LOCAL ISOMETRIES OF FLAT TORI

H. G. HELFENSTEIN

Let T_1 and T_2 be two flat tori (i.e., provided with a complete Riemannian metric of vanishing curvature). Since they are locally Euclidean each pair of points $P_1, P_2, P_i \in T_i$, has isometric neighborhoods. In general it is not possible, however, to join these separate isometries of neighborhoods to produce a single isometry $T_1 \rightarrow T_2$ or $T_2 \rightarrow T_1$; indeed there may not even exist a locally isometric map (of the whole surfaces). Necessary and sufficient conditions for the existence of such maps are deduced, making use of a recent conformal classification of maps between tori. As expected "ample" and nonample tori behave differently, and the determination of all local isometries leads to number-theoretic problems. Finally, for two given tori, the local isometries are compared with respect to homotopy by analyzing their effect on the fundamental groups.

Let R^+ denote the positive reals, H the upper z-half-plane, and SL(2,Z) the group of all 2×2 unimodular matrices with integral entries acting in the usual way as hyperbolic motions on H. The set of isometry classes of complete flat tori is parametrized by the 3-dimensional manifold $R^+ \times (H/SL(2,Z))$. A point (r^2,τ) of this space represents the isometry class of the torus E^2/Γ , where Γ is the group of Euclidean motions generated by the translations

$$t_1(z) = z + r$$
 and $t_2(z) = z + rh$,

with $h \in \tau$, (cf. [2]). Instead of "an isometry class of tori" we speak simply of "a torus". A torus $T = (r^2, \tau)$ is called *ample* if there exists $h \in \tau$ such that both $\Re h$ and $|h|^2$ are rational.

- 2. Riemannian covering maps. The following statements are generalizations of results obtained in [1] which can be similarly proved.
- (i) For two tori $T_i=(r_i^2,\tau_i)$ there exist conformal covering maps $T_1 \to T_2$ if and only if two representatives $h_i \in \tau_i$ are equivalent under the action of the group $GL^+(2,Q)=$ group of 2×2 matrices with rational entries and positive determinant.
- (ii) Lifting any conformal covering $T_1 \rightarrow T_2$ to the universal covering planes we obtain

$$(1) F(z, C, D) = Cz + D,$$

with complex constants $C \neq 0$ and D.

(iii) For nonample T_i only

(2)
$$C(\kappa) = \frac{r_2}{r_1} \kappa$$
, $\kappa = \pm 1, \pm 2, \cdots$

are admissible values in (1).

(iv) For ample $T_i = (r_i^2, \tau_i)$ (2) is replaced by

$$C(\kappa_{_1},\,\kappa_{_2})\,=\,rac{r_{_2}}{r_{_1}}(\kappa_{_1}\,+\,\kappa_{_2}q''s''h_{_2})$$
 ,

where $h_2 \in \tau_2$, $h_1 = ah_2$, a an integer, $(\kappa_1, \kappa_2) \neq (0, 0)$ is a pair of arbitrary integers, and the integers q'', s'' are determined via the following relations,

$$2\Re h_{\scriptscriptstyle 2}=rac{p}{q}$$
 , $|h_{\scriptscriptstyle 2}|^{\scriptscriptstyle 2}=rac{r}{s}$,

p, q > 0, r > 0, s > 0 integers,

$$ext{g.c.d.} (p, q) = ext{g.c.d.} (r, s) = 1 , \\ g = ext{g.c.d.} (q, s), q' = q/g, s' = s/g , \\ g' = ext{g.c.d.} (a, q), a' = a/g', q'' = q/g' , \\ a'' = ext{g.c.d.} (a', s'), a'' = a'/a'', s'' = s'/a'' . \end{cases}$$

The following materices are computable from these numbers.

$$\widetilde{T}_{_1} = egin{pmatrix} a, & 0 \ 0, & 1 \end{pmatrix}, \qquad \widetilde{T}_{_2} = egin{pmatrix} a'ps'', & -a''q'r \ q''s'', & 0 \end{pmatrix}$$

