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COEFFICIENT MULTIPLIERS OF H* AND Bp SPACES

P. L. DUREN AND A. L. SHIELDS

This paper describes the coefficient multipliers of
Hp(0 < p < 1) into /q(p ^ g ^ oo) and into Hq(l S q ^ °°).
These multipliers are found to coincide with those of the
larger space Bp into /q(l ^ q ^ oo) and into Hq(l S q ύ °°).
The multipliers of H*> and B* into Bq(0 < p < 1, 0 < q < 1)
are also characterized.

A function / analytic in the unit disk is said to be of class
Hp(0 < p < oo) if

Mp(r,f) =

remains bounded as r —• 1. H°° is the space of all bounded analytic
functions. It was recently found ([2], [4]) that if p < 1, various
properties of Hp extend to the larger space Bp consisting of all an-
alytic functions / such that

1 - r)llP~2 M^r, f)dr < oo .

Hardy and Littlewood [8] showed that Hp c Bp.
A complex sequence {Xn} is called a multiplier of a sequence

space A into a sequence space B if {Xnan} e B whenever {an} eA. A
space of analytic functions can be regarded as a sequence space by
identifying each function with its sequence of Taylor coefficients. In
[4] we identified the multipliers of Hp and Bp(0 < p < 1) into /\ We
have also shown ([2], Th. 5) that the sequence {nllq~llP} multiplies Bp

into Bq. We now extend these results by describing the multipliers
of HP(Q < p < 1) into /q(p ^ q ^ oo), of Bp into /q{l ^ q ^ oo), and
of both Hp and Bp into Bq(0 < q < 1). We also extend a theorem of
Hardy and Littlewood (whose proof was never published) by character-
izing the multipliers of Hp and Bp into Hq(0 < p < 1 ^ q ^ oo). In
almost every case considered, the multipliers of Bp into a given space
are the same as those of Hp.

2* Multipliers into /q. We begin by describing the multipliers
of Hp and Bp into °̂°, the space of bounded complex sequences.

THEOREM 1. For 0 < p ^ 1, a sequence {Xn} is a multiplier of
Hp into /°° if and only if
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(1) Xn = 0{nι~ιlP) .

For p < 1, the condition (1) also characterizes the multipliers of Bp

into /°°.

Proof. If f(z) = Σα»sn is in Bp, then by Theorem 4 of [2],

(2) α. = o(n1^-1).

If feH1, then α% —>0 by the Riemann-Lebesgue lemma. This proves
the sufficiency of (1). Conversely, suppose {Xn} is a multiplier of Hp

into /°°. Then the closed linear operator

Λ:f >{Kan}

maps Hp into /°°. Thus A is bounded, by the closed graph theorem
(which applies since Hp is a complete metric space with translation
invariant metric; see ll], Chapter 2). In other words,

(3)

Now let

g(z) = (1 - z)~^p = Σ M n ,

where δ% — B^1/J); and choose f(z) = g(rz) for fixed r < 1. Then by (3)

I λn I n1{prn ^ C(l - r)"1 .

The choice r = 1 — lfn now gives (1). Note ttot {λw} multiplies Hp

or Bp into /°° if and only if it multiplies into c0 (the sequences tend-
ing to zero).

As a corollary we may show that the estimate (2) is best possible
in a rather strong sense. For functions of class Hp, this estimate is
due to Hardy and Littlewood [8]. Evgrafov [6] later showed that
if {dn} tends monotonίcally to zero, then there is an feHp for which
an Φ O(βnn

ιlP~ι). A simpler proof was given in [5]. The result may
be reformulated: if a* = O(dn) for all feHp, then dnn^llP cannot tend
monotonically to zero. We can now sharpen this statement as follows.

COROLLARY. If {dr} is any sequence of positive numbers such
that an = O(dn) for every function Σ anZn in Hp, then there is an
ε > 0 such that

dnn^llP ^ ε > 0 , n = 1, 2, . . .

