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A CLASSIFICATION OF CENTER-FOCI

ROGER C. MCCANN

The main purpose of this paper is to classify center-foci
according to isomorphisms. Necessary and sufficient conditions
are found for an isomorphism to exist in terms of properties
on the cycles in suitable neighborhoods of the center-foci. In
the last section o + stable isolated critical points are classified
according to isomorphisms.

This paper was motivated by discussions with Otomar Hajek and
Taro Ura.

Throughout this paper R\ iϋ+, iϋ~, and R2 will denote the reals,
the nonnegative reals, the nonpositive reals, and the plane respectively.

Let F be a family of curves filling a region R of the plane. F
will be said to be regular at a point p of R if F is locally home-
omorphic with parallel lines at p. F is called regular in R if it is
regular at each point of R. A cross-section of F (through the point
p of R) shall mean an arc T (of which p is a nonend-point) which
lies in R and is such that each curve of F intersects T at most once.

Let (X, π) be a dynamical system on X, i.e., X is a topological
space and π is a mapping of X x Rι onto X satisfying the following
axioms: (where xπt = π(x, t) for (x, t) e X x R1)

( 1 ) xπO = x for x e X
( 2 ) (xπt)πs = xπ(t + s) for x e X and t, seR1

(3) 7Γ is continuous.
For x e X, xπR1 is called the trajectory through x and is denoted by
C(x). If C(x) = {x}, x is called a critical point. If there exists teR\
t Φ 0, such that xπt = x, then x is called a periodic point. If x is a
periodic point and not a critical point, C(x) is called a cycle. A
subset A of X is said to be invariant if AπR = A, or + invariant if
AπR+ — A. A subset B of X is said to be

(1) orbitally stable (o stable) if B has arbitrarily small invariant
neighborhoods.

(2) orbitally + stable (o + stable) if B has arbitrarily small + in-
variant neighborhoods.

(3) asymptotically orbitally + stable (ao + stable) if B is
o + stable and for some neighborhood U of x, L+(x) c B for every
xe U, where L+(x) is the positive limit set of x.

Let (X, π) be a dynamical system on a metric space X. The
positive prolongational limit set, denoted by J+(x)> of a point a e l i s
given by J+(x) = {y: there exist sequences {x{} c X and {t{} c JB1 such
that Xi —> x, ti —> + co, and xζizti —> 2/} The negative prolongational limit
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set, J~(x), is defined analogously. For any xe X, J+(x) and J~{x) are
invariant. If A and B are subsets of X such that A c J+(B) (A c J~(B)),
we will write AJ+B (AJ-B).

1* Definition and properties of a center-focus* In the following'
(JK2, TΓ) will denote a dynamical system on R2 and jfcf the set of non-
critical periodic points of (R2, π).

DEFINITION 1.1. A cycle C(x) of (R2, π) decomposes R2 into two
components, one bounded and the other unbounded, int C(x) and ext
C(x) will denote the bounded and unbounded components, respectively,
of R2 - C(x).

PROPOSITION 1.2. Let C(x) be a cycle in (R2, π). Then int C(x)
and ext C(x) are invariant.

Proof. The components of an invariant set are invariant.

In [l, VII, 4.8] it is proved that

PROPOSITION 1.3. If C(x) is a cycle in (R2, π), then int C(x) con-
tains a critical point.

DEFINITION 1.4. An isolated critical point p of (i?2, π) is called a
center-focus if and only if there exist both cycles and noncyclic
trajectories arbitrarily near p.

EXAMPLE 1.5. Take any closed set F in [0, l ] c J ? + and choose
any mapping /: R+ —> [-1, 1] of class C1 having F as its zero-point set.
Then define the differential dynamical system by means of the equation.

This corresponds to the '' polar " equation (dr/dθ) = rf(r). The origin
is an isolated critical point and the cycles of the dynamical system
are precisely those circles | z | = r for which f(r) — 0. We can now
make the origin a center-focus by choosing F such that 0 e F and
0e[0,1] - F , e . g . ,

F — {0} U \ —: m is a positive integer \ .
Km J

In [1, VIII, 4.1], it is proved that

PROPOSITION 1.6. Let p be a center-focus of (i?2, π). Then p is
o stable.
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PROPOSITION 1.7. Let p be a center-focus of (R2, π). Then for
any x e M sufficiently near p, pe int C(x).

