / conjugate under the action
of G and ζ = ζx.

LEMMA 3.2. There exists a subgroup J of I containing H and
an irreducible character τ of J such that ζ\J=aτ and τ1 = aζ.
Then also τ \ H = φ1 and [J: J] = a2.

Proof Let A be the set of linear characters, λ, of I/H such that
ζλ = ζ and set J = Π ker λ as λ runs through A. We show this J
has the required properties.

Let p denote the character of the regular representation of I/H.
It is a straight-forward computation to verify that aφ{ = ζp since
both sides are 0 off H and equal to a[I: H\φ1 on H. By Frobenius
reciprocity ζ has multiplicity a in φ[ and so has multiplicity α2 in ζp.
But p is the sum of the distinct linear characters of I/H and so
there are exactly α2 linear characters λ such that ζλ = ζ. Hence
AI = a2. Note that A is also a subgroup of the group of linear

characters of I/H so by the duality theory of abelian groups we obtain
[/: J] = a2=\A\.

Now let τ be an irreducible character of J contained in ζ | J with
multiplicity b say. If [/: J] is a prime then either τ1 = ζ or τ1 =
ζgrχ 4_ ζ#r2 + . . . where the Ψi are the linear characters of I/J. Because
I/J is abelian we use induction to find in the general case that τ1 is
a sum of characters ζψ where Ψ is a linear character of I/J. But
every such linear character is in A so it follows τ1 — bζ. Also there
is an integer c such that τ \ H = cφλ because τ \ H is contained in ζ | H —
aφγ. Now compute degrees of the characters involved.

r'(l) = I J: J\τ(ΐ) = a2cφi(l) - 6ζ(l) -

So we obtain ac — b.

The decomposition of ζ on / has the form

ζ I J = b(τ + τ2 + + τk)

so we find

aφi(l) - bkτ(l) =
Thus a — bkc and along with ac = b we find & = c = 1 and a
which proves the lemma.
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Notice t h a t τ \ H = φγ implies t h a t τ has precisely t conjugates

under G,τ = τlf 9τt and the numbering can be arranged to satisfy

Ti I H = <pt. Then also χ\J = a(τί + . . + τt). We shall make use of

this in the next result.

LEMMA 3.3. J?~(J)β(θ) is a simple algebra with center Jϊf.

Proof. The ring JβΓ(J)e(0) is semi-simple so simplicity will follow
if we show it has only one irreducible module (up to isomorphism).
Any irreducible ^(J)e(θ) module, W, is isomorphic to a direct sum-
mand of Mj because M is the unique isomorphism type of ^(G)e{θ)
module. Let μ be the character of W. The character 7 must appear
in μ IH since 7 is the only character of an irreducible ^{H)e{θ)
module in MH. Thus μ \ H contains each φim Moreover the absolutely
irreducible characters in μ must appear in χ \ J. By the remark above
the lemma, every τ< appears in μ. Thus μ is invariant under G and
it follows Mj ~k'W for some k. Hence J?r(J)e(θ) has only one ir-
reducible module. We find also that ^r(J)e(θ) is isomorphic to
^Γ(J)e(μ) and its center is isomorphic to ^~(τ). The equations ζ | J =
aτ and τ1 = αζ imply ^(τ) = J*~(Q. But then ^"{ζ) is isomorphic
to the center of J?~(I)e(θ) so by (2.5) and (2.2) J H Q = ^(φD-
These are isomorphisms over ^ so in fact ^~(ζ) = J^iφd because
both are normal extensions. Hence the center of j?r(J)e(θ) is isomor-
phic to j*f. Because of the inclusions

and the fact that J*f centralizes J^(J)e(β) we have £^ = center

Now that we know ^(I)e(θ) and Jr(J)e{θ) have the same centers
we obtain a decomposition

(3.4) ^{I)e(θ) = jT{J)e(θ) - <έ?j ~ J^(J)e(θ) ® ^

where r^j is the centralizer of ^(J)e{θ). If we apply (2.8) with J
in place of H we find dimension ^ over £f is α2. This is the same
α that appears for H because χ\J= a(τι 4- + τt). It is clear that
ctf (the centralizer of <βr(H)e(θ)) contains ^ and so by dimension
count we find ^ — cέ?. From this it follows that j^~(J)e(θ) =
J^{H)e{θ). This makes it possible to adjust the projective represen-
tations U and T7 so that Ux = xe(θ) if x is in / and T is constant on
the cosets of J.