Proof. If an = O(dn) for every feHp, then {l/dn} multiplies Hp

into /-. Thus l/dn = Oin1-111*), as claimed.
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We now turn to the multipliers of Hp and Bp into /q(q < oo), the
space Of sequences {cn} with ^\cn\

g < oo0 The following theorem
generalizes a previously known result [4] for z1.

THEOREM 2. Suppose 0 < p < 1.
( i ) A complex sequence {λn} is a multiplier of Hp into

sq(p <; q < oo) if and only if

(4) Σ ^ Ί λ J * = O(Nq) .
N

(ii) 1/ 1 <Ξ g < co, {χn} is a multiplier of Bp into /q if and
only if (4) holds.

(iii) If Q < p, the condition (4) does not imply that {Xn} multi-

plies Hp into /q\ nor does it imply that {Xn} multiplies Bp into /q

if g < 1.

Proof. ( i ) A summation by parts (see [4]) shows that (4) is
equivalent to the condition

(5) Σ \K\g = O(Nq{1~1/p)) .

Assume without loss of generality that λn ^ 0 and Σ"=i *Ί = l Let
sL = 0 and

{ oo >| i/β

ΆXl\ ' ^ = 2,3,

where /3 = q(l/p — 1). Note that sn increases to 1 as %-^co, By a
theorem of Hardy and Littlewood ([8], p. 412), fe Hp(0 < p <1) implies

( 6 ) ('(I - rf-1 Mq(r, f)dr < oo , p ^ q < oo .
Jo

Thus if /(s) = Σ anz
n is in ίί2 ' and {Xn} satisfies (4) with p ^ q < oo,

it follows that

('Λ+1(l - rf-ιMl{r,f)dr

= ^|- Σ I«J
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by the definition of sn. But by (5),

which shows, by the definition of sn, that

(sn)
nq ^ (1 - W > e~^ > 0

Since these factors (sn)
nq are eventually bounded away from zero, the

preceding estimates show that ^\an\
qXq

n < °o. In other words, {Xn}
is a multiplier of I P into /q if it satisfies the condition (4).

(ii) The above proof shows that {Xn} multiplies Bp into /ι under
the condition (4) with q = 1. (This was also shown in [4].) The more
general statement (ii) now follows by showing that if {λΛ} satisfies (4),
then the sequence {μn} defined by

satisfies (4) with q = 1. Hence {μn} is a multiplier of Bp into /\ and
in view of (2), {Xn} is a multiplier of S p into /q. Alternatively, it can
be observed that feBp implies (6) for 1 <̂  q < oo, so that the forego-
ing proof applies directly. Indeed, if feBp, then (as shown in [2],
proof of Theorem 3)

, f) =

hence, if 1 ^ q < oo,

(iii) That (4) does not imply {Xn} multiplies Hp into /q{q < p) or
Bp into sq{q < 1), follows from the fact [4] that the series

may diverge if feHp and q < p, or if feBp and g < 1.
To show the necessity of (4), we again appeal to the closed graph

theorem. If {Xn} multiplies Hp into /q(0 < p < oo, 0 < q < oo), then

is a bounded operator:

/ g oo

^ C | | / | | , /(z) = Σ αn2κ 6 i P .
ϊ i—0

Choosing f(z) = (̂r̂ ;) as in the proof of Theorem 1, we now find
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{ oo

and (4) follows after terminating this series at n — N and setting
r — 1 — 1/N. Note that the argument shows (4) is necessary even if
p ^> 1 or q < p.

COROLLARY 1. // {nk} is a lacunary sequence of positive integers
(nk+ι/nk ^ Q > 1), and if f(z) = Σ anz

n is in iP(0 < p < 1), then

Σ nliι-1IP) \a%h\* < oo , p ^ g < oo .