Proof. Let U be a disc neighborhood of p which contains no
critical points other than p. Since p is o stable, there exists a neigh-
borhood V of p such that VπR1 c £7. For any x e M Π V, C(x) c U.
Then int C(x) c U since U is simply connected. By Proposition 1.3,
int C(x) contains a critical point. This critical point must be p since
U — {p} contains no critical points.

COROLLARY 1.8. Let p be a center focus of {R2,7r). Then there
exists a cycle C(x) such that

(1) p 6 int C(x)
( 2) p G int C(y) for every y e intC(#) Π M.

We may now reformulate Definition 1.4 as

DEFINITION 1.4'. An isolated critical point p of (R2, π) is called
a center-focus if and only if there exists a cycle C(x) such that

(1) p is the unique critical point in int C(x)
(2) there exist both cycles and noncyclic trajectories arbitrarily

close to p.

We choose a fixed C(x0) satisfying these conditions and denote
intC(α?0) by U.

REMARK. The set {y: y = p or y e M Π U) is closed.

The proofs of the following relationships between the cycles in
U are the same as the proofs of [4,1.10] and [4,1.11].

PROPOSITION 1.9. Let p be a center-focus and U a neighborhood
of p as described in Definition 1.4'. // Cx and C2 are distinct cycles
in U, then Cx c int C2 or C2 c int d .

COROLLARY 1.10. // C1 and C2 are distinct cycles in U such that
C1 c ext C2, then C2 c int Cx.

2* Isomorphism of dynamical systems*

DEFINITION 2.1. Let (X,π) and (Y, p) be dynamical systems. A
homeomorphism h:X—+Y is said to be trajectory preserving if and
only if h(xπRι) is a trajectory of (Y, p) for every xeX. If such a
homeomorphism exists, (X9π) and (F, p) are said to be equivalent.
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DEFINITION 2.2. Let (X, π) and (F, p) be dynamical system. An
isomorphism of (X, π) onto (F, p) is a pair of mappings (h, φ) which
satisfies the following conditions:

(1) h is a homeomorphism of X onto Y
(2) φ is a continuous mapping of X x i?1 onto i?1 such that for

every fixed xeX, <p(xf •) is a homeomorphism of i?1 onto itself with
φ(x, 0) = 0

( 3) λ(απί) = h{x)pφ(x1t) for a e l and t e R1.
If such a pair of mappings exists, (X, 7r) and (F, p) are said to be

isomorphic.

REMARKS. 1. If (h,<p) is an isomorphism of (X, π) onto (Y, p),
then & is a trajectory preserving homeomorphism of (X, TΓ) onto (F,
p). Hence, if (X, π) and (F, |θ) are isomorphic, then they are equiva-
lent.

2. "Equivalent t o " is evidently an equivalence relation in the
family of all dynamical systems.

3. In [5], it is proved that "isomorphic t o " is an equivalence
relation in the family of all dynamical systems.

The following theorem, [6, 3, Th. 3], states conditions for "equiva-
lent t o " and "isomorphic t o " to be identical.

THEOREM 2.3. Let (X,π) and (F, p) be dynamical systems on
completely regular Hausdorff spaces X and Y and let Sπ and Sp

denote the set of critical points of (X, π) and (X, p) respectively.
Then if h is a trajectory preserving homeomorphism of (X, π) onto
(F, p) there exists a mapping φ\ (X — Sπ) x Rι —^R1 such that
(h I X — Sx, φ) is an isomorphism of (X — Sκ, π) onto (F — Sp, p).

Let (h, φ) be an isomorphism of (X, π) onto (F, p). If X is con-
nected, it can be shown that φ(x, •) is either strictly increasing for
every xe X or strictly decreasing for every x e X.