Our main result is

THEOREM 1. For the existence of a local isometry $f: T_1 \rightarrow T_2$ the following conditions are necessary and sufficient:

- (1) τ_1 and τ_2 are equivalent under $GL^+(2, Q)$;
- (2a) If T_1 is nonample, then r_1/r_2 must be an integer;
- (2b) If T_1 is ample, then $(r_1^2/r_2^2)a$ must be an integer N, and N must be representable by the quadratic form

(4)
$$\det (\kappa_1 \widetilde{T}_1 + \kappa_2 \widetilde{T}_2)$$

with suitable integers κ_1 and κ_2 .

Proof. Since f is a conformal covering we have necessarily (1) by (i). The following identity is readily verified:

$$rac{r_{_1}^2}{r_{_2}^2}\,|\,C\,|^2a=egin{cases} \det{(\kappa\,\widetilde{T}_{_1})} & ext{for}\;\; T_{_1}\; ext{nonample} \ \det{(\kappa_{_1}\widetilde{T}_{_1}+\kappa_{_2}\widetilde{T}_{_2})} & ext{for}\;\; T_{_1}\; ext{ample} \;. \end{cases}$$

(The right hand side gives the number N of sheets of the covering f).

Together with the condition |C| = 1 for local isometry it leads to (2a) and (2b). The sufficiency follows from (iii) and (iv).

In both cases we have the following consequences. A flat torus can cover a countably infinite set of tori by local isometries. For $T_1 = T_2$ a local isometry is a global isometry, since |C| = 1 entails N = 1. In general the existence of a local isometry $T_1 \rightarrow T_2$ does not imply that there is also a local isometry $T_2 \rightarrow T_1$; this occurs if and only if both $r_1 = r_2$ and condition (1) are satisfied. (Then the tori still need not be globally isometric).

3. Homotopy classes. We show how the combination $\kappa_1 \tilde{T}_1 + \kappa_2 \tilde{T}_2$ controls also the deformation properties of our maps. If the constant D in (ii) is varied the map stays in the same homotopy class, but maps corresponding to different parameter values κ or (κ_1, κ_2) are not analytically homotopic (i.e., with analytic intermediately stages during the deformation), since the set of admissible values of C is discrete. We show that they are not even homotopic in the ordinary sense.

Since the fundamental group $\pi_1(T)$ of a torus is Abelian the set \mathscr{H} of homotopy classes of continuous maps $T_1 \to T_2$ is in one-to-one correspondence with the set of all homomorphisms $\eta \colon \pi_1(T_1) \to \pi_1(T_2)$. Denoting by L_i and L_i' (i=1,2) the path homotopy classes of two generating loops of $\pi_1(T_i)$, each such η is characterized by the integral matrix

$$\hat{\xi} = egin{pmatrix} \hat{\xi}_4, & \hat{\xi}_3 \ \hat{\xi}_2, & \hat{\xi}_1 \end{pmatrix}$$

given by

$$\eta(L_1) = L_2^{\xi_1} L_2^{\xi_2}, \, \eta(L_1') = L_2^{\xi_3} L_2^{\xi_4};$$

hence \mathscr{H} is parametrized by Z^4 . The subset $\{\xi \in Z^4 : \det \xi \neq 0\}$ contains those points of Z^4 representing monomorphisms, hence it corresponds to the homotopy classes containing covering maps.

Theorem 2. The subset of Z^4 corresponding to homotopy classes which contain analytic maps consists of

- (a) 0 only if τ_1 and τ_2 are nonequivalent under $GL^+(2, Q)$;
- (b) the 1-dimensional sublattice spanned by \widetilde{T}_1 if τ_1 and τ_2 are equivalent under $GL^+(2,Q)$ and both are nonample;
- (c) the 2-dimensional sublattice spanned by \tilde{T}_1 and \tilde{T}_2 if τ_1 and τ_2 are equivalent under $GL^+(2, \mathbb{Q})$ and both are ample.