We are now able to identify the algebra <&.

PROPOSITION 3.5. Let ^ 7 denote ^{φt). The algebra ^ is iso-
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morphic to a twisted group alegebra jτΓ

ί(I/J)β for some factor set β
on I/J with values in

Proof. Recall that the twisted group algebra Jr

ι(I/J)β has a
basis {tx\xe I/J) such that txty = β(x, y)txy. The modification of U
above allows us to view T as a projective representation of I/J. Then
the correspondence tx —-> Tx for x in IIJ induces a homomorphism from
<βr

ι(I/J)β into ^ provided we have fixed identification of ^ 7 with
S^ and β — or1 on I/J. If we show this homomorphism is onto ^ ,
we will be finished because both algebras have dimension α2 over j^l.
From equation (3.4) it follows

^(I)e(θ) = Σ J?~(J)e(θ) (g) Tx
xelU

becase the right side contains ^ along with every ye(θ) for y in /.
It follows that the Tx span ^ over J*f (because the tensor product
is taken over Jϊf) and hence the homomorphism above is onto rέ?.

Let A denote I/J. The fact that ^\(A)β is simple with center
^\ imposes restrictions on A and one can say quite a lot about ^(A)β.
We shall give a brief sketch of the results of DeMeyer [3] which are
relevant.

Consider the function rj{a, b) = β(a, 6)//3(6, a). Because A is abelian
and β is a factor set, it follows that η is a (multiplicative) skew
bilinear form from A x A to the multiplicative group of j^~[. This is
Ύ](ab, c) — Ύ](a, c)τ](b, c) and η{a, b) = η(b, a)~ι. Because j ^ ~ γ is the center

of j^~l(A)β, Ύ] is nondegenerate; that is rj(a, A) — 1 holds only for a =
1. In a way similar to the method of decomposing a vector space
admitting a skew bilinear form, one decomposes A into the direct sum
of "hyperbolic planes". The result is the following.

THEOREM (DeMeyer [3]). Let JΓ

1(A)β be central simple over ^ .
Then A decomposes as

A = (Cn x C12) x (C21 x C22) x . . . x (C r l x Cr2)

where Ci3 is cyclic of prime-power order and C{1 = Ci2. The function
rj remains nondegenerate on Ciγ x Ci2 and the subalgebras SÎ  =
^l(CiiL x Ci2)β are central simple over ^ . Finally we have the de-
composition

= ^ ® ® Slr .

This decomposition allows us to get information about the index
of the algebra J?~1(A)β. We must now restrict J^ to be an algebraic
number field. Now the Brauer-Hasse-Noether theorem can be applied.
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It tells us the index of a finite dimensional division algebra over
is equal to its exponent; that is the order of its class in the Brauer
group of the center of the division algebra.

The index of each % is a divisor of | C{1 | since dimension of 31;
over ^ 7 is | Cn |2. Thus the index of ^(A)β divides the least com-
mon multiple of the indices of the % since the exponent of
Sti & 0 2tr divides the l.c.m. of the exponents of the 31̂ . This in
turn divides the l.c.m. of the numbers | Cix \ 1 ^ i g r and this number
is precisely the exponent of A. So we have the

PROPOSITION 3.6. The index of the algebra rέ? divides the ex-
ponent of IIJ.

THEOREM 3.7. The Schur index m^(χ) of χ divides

[G: I]Λ.c.m.{mJ^(φ1)1 exponent (I/J)} .