DEFINITION 2.4 Let (X,π) and (F, p) be dynamical systems on
connected spaces X and F and let (h, φ) be an isomorphism of (X, π)
onto (X, p). If φ(x, •) is strictly increasing for every xeX, (h, φ) is
called proper. If φ(x, •) strictly decreasing for every xeX, (h, φ) is
called dual.

The following proposition displays the connection between iso-
morphisms and prolongational limit sets.

PROPOSITION 2.5. Let (X, TΓ) and (F, p) be dynamical systems on
connected metric spaces X and Y and let (h, φ) be an isomorphism
of (X, π) onto (F, p). For xeX
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(1) if (h, φ) is proper, then h{J}{x)) = Jf(h(x))
(2) if (h, φ) is dual, then h(J+(x)) — J^(h(x))}

where the subscript π or p denotes the dynamical system with respect
to which the positive or negative prolongational limit set was taken.

Proof. The proof follows from the definitions of proper and dual.

3* Curve families of Kaplan. In [3] Kaplan classifies families
in a neighborhood of a singularity. In particular, if we consider the
trajectories of a planar dynamical system as curves, he classifies the
dynamical system in a neighborhood of an isolated critical point. For
a singularity surrounded by closed curves, the classification is done as
follows.

DEFINITION 3.1. Let A and B be curve families filling the planar
sets U and V respectively. A and B are said to be equivalent if there
exists an orientation preserving homeomorphism h: U—+ V such that
for any curve C of A, h(C) is a curve of B.

DEFINITION 3.2. An annular family shall mean a curve family F
in the plane which has the following properties:

(1) F fills a closed region A, whose boundary consists of two
disjoint closed curves D19 and D2.

(2) F is regular at every point of A.
A half open annular family shall mean a family which can be

written as a union (JΓ=i Ft of closed annular families Fi9 where Ft Π Fi+1

is the common bounding curve of Ft and Fi+1 for each i and Ft Π Fs

is the empty set for | ί — j | > 1.

REMARK. If F is a curve family defined by a planar dynamical
system without critical points, then F is regular. This is an immediate
consequence of the existence of a transversal through each point of
the dynamical system. [1, VI, 2.12; VIII, 1.6]

DEFINITION 3.3. An annular family F will be called simple if it
contains no closed curves besides Dγ and D2.

The possibilities for a simple annular family are of two fundamental
types: the type of spirals which are asymptotic to the boundary curves
in the opposite direction; the type of spirals which are asymptotic to
the boundary curves in the same direction.

Kaplan shows that a simple annular family may be mapped by an
orientation preserving homeomorphism onto one of the following four
annular families.

( i ) the family of Figure 1.
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(ii) the family obtained from (i) by reflecting in a diameter of
the larger circle.

(iii) the family of Figure 2.
(iv) the family obtained from (iii) by reflecting in a diameter of

the larger circle.

Figure 1. Figure 2.

Families which are homeomorphic to (i) or (ii) are called bent.
An annular family can contain only a finite number of bent families.
Families which are homeomorphic to (iii) or (iv) are called smooth.
A smooth annular family is an annular family which contains no bent
families.

Every half open annular family can be associated with a sequence
of letters such as:

bsbbbsb or sbsbsb

corresponding to successive rings of bent or smooth types. The se-
quence is made unique by writing the letters corresponding to the
rings in order of nearness of the ring to the singular point.

With each of the &'s is associated a bent annular family. This
bent annular family has an associated canonical family (i) or (ii). We
now insert after each b in the sequence the corresponding symbol i or
ii as superscripts, so that the symbol might appear

DEFINITION 3.4. Let h1 and h2 be two orientation preserving
homeomorphisms of 0 ^ y ^ 1 onto itself. hx and h2 are called similar
if and only if the following conditions holds:

( 1 ) If Ei is the (necessarily closed) set of fixed points of h^ί —
1, 2), then there exists a homeomorphism /: E1—>E2 which is a mono-
tone increasing function.

