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UNKNOTTING UNIONS OF CELLS

T. B. RUSHING

In this note we consider the problem of determining
whether the union of cells is nicely embedded in the ^-sphere
if each of the cells is nicely embedded. This question is
related to many embedding problems. For instance, the n-
dimensional Annulus Conjecture (now known to be true for
n Φ 4) is a special case. Cantrell and Lacher have shown
that an affirmative answer implies local flatness of certain
submanifolds. Also, this question is related to the conjecture
that an embedding of a complex into the ^-sphere which is
locally flat on open simplexes is ε-tame in codimension three.

The problem mentioned above was first investigated by Doyle [9]
[10] in the three dimensional case and by Cantrell [2] in high di-
mensions and later by Lacher [15] Cantrell and Lacher [3][4], Kirby
[13], Cernavskii [5][6] and the author [17]. Also, Sher [21] has
generalized a construction of Debrunner and Fox [8] to obtain counter-
examples in certain cases. Since the ^-dimensional Annulus Conjecture,
n Φ 4, is now known to be true [14], only two results of § 7 of [17]
remain of interest. First we will prove a strengthened form of one
of those results and we greatly simplify the proof by employing the
powerful tools now available. In particular we prove the following
theorem.

THEOREM 1. // DTι and D?2 are cells in Sn, n > 5, of dimensions
mι and m2, respectively, and if D?1 Γ) Df2 — dD?1 Π dD?2 = D is a k-
cell (possibly empty), n — k ^ 4, which is locally flat in dDf1, in
dDf2 and in Sn and is such that D?1 — D and D™2 — D are locally
flat, then there is an ambient isotopy et of Sn such that eJ^DT1) and
e^D™2) are simplexes and e^DT1 Π D?2) is a face of each.

REMARK. If the above theorem is modified by requiring n — k = 3,
then counterexamples can be constructed for any mι and m2 (see [21]).

Proof of Theorem 1. Every orientation preserving homeomor-
phism of Sn, n ^ 5, is stable [14], hence isotopic to the identity. It
will then suffice to construct an orientation preserving homeomorphism
eγ satisfying the conclusion of the theorem. By Theorem 5.2 of [1], we
may assume that Df1 and D?2 are locally flat. For i = 1, 2, it is easy
to construct a homeomorphism/^ Sn -+ Sn such that f(DT\ D) = (zίw% Δk)
where Δmi is an m rsimplex and Ak is a fc-face. Thus, by using fi9 i = l,2,
and Lemma 3.6 of [18], we can construct locally flat w-cells Df and
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D2 satisfying the following conditions,

( l ) m n Όi = 3i>r n ao? - A
( 2 ) D is locally flat in dΌl and 3D?, and
(3 ) (D?, Df *) is a trivial cell pair, i = 1, 2.
Let Δ1 and J? be w-simplexes in Sn such that Δl Π 4? = J is a &-

face of each. We will now construct an orientation preserving
homeomorphism h of Sn such that h((D?, D?, D)) = (zfΓ, J?, 4). It is
easy to obtain an orientation preserving homeomorphism hL of Sn such
that /^((D?, D)) = (J?, J). Let Δo be the ̂ -simplex having as vertices
the midpoints of the segments which join the vertices of Δ2 with the
barycenter of Δ2. Let f: Ik -» A be a PL-homeomorphism and define
F: P x I—* Δl by extending linearly on each segment {x} x I, xelk,
the map which takes (x, 0) to /(α?) and (a?, 1) to the midpoint of the
segment joining f(x) and the barycenter of Δ2. Then, E = jP(/fc x {1})
is a Λ-face of Δo. Now, by using the Annulus Theorem, it is easy to
get an orientation preserving homeomorphism h2 of Sn such that

( 1 ) A ί ((4Λ 1 (A )) = ( 4 ^ i n ) , and
( 2 ) h2\ΔUE=l.
Let A denote C1(S% - (Δo U ̂ Γ)). Then, the embedding h2F: Ik x I

—>A satisfies the hypotheses of Theorem 1 of [19]; hence, by that
theorem there is a homeomorphism hs of A such that h5 \ dΔ0 U 3̂ Γ = 1
and h3h2F: P x J—^A is PL. Extend /^ to all of S by way of the
identity. Consider the two PL embeddings F\dP x I: dp x I—*A
and Λ3fc2F | dP x I: dP x I—> A. These two embeddings clearly satisfy
the hypotheses of Theorem 4 of [11]; therefore, by that theorem there
is a PL homeomorphism h^ of A such that h4hzh2F\ dP x I = F\ dP x I
and ht \ dΔ0 (j dΔ? = 1. Extend &4 to Sn by the identity. Now, the
PL embeddings hJιzh2F:PxI—>A and F:PxI—>A satisfy the
hypothesis of Theorem 4 of [11] and so by another application of that
theorem we get a PL homeomorphism hδ of A such that hbhJιzh2F — F
and hδ | 3J0 (J dΔ? = 1. Extend, hδ to Sn by the identity.

Let p: Sn -» Sn be a map such that

(1) p(4,) = 4 ,
( 2 ) p I ̂ ( D ) U Δ: - 1, and
( 3) p\Sn - F{P x I) is one-to-one, and p(F({x} x I)) = F(#, 0)

for each xeP.
It is now easy to check that h = phδhjίi%h2p~ιlίiγ is the desired home-
omorphism that flattens the pair D* U D2.

