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LOCAL ISOMETRIES OF FLAT TORI

H. G. HELFENSTEIN

Let T, and T. be two flat tori (i.e., provided with a com-
plete Riemannian metric of vanishing curvature). Since they
are locally Euclidean each pair of points P,, P;, P;c T, has
isometric neighborhoods. In general it is not possible, how-
ever, to join these separate isometries of neighborhoods to
produce a single isometry T, — T, or T, — T,; indeed there
may not even exist a locally isometric map (of the whole sur-
faces). Necessary and sufficient conditions for the existence
of such maps are deduced, making use of a recent conformal
classification of maps between tori. As expected ‘‘ample”
and nonample tori behave differently, and the determination
of all local isometries leads to number-theoretic problems,
Finally, for two given tori, the local isometries are compared
with respect to homotopy by analyzing their effect on the
fundamental groups.

Let R* denote the positive reals, H the upper z-half-plane, and
SL(2, Z) the group of all 2 x 2 unimodular matrices with integral
entries acting in the usual way as hyperbolic motions on H. The set
of isometry classes of complete flat tori is parametrized by the 3-
dimensional manifold R* x (H/SL(2, Z)). A point (% 7) of this space
represents the isometry class of the torus E?/I", where I" is the group
of Kuclidean motions generated by the translations

t.2) =24+ 1+ and t,(R) =z + rh,

with h ez, (cf. [2]). Instead of “an isometry class of tori” we speak
simply of “a torus”. A torus T = (7% 7) is called ample if there exists
h et such that both R and |A[* are rational.

2. Riemannian covering maps. The following statements are
generalizations of results obtained in [1] which can be similarly proved.

(i) For two tori T, = (7}, 7;) there exist conformal covering maps
T, — T, if and only if two representatives h; € 7; are equivalent under
the action of the group GL*(2, @) = group of 2 x 2 matrices with
rational entries and positive determinant.

(ii) Lifting any conformal covering T,— T, to the universal
covering planes we obtain

(1) F(z,C,D)=Cz+ D,

with complex constants C == 0 and D.
(iii) For nonample T; only
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(2) Ck)="rk, k=142 ---
r

1

are admissible values in (1).
(iv) For ample T; = (% 7;) (2) is replaced by

(3) Cly ) = T2(k, + £ig"s"h)

1

where h, € 7,, h, = ah,, a an integer, (£,, £,) # (0, 0) is a pair of arbitrary
integers, and the integers ¢, s” are determined via the following
relations,

oRh, =L, hp=T,
q S
0,¢>0,r>0,s >0 integers,

g.cd. (p,q) =g.cd. (r,s) =1,
g =g.cd. (g,9),9 =4q/9,8 =s/g,
g = g.cd.(a, 9,0 =alg,q" =4q/9,
g" = g.cd. (@, 8),a" =d'[g",s" =5[g".

The following materices are computable from these numbers.

~ a, 0 ~ a'ps”’, —a’q'r
ﬂ:( ), n=(p q)
0, 1 q"S", 0
Our main result is

THEOREM 1. For the existence of a local isometry f: T, — T, the
Jollowing conditions are necessary and sufficient:

(1) 7, and 7, are equivalent under GL*(2, Q);

(2a) If T, is nonample, then r/r, must be an integer;

(2b) If T, is ample, then (r}/rd)a must be an integer N, and N
must be representable by the quadratic form

(4) det (’51T’1 + ’Csz)

with suitable integers k, and k..

Proof. Since f is a conformal covering we have necessarily (1) by
(i). The following identity is readily verified:

det (¢ T') for T, nonample

e =
73 ~ |det (x,T, + «,T,) for T, ample .

(The right hand side gives the number N of sheets of the covering f).



LOCAL ISOMETRIES OF FLAT TORI 115

Together with the condition |C| = 1 for local isometry it leads to
(2a) and (2b). The sufficiency follows from (iii) and (iv).

In both cases we have the following consequences. A flat torus
can cover a countably infinite set of tori by local isometries. For T, =
T, a local isometry is a global isometry, since |C| = 1 entails N =1. In
general the existence of a local isometry T, — T, does not imply that
there is also a local isometry T, — T; this occurs if and only if both », = 7,
and condition (1) are satisfied. (Then the tori still need not be globally
isometric).

3. Homotopy classes. We show how the combination &, T, + &, T,
controls also the deformation properties of our maps. If the constant
D in (ii) is varied the map stays in the same homotopy class, but
maps corresponding to different parameter values £ or (k,, £,) are not
analytically homotopic (i.e., with analytic intermediately stages during
the deformation), since the set of admissible values of C is discrete.
‘We show that they are not even homotopic in the ordinary sense.

Since the fundamental group 7,(7T) of a torus is Abelian the set
&7 of homotopy classes of continuous maps T, — T, is in one-to-one corre-
spondence with the set of all homomorphisms #: 7,(T\) —7,(T,). Denoting
by L; and L} (i = 1, 2) the path homotopy classes of two generating
loops of 7,(T;), each such 7 is characterized by the integral matrix

& &
o <§4y §3)
&, 3

(L) = LiLi, (L) = LitLi ;

i

given by

hence .27 is parametrized by Z*. The subset {£e Z*:det & + 0} con-
tains those points of Z* representing monomorphisms, hence it corres-
ponds to the homotopy classes containing covering maps.

THEOREM 2. The subset of Z* corresponding to homotopy classes
which contain analytic maps consists of

(a) 0 only if t, and T, are nonequivalent under GL*(2, Q);

(b) the l-dimensional sublattice spanned by T, if v, and ©, are
equivalent under GL*(2, Q) and both are monample;

(¢) the 2-dimensional sublattice spanned by T, and T, if 7, and
T, are equivalent under GL*(2, Q) and both are ample.

Proof. We prove only (¢); (a) and (b) can be handled similarly.
The generators L;, L; of 7, (T;) are represented in E; by the segments
S;, S; joining the origin to r; and r;h; respectively. The segments S,
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and S, are mapped by F(z; C, 0) (cf. (ii)) into segments from the origin
of K, to the points

Ky + K,8"q"7:h,
and
— ke’ q'r, + (K0 + K8 pa’)ryh, .

The former can be deformed into the two sides &,7, and k,s"q"7;h,
of a parallelogram parallel to S, and S,. The first side represents «,
circuits of L, the second «k,s”q” contours of Lj;. Similarly for Si.
Hence the homomorphism

S m(T) — m(TY)
induced by f is determined by

SiLy) = Lt Ly
and

Fo(L) = Lysar v Liaote e
This is equivalent to & = £, T, + «,7T..
The determination of all local isometries for two given tori is easy

for the nonample case. In the ample case it involves the number of
ways in which N = (#%/7%)a can be represented by the quadratic form

(4). Since this form is positive definite we have, in conjunction with
Theorem 2:

THEOREM 3. The number of homotopy classes of local isometries
between two flat tori is finite.

We obtain an upper bound for this number as follows: From (3)
we find

RO = (s mar 2 ),
2 29’

which shows that RC has the form (r,/7,)(v/2¢’), with v an integer.
Substituting this in |RC| < [C]| =1 leads to

(5) 7] < 20" .

T

From (EC)* = |C|* — (RC)* we deduce
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2 2
(6) K£2q""28" (T hy)? = r 7
73 49"
and
7 K= — - — kP,
(7) L S

Each of the 2[2¢'(r,/7,)] + 1 integers v compatible with (5) leads
to at most two pairs (x,, £,) compatible with (6) and (7). Thus the
number of homotopically different local isometries does not exceed
4129’ (r.[r)] + 2.
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