( 2 ) If y\ and y'l being to Ei9 but y £ Ei for y[ ^ y £ yϊ and
ΛvΊ) = Vί, f(y[r) = yί', then hγ(y) - y and h2(y) - y have the same sign
in the respective intervals y\^ky ^y".

To each smooth annular family there exists a cross-section, [3,
Corollary 1, p. 27]. If a smooth annular family (bounded by Όγ and D2)
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is cut open along a cross section and mapped onto a rectangular family
M = {0 ^ x ^ 1} 0 <, y <L I, the " curves " being the lines y = a con-
stant} so that A corresponds to y = 0 and D2 to y = 1 and the di-
rection from (0, 0) to (1, 0) on y = 0 is taken to be the positive
orientation on D19 then the corresponding identification is determined
up to a class of similar homeomorphisms.

Suppose the set of all orientation preserving homeomorphisms of
O ^ τ / ^ 1 onto itself is subdivided into similarily classes. To each
class assign a different index α, so that a collection I of indices is
formed in one-to-one correspondence with the similarily classes. Then
to each smooth annular family there corresponds a unique index of /.
Moreover, two smooth annular families have the same index if and
only if they are equivalent. We now insert into our already modified
symbol for the smooth annular family the corresponding index of I
after each s, so that the symbol might appear

Let F be an annular family. Then bs(F) will denote the symbol
corresponding to F. The theorem of Kaplan in which we are interested
is ([3, Th. 22a])

THEOREM 3.5. Let F and G be two half-open annular families.
Then F and G are equivalent if and only if bs(F) — bs(G).

4* Classification of center-foci* Kaplan looked at the behavior
of all the curves to obtain his classification. We will now apply his
theorem to show that it is necessary and sufficient to consider relations
between the cycles of two center-foci in order to obtain a classification.

For i = 1,2, let (R\ πt) be a dynamical system, p{ a center-focus
and Ui a neighborhood of p{ as described in Definition 1.4'. By re-
stricting the mapping π{ to U{ we may obtain a dynamical system
(Uif π{ I Ui) which will be denoted by (Ut, τr<). For x e R\ d(x) and Jt(Jτ)
will denote the trajectory and the positive (negative) prolongational
limit set with respect to (R2, τr<), i = 1, 2. Mt will denote the family
of cycles of (Ui9 TΓ,), ΐ = 1, 2.

LEMMA 4.1. Let (V, TΓ) be a dynamical system whose curves form
a simple annular family with Dι and D2 as boundings cycles. Then
DJ+D2 or ΌJ^ΌX.

Proof. Let x be any point in the interior of V. Then C(x) is
asymptotic to both Dλ and D2. Let xπR+ be asymptotic to Dt and
xπR~ be asymptotic to D2. If the reverse is true, the proof is similar.
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For i = 1, 2, if z{ is any point of A> then there exists a sequence
ίΐ e iϋ1 such that αsπfΐ —• 2;. Moreover tι

m —> + co and C —> — °° Then

Thus ^ e / + ( s 2 ) and A ^ + A -

DEFINITION 4.2. A homeomorphism /: M1 —• M2 is said to preserve
the order of cycles if and only if / satisfies the following property for
Cu C2 e Mt:

d c int C2 if and only if / ( Q c int/(C2) .

DEFINITION 4.3. The orientation of the cycles of Mif i = 1,2, will
be in the direction of movement with respect to R+.

PROPOSITION 4.4. (UΊ — p19 πλ) and (U2 — p2, π2) are isomorphic if
there exists a homeomorphism f: M^ ~»Mt such that

( 1 ) / preserves the order of cycles
( 2) f is orientation preserving
( 3 ) CJΐC2 if and only if RC^JiRC,) for C19 C2 e Mx.

Proof. We will first show that to each simple annular family of
Uy there corresponds an equivalent simple annular family of £72.

Let F be a simple annular family of Uι with Dx and D21 Dx c int D2,
as the cycles which bound F. For definiteness let F be equivalent to
(i) and D2JtDι. If F is equivalent to one of the other canonical
families or if Z>1JίD2, the proof is similar.