Let Ap-1 be a face of Δf of dimension m^ — 1 which has Δ as a
face. Let S< denote the face of Δt dual to J?*-1 and let Si denote the
barycenter of S*. Now, let Δf1 be the mΓsimplex Jf*-1*^. Then, it
is easy to get a homeomorphism g{: Δt -» J? such that g^D?*) = Jf ί

and gt\ Δ = 1. Furthermore, we may assume that ^ | dΔ* is orientation
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preserving for if it is not we may follow g{ by an appropriate re-
flection of Δΐ.

Let A*, i — 1, 2, be an annulus pinched at A, in particular, A{ —
(dΔ? x J ) / ~ where (x, t) ~ (x, 0)if xeA,te I. Let C{: A, -»Sn,i = 1, 2,

be homeomorphisms satisfying the following conditions:
( 1 ) Ci{Ai)dSn- (intJf UintJ?),
(2 ) d((x, 1)) = x for a? e 3Λ?, and
( 3 ) CΛΛ) Π C2(A2) = 4.

(Thus, Cί(^) is a certain pinched collar of dΔ".)
It follows from [20] that g{: Δ? -» 4? can be extended to Δ? U C^A*)

such that Qi I 3(J? (J C^Af)) = 1. Let g be the homeomorphism taking
Ui=i,2 (Aΐ U Ct(Ai)) onto itself which is g{ on J? U C^A*). Then, # can
be extended to Sn by way of the identity and it is clear that eγ = #&
is the desired orientation preserving homeomorphism which flattens
the pair DT1 U Am2 since gh(D^ U A'12) = ^Γ1 U ΔfK

THEOREM 2. Lβί {Δ?*}, i = 1,2, , p be simplexes such that AT1

is of dimension raf and such that f|?=i ^ΐι — Δ is a k-face of each
Ap. Let f g: U?=i ^T{ —* int Qn be PL embeddings into the connected n-
dimensional PL manifold Qn, n ^ m{ + 3, i — 1, 2, , p. Then, there
is a PL isotopy et of Q such that e0 = 1 and ej — g.

If one can tame certain clusters of cells, then Theorem 2 can be
used to unknot them. For instance, the following corollary follows
from Theorem 1' of [7].

COROLLARY. Let {AT1}, i — 1,2, , p be simplexes in the interior
of the connected n-dimensional PL manifold Qn, mi < (2/3)% — 1,
i — 1, 2, , p, such that Π?=i ^Γ*' — A is a k-face of each Af\ Let
/• U?=i ^Γ* —• int Q be an embedding which is locally flat on the open
faces ofAili,i = ly2, ,p. Then, there is an isotopy et of Q such
that e0 — 1 and eγf is the inclusion of U?=i A?1 into Q.

Proof of Theorem 2. Let {v)}%t denote the vertices of A?{ and
let {vj}k

j=0 denote the vertices of A. Let A^~Q be the face of Δ?*
spanned by the vertices {t j JJϋo — {̂ i}y=*-ff+i a n ( i let Ah~q be the face
of A spanned by {vό})zl. Thus, for 0 ^ q ^ k, Ak~q and Δ?*-9, i = 1,
2, , p, are cones over z/fc-(ί+1) and zfΓ*~~(?+1\ ΐ = 1, 2, , p, respectively,
with vertex vk_q.

We will work with the following inductive statement.

qth
 INDUCTIVE STATEMENT. Let f, g: \j!=1A?i-q—>int Qn (n arbi-

trary) be PL embeddings. Then, there is a PL isotopy et of Q% such
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that e0 = 1 and exf — g.

The case q = k + 1 can be proved easily by using uniqueness of
regular neighborhoods. Now we assume the (q + l)-inductive statement,
where 0 <̂  q ^ k, and will establish the qth inductive statement. Let
Nbe a regular neighborhood of f(\JUιATi~q)moάf{\Jp

i=1ATi~[q+1)) in Q
(see [12]), and let N* be a regular neighborhood of 0(U?=î f*"""*)
mod g(\jUJp~{qW) in Q. Then, there is a PL isotopy e\ of Q such
that el = 1 and eί(iV) = JV*. But, δCZV*) is a P L (w — l)-sphere and
</Ί UίU ̂ ~ ( g + 1 ) and ^ I U?=i ^ " ( ί + 1 ) are P L embeddings into d(N*).
Hence, by the inductive assumption, there is a PL isotopy e\ of d(N*)
such that el = 1 and βjβί/| Uf=i ^Γ*"(flr+1) = 9 I Uf=iΛ^~("+1). It is now
easy to extend e\ over Q so that it is the identity at the zero level
by using a PL bicollar of d(N*) in Q. Then,

e\e\f: U J?<-ff -> iSΓ* and flr: U Am^q -+ N*
* = 1 * = 1

are proper embeddings (in the sense of [16]) which agree on U?=i z/fί~(?+1)

and so by Theorem 2 of [16] there is a PL isotopy βf of N* which
is the identity on d(N*) such that ej = 1 and ejβje}/ = #. Hence, we
can extend e\ to Q by way of the identity and we see that et — e\e\e\
is the desired isotopy of Q.
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