COROLLARY 2. // /(s) = Σ α»«Λ ^ ^ ^ p (0 < ^ < 1),

The first corollary extends a theorem of Paley [13] that feH1

implies {a%k} e /2. The second is a theorem of Hardy and Littlewood
[7]. It is interesting to ask whether the converse to Corollary 1 (with
q = p) is valid. That is, if {ck} is a given sequence for which

Σ t t Γ M ^ I ' < - ,
A; = l

then is there a function /(z) = ^anz
n in i P with anjc = ckΊ We do

not know the answer.
Hardy and Littlewood [9] also proved that {Xn} multiplies H1 into

H2 (alias /*) if (and only if)

From this it is easy to conclude that (4) characterizes the multipliers
of H1 into /\ 2 g q < oo. Indeed, let {Xn} satisfy (4) and let μn =
|X»|W2. Then, by the Hardy-Littlewood theorem, {μn} multiplies Hι

into /2 (see [3], p. 253). Hence {λj multiplies H1 into /g. (See also
Hedlund [12].)

On the other hand, the condition (4) is not sufficient if p = 1 and
q < 2. This may be seen by choosing a lacunary series

/(«) = Σ c*sw* , ™*+1/% ̂  Q > 1 ,

with Σ \ok\
2 < °° but Σ |cfc|

ff = oo for all g < 2. The sequence {λΛ}
with Xn = 1 if n = nk and λw = 0 otherwise then satisfies (4) but does
not multiply Hι into /q, q < 2.

3* Multipliers into ί?g. The following theorem may be regarded
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as a generalization of our previous result ([2], Th. 5) that if feBp,
then its fractional integral of order (1/p — 1/g) is in Bq. (A fractional
integral of negative order is understood to be a fractional derivative.)

THEOREM 3. Suppose 0 < p < 1 and 0 < q < 1. Let v be the
positive integer such that (v + I)" 1 ^ p < v~ι. Then {Xn} is a multi-
plier of Hv or Bp into Bq if and only if g(z) = ΣΓ=o K%n has the
property

( 7 ) MAr, g{υ)) = O((l - r)1"-1"-1 ') .

Proo/. Let {λj satisfy (7), let f(z) = Σ α»«Λ be in Bp, and let
Then

= -^Γ/G^'Msβ-")^ , 0 < /o < 1 .
2τr Jo

Differentiation with respect to 2; gives

( 8 ) p»h 2π Jo

Hence

^rp, h^) S M^r, g^M^p, f)
^ C(l - ryw-'Mάp, f) ,

where r = \z\. Taking r = p, we now see that feBp implies h{u) e Bs,
1/s = 1/g + v. Thus heB9, by Theorem 5 of [2].

Conversely, let {Xn} multiply Hp into Bq. Then by the closed graph
theorem,

A: Σ anz
n > Σ Kanz

n

is a bounded operator from Hp to Sg. If (v + I)-1 ̂ p < v\ let

f(z) = v\ z*(l - z)-*-1 = Σ anz* ,
n — v

where an = %!/(% — v)!, and observe that

( 9 ) h(z) = Σ λ»α,«" = s'ff11"(«) .

Let /r(«) = /(r«) and fer(2) = h(rz). Since /I is bounded, there is a
constant C independent of r such that

In other words,
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&r, h)dt rg CMp(r, f)

=

It follows that

Mx{r\ /&)Γ(1 - tylq~2dt =
Jr

or

ilfiίr2, h) = O((l - r)1/J>-1/f f-y) .

But in view of (9), this proves (7).

COROLLARY. The sequence {λn} multiplies Bp into Bp if and only

if

(10) il^r, g') =

Proof. If p = q, the condition (10) is equivalent to (7). (see [8],
p. 435.) This corollary is essentially the same as a result of Zygmund
([14], Th. 1), who found the multipliers of the Lipschitz space Λa or
Xa into itself. Because of the duality between these spaces and Bp

(see [2], §§3,4), the multipliers from Λa to Λa and from λα to λα

(0 < a < 1) are the same as those from Bp to Bp. Similar remarks
apply to the spaces Λ* and λ*, also considered in [14].