Proof. We prove only (c); (a) and (b) can be handled similarly. The generators L_i , L'_i of $\pi_i(T_i)$ are represented in E_i by the segments S_i , S'_i joining the origin to r_i and r_ih_i respectively. The segments S_1

and S'_1 are mapped by F(z; C, 0) (cf. (ii)) into segments from the origin of E_2 to the points

$$\kappa_1 r_2 + \kappa_2 s'' q'' r_2 h_2$$

and

$$-\kappa_{\scriptscriptstyle 2} r a^{\prime\prime} q^{\prime} r_{\scriptscriptstyle 2} + (\kappa_{\scriptscriptstyle 1} a + \kappa_{\scriptscriptstyle 2} s^{\prime\prime} p a^{\prime}) r_{\scriptscriptstyle 2} h_{\scriptscriptstyle 2}$$
 .

The former can be deformed into the two sides $\kappa_1 r_2$ and $\kappa_2 s'' q'' r_2 h_2$ of a parallelogram parallel to S_2 and S_2' . The first side represents κ_1 circuits of L_2 , the second $\kappa_2 s'' q''$ contours of L_2' . Similarly for S_1' . Hence the homomorphism

$$f_*: \pi_1(T_1) \longrightarrow \pi_1(T_2)$$

induced by f is determined by

$$f_*(L_1) = L_2^{\kappa_1} L_2^{\prime \kappa_2 s^{\prime \prime} q^{\prime \prime}}$$

and

$$f_*(L_1') = L_2^{-\kappa_2 r a'' q'} L_2'^{\kappa_1 a + \kappa_2 s'' p a'}$$
 .

This is equivalent to $\xi = \kappa_{\scriptscriptstyle 1} \widetilde{T}_{\scriptscriptstyle 1} + \kappa_{\scriptscriptstyle 2} \widetilde{T}_{\scriptscriptstyle 2}$.

The determination of all local isometries for two given tori is easy for the nonample case. In the ample case it involves the number of ways in which $N=(r_1^2/r_2^2)a$ can be represented by the quadratic form (4). Since this form is positive definite we have, in conjunction with Theorem 2:

THEOREM 3. The number of homotopy classes of local isometries between two flat tori is finite.

We obtain an upper bound for this number as follows: From (3) we find

$$\Re C = rac{r_{\scriptscriptstyle 2}}{r_{\scriptscriptstyle 1}} \! \left(\kappa_{\scriptscriptstyle 1} + \kappa_{\scriptscriptstyle 2} s^{\prime \prime} rac{p}{2 g^{\prime}}
ight)$$
 ,

which shows that $\Re C$ has the form $(r_2/r_1)(\gamma/2g')$, with γ an integer. Substituting this in $|\Re C| \leq |C| = 1$ leads to

$$|\gamma| \le 2g' \frac{r_1}{r_2} .$$

From $(\mathfrak{T}C)^2 = |C|^2 - (\mathfrak{R}C)^2$ we deduce

$$\kappa_{2}^{2}q^{\prime\prime2}s^{\prime\prime2}(\mathfrak{T}h_{2})^{2}=rac{r_{1}^{2}}{r_{2}^{2}}-rac{\gamma^{2}}{4q^{\prime2}}$$

and

(7)
$$\kappa_{\scriptscriptstyle 1} = \frac{\gamma}{2g'} - \kappa_{\scriptscriptstyle 2} s'' \frac{p}{2g'} .$$

Each of the $2[2g'(r_1/r_2)] + 1$ integers γ compatible with (5) leads to at most two pairs (κ_1, κ_2) compatible with (6) and (7). Thus the number of homotopically different local isometries does not exceed $4[2g'(r_1/r_2)] + 2$.

BIBLIOGRAPHY

- 1. H. Helfenstein, Analytic maps between tori, Bull. Amer. Math. Soc. Vol. 75, No. 4, 857-859.
- 2. J. A. Wolf, Spaces of constant curvature, New York, 1967.

Received July 9, 1969.

UNIVERSITY OF OTTAWA OTTAWA, CANADA