Proof. We have ^(g) ^"(G)e(θ) equivalent to ^(I)e(θ) in the
Brauer group of ^ because by Theorem 16, page 56 of [1],

Hence by Theorem 20, page 59 of [1] the factor by which the index
has been reduced after extending the field to ^ must divide \^\\ ^\.
By (2.6) this number is [G: I] so the index of ^~(G)e(θ) divides [G: I]
times the index of ^(I)e(θ). By the decomposition of (2.9) we see
the index of ^(I)e(θ) divides the least common multiple of the index
of ^(H)e(θ) and the index of ^ . The index of J?~{H)e(θ) is m^iφi)
so the result follows from (3.6).

There is a theorem of Brauer [2, Theorem 70.28] which shows
that certain questions about the Schur index of an irreducible character
for a finite group can be reduced to questions about ^^elementary
groups. Recall that among other things an .^elementary group is a
semi-direct product PA of a p-group P and a normal cyclic p'-group
A. We now consider the case where G = PA is such a semi-direct
product (not necessarily ^^elementary however). Let H = CG(A) so
that H is normal and G/H is abelian (because A has an abelian
automorphism group). Let χ be an absolutely irreducible character of
G. In this situation we have the following.

THEOREM 3.8. Assume J?~ is an algebraic number field. Then
there exists a chain of normal subgroups
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such that the Schur index ofχ over ^ divides 2[GX: I]-exponent {IIJ).
The factor 2 can be omitted if p Φ 2 or ifp — 2 but I Φ J.

Proof Since the Schur index will not change, assume j ^ ~ —
^"(χ). Let Mo be an irreducible J^(G)-module with character θ0 =
mχ. Suppose Mo | H — f(Vx © 0 Vr) with the V{ distinct irreducible
<JΠiZ>modules. Let G, = {x e G \ xVι = V, as .JHi2>modules}. Then
there is an irreducible ^(G^-module Wι such that W? = MQ and
WΊI H = /• Vx. Since G/iϊ is abelian we know Gλ <] G so M0\G1 =
Wι 0 0 Wr where the W{ are mutually nonisomorphic irreducible

odules. Now for any nonzero δ in End ^{G)(M0) we have
~ W1 and since the W{ are nonisomorphic, 8(W^) = TΓi Hence

we imbed End ^{G)(MQ) into End ^(^(T^i). Conversely the equation
TΓ? = Λf0 provides a natural imbedding of End jr{Ol)(Wύ into End^ (G)(M0).
Hence these two division algebras are isomorphic. Let χ | Gγ contain
the character ζ which also appears in the decomposition of the
character for Wγ. We have m (χ) = m^(ζ) since these numbers re-
present the indices of the respective endomorphism rings above. More-
over ^"{ζ) is the center of End *-{Gl)(Wύ so ^~ = ^~(ζ). We may
now apply (3.7) to ^ r , G19 and W1 in place of ^~, G, M and obtain

m ,-(χ) I [G^ /] l.c.m. {exponent (//J), m ^ ^ ) }

where again ^ is an irreducible character of H contained in χ\H.
But H = Cp(A) x A is a nilpotent group so by Roquette's theorem
[6], m s-iφi) = 1 or possibly 2 in case p = 2. Even when m^iφ^ = 2
the l.c.m. of exponent (IIJ) and m^Γ(φ1) will be exponent {IIJ) pro-
vided I Φ J. So the result follows.

COROLLARY 3.9. Ifχ\H= a(φ1 + ••• + φt) then m?-(χ) \ 2at where

the 2 can be omitted if p Φ 2.

Proof If χ | H - α ( ^ + + φt) then ζ\H = a(ψγ + + φr)
where r \ t. Thus 11: J \ = a2 and exponent (IIJ) divides α. The de-
finition of I yields [G,: /] = r so [G,: I] \ t. The result now follows
from the theorem.

REMARKS, ( a ) It can happen that m9(χ) = at. This is the
case when χ is an irreducible character of degree 3 for the metacyclic
group ζx, yy where x7 = y9 = 1 and y~ιxy = x4.

( b ) The application of DeMeyer's theorem shows the interest in
twisted group algebras, ^Γ(G)a, which are simple with center J?~. A
discussion of groups G which admit such a factor set a can be found
in [4].
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