4* Multipliers into Hq. By combining Theorem 3 with the simple
fact that f'eB1'2 implies feH\ it is possible to obtain a sufficient
condition for {λj to multiply Hp into Hq, 0 <p<l^q^ oo. However,
this method leads to a sharp result only in the case q — 1. The follow-
ing theorem provides the complete answer.

THEOREM 4. Suppose 0 < p < l ^ g ^ o o , and let (v + I)-1 ̂  p < v~\
v = 1, 2, . T%βπ {λj is α multiplier of Hp or Bp into H9 if and
only if g(z) = Σ"=o λΛz* feαs ί/̂ e property

(11) M,(r, <7^+1)) - O((l - r ) 1 ^ — 2 ) .

Hardy and Littlewood ([9], [10]) stated in different terminology
t h a t (11) implies {λ j is a multiplier of Hp into Hq(0 <p <l^q < oo),
b u t they never published t h e proof. Our proof will make use of the
following lemma.

LEMMA. Let f be analytic in the unit disk, and suppose



76 P. L. DUREN AND A. L. SHIELDS

[\ - r)aMq(r, f')dr
Jo

where a > 0 and 1 ^ q ^ oo. Then

, f)dr

Proof of Lemma. Without loss of generality, assume /(0) = 0,
so that

f(reiθ) = \rf'(seiθ)eiθds .
Jo

The continuous form of Minkowski's inequality now gives

(12) Mq(r,f)£ \rMq(s,f')ds.
Jo

Hence an interchange of the order of integration shows that

l _ r)«-Wg(r, f)dr ^ M\l - s)βikΓg(s, f')ds ,
a Jo

which proves the lemma.

Proof of Theorem 4. Suppose first that {Xn} satisfies (11). Given
/(«) = Σ anZn in β^, we are to show that h(z) = Σ λ^^^^% belongs to Hq.
By (8), with v replaced by (v + 1), we have

27Γ Jo

Since g ^ 1, it follows from Jensen's inequality ([11], §6.14) that

^ + 1 Mq(rp, h^+1)) ^ Map, f)Mq(r, g^+1))

άP, f) ,

where r = |«| and (11) has been used. Now set r = p and use the
hypothesis feBp to conclude that

- r)uMq(r, h{v+1))dr < oo .

But by successive applications of the lemma, this implies

q(r, hr)dr < oo .

Thus, in view of the inequality (12), it follows that h e Hq, which was
to be shown.
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Conversely, suppose {λ̂ } is a multiplier of Hp into Hq for arbitrary
q(0 < q <; oo). Then by the closed graph theorem,

Λ: Σ &X > Σ Kanz
n

is a bounded operator from Hp to H9. An argument similar to that
used in the proof of Theorem 3 now leads to the estimate (11).

COROLLARY. IfO<p<l<^q<^ oo and feBp, then its fractional
integral fa e Hq, where a — 1/p — 1/q. This is false if q < 1.

This corollary can also be proved directly. Indeed, since ([2], Th. 5)
the fractional integral of order (1/p — 1/s) of a Bp function is in Bs

(0 < s < 1), and since ([8], p. 415) the fractional integral of order
(1 — 1/q) of an H1 function is in Hq(l ^ g ^ oo), it suffices to show
that / ' G B112 implies fe H\ But this is easy; it follows from (12) with
q = 1. That the corollary is false for q < 1 is a consequence of the
fact ([2], Th. 5) that the fractional derivative of order (1/p — 1/q)
of every Bq function is in Bp.

The converse is also false. That is, if feHq, its fractional
derivative of order (1/p — 1/q) need not be in Bp(0 < p < 1 ^ q ^ oo).
As before, this reduces to showing that feH1 does not imply f eBlβ.
To see this, let f(z) = Σ ckz

nk

9 where {nk} is lacunary, {ck} e /2, and
{ck}ί/K Then feH2(zH\ but fr$Bιι\ since it was shown in [4]
(Th. 3, Corollary 2) that

whenever Σ anZn e Bp and {nk} is a lacunary sequence.
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