Di and D2 are oriented in opposite directions since the spirals of
F are asymptotic to Dι and D2 in opposite directions. Since F is
equivalent to (i), we will, for simplicity, assume F is (i). Then the
spirals of JPare asymptotic to Dlf in a counter-clockwise direction, i.e.,
if we move along one of the spirals in a counter-clockwise direction
we can come arbitrarily close to Dx. Since D2JιD19 the orientation of
Dt must be in a clockwise direction. The orientation of D2 must then
be in a counter-clockwise direction.

Let G be the family of curves bounded by f{Dx) and f(D2). By
(1), G can contain no cycles other than /(A) and f(D2). G is a simple
annular family. By (2)yf(D1) and f(D2) are oriented in the same di-
rections as Dt and Dz respectively. Thus /(ZΛ) and f(D2) are oriented
in a clockwise and counter-clockwise direction respectively. Then the
spirals of G are asymptotic to Dλ and D2 in opposite directions, i.e.,
G is a bent region. If the spirals of G are asymptotic to /(A) and
f(D2) in the same directions that /(A) and /(A) are oriented, G is
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equivalent to family represented by Figure 4. If the spirals of G are
asymptotic to /(A) and /(A) in the opposite directions that /(A) and
/(A) are oriented, G is equivalent to the family represented in Figure
3. Figure 3 represents (i) and Figure 4 represents (ii).

/(A) f(Do

/(A) /(A)

Figure 3. Figure 4.

/(A) c int /(A) and /(A) </ί/( A) by (1) and (3) respectively. Since
fφ1)J£fφ2)> the spirals must be asymptotic to /(A) and /(A) in the
opposite directions that /(A) and /(A) are oriented. Hence G is
equivalent to (i) and therefore equivalent to F.

We will now show that to each smooth annular family in U,
there corresponds an annular family in U2 with the same index. Let
F be a smooth annular family in Uι with bounding cycles A and D4,
A c: int A All the cycles in F have the same orientation. Other-
wise F would contain a bent annular family. Let G be the annular
family bounded by /(A) and /(A) G is smooth since all cycles are
oriented in the same direction. Let Sx and S2 be cross-sections of F and
G respectively. We may define a mapping TV S< —> S* as follows:

if d(x) e Λf,
Ί-p ^ 7 /'yΛ c: 71//"

where t(x) e iϋ+ is such that ^ττ^(^) e St and #7^(0, ί(»)) Π S{ = φ. Evi-
dently Tt is one-to-one and onto. The continuity of Tt follows from
the fact that for a given xeSi9 subarcs of S< containing x as a non-
end-point generate arbitrarily small neighborhoods of x, i.e., if A is
any subarc of Si containing a a s a nonend-point, Arc^ — a, a) is a neigh-
borhood of x for α > 0. Hence Tt is a homeomorphism of S< onto it-
self whose fixed points correspond to the intersection of the cycles of
(Ui9^) with Si,i = 1,2.

For i = 1, 2, let /4 be a homeomorphism of St onto [0, 1] such
that /ΛA Π &) = 0 and /a(/(A) Π S2) = 0. Let

α?!, ̂ 2 6 Mi n Si, C^) c int d ί ^ ) ,

and ?/ g ilίj Π Si for /̂ in the subarc of Si with end-points x1 and α?2.
Then C^) U C^^) forms the boundary of a simple annular
family. Therefore C^x^JtC^) or C^x^JtC^x^. For definiteness let
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The proof is similar if C^xJJϊdiXt). Then
intersects St between y and x1 by the Monotonicity Theorem

[1, VIII, 4.13]. Then f.T^y) - A(v) has constant sign for y in the
subarc of S1 with end-points x1 and x2. Similarly f2T2(y) — f2(y) has
the same sign for all y in the subarc of S2 with end-points /(C^x^) f] S2

and f(Cz(x2)) n St. Since Dz c int A, AΦ* Π.Si) = 0, and fx{D, n &) - 1,
/ increases from #2 to xt along S i. Similarily f2 increases from
/(C2fe))nS2 to /(C1fe))ίlS2 along S2. Then ATM) - A(v) and
AT2{y) — f2(y) are both positive for # in the appropriate subarc. Hence
Tι and T2 are similar. F and G are equivalent.

We have shown that to each bent or smooth annular family of Uι

there corresponds an equivalent bent or smooth annular family of U2.
The ordering (with respect to nearness to the critical point) of the
annular families of Uι is the same as the ordering of the equivalent
annular families of U2 because the order of the boundaries of the
annular families is preserved by (1). Hence bs(U^ — bs(U2). By Theo-
rem 3.5, (t/i, TΓi) and (U2,π2) are equivalent. Theorem 2.3 yields the
desired result.

REMARKS. 1. If we replace (2) and (3) by (2') and (3') the con-
clusion of Proposition 4.4 remains valid.

(2') / i s orientation reversing
(3') Cl9 JtC2 if and only if /(CJJr/iQ for Clf C2eMι.

The proof is analogous to that of Proposition 4.3.
2. Conditions (2) and (3) are independent as the following examples

show. Let F and G be the simple annular families indicated by
Figures 5 and 6.

Figure 5. Figure 6.

Figure 7. Figure 8.
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Let f(d) = Di. Then (2) is satisfied and (3) is not.
Now let F' and G' be the simple annular families indicated by

Figures 7 and 8.
Let /(CJ) = Di. Then (3) is satisfied and (2) is not.

THEOREM 4.5. {Ux — {pj, TΓJ and (U2 — {p2}, τc2) aw isomorphic if
and only if either (1), (2) and (3) or (1), (2'), and (3') are satisfied.

Proof. If: This is Proposition 4.4 and Remark 1 following Pro-
position 4.4.

Only If: Let (h, φ) be an isomorphism of (Uι — {pι}1π1) onto
(U2 — {P2Ϊ17Γ2) Then Λ, defines a homeomorphism h': M1—>M2. h may
be extended to a homeomorphism of U1 onto ί72 by defining h(pλ) = p2.
Hence we may assume A is a homeomorphism of C/i onto U2. Let C2,
C2 € M19 C, c int C2. Then dh(int C2) = Λ(C2). This and Corollary 1.10
imply A(CX) c int λ(C2). Since /ι'(C,) - λ(C<), i = 1, 2, Λ' satisfies (1).

We now consider the case that (h, φ) is proper. Then <p(x, •) is an
increasing function implies the orientation of C and hf(C) are the same
for CeMγ. h! satisfies (2). By applying Proposition 2.5, hf satisfies
(3).

If (h, φ) is dual, then φ(x, •) is a decreasing function and the
orientation of C and h'(C) are reversed for any CeMt. Proposition
2.5 implies h' satisfies (3).

Thus if (A, φ) is proper, (1), (2), and (3) are satisfied and if (h, φ)
is dual, (1), (2'), and (3') are satisfied.

5. Classification of 0 + stable isolated critical points* The be-
havior of trajectories in a sufficiently small neighborhood of an
0 + stable isolated critical point has been completely determined, [1,
VII, 4.1]. The theorem states

THEOREM 5.1. Let p be an 0 + stable isolated critical point of
a dynamical system (X, π). Then p satisfies precisely one of the
following conditions:

( 1 ) p is asymptotically orbitally + stable (a focus).
( 2 ) Some neighborhood of p consists entirely of cycles (a center).
( 3 ) p is a center-focus.

Furthermore p is an 0 Λ- stable if and only if (1) holds, and 0 stable
if and only if (2) or (3) hold.

We have just classified center-foci. Centers are classified in [4].
To complete the classification of an 0 + stable critical point, we must
classify foci.

In [1, VII, 4.3] it is proved that
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PROPOSITION 5.1. Each o + stable isolated critical point, not a
center, possesses arbitrarily small neighborhoods bounded by closed
transversal curves.

For i — 1, 2, let p{ be a focus of (R2, π^, A{ be the region of at-
traction ([1, IV, 4.9]) for pi9 and Si be a closed transversal curve con-
tained in A*. Then it can be shown that S-K^1 — At — {pj, i — 1, 2,
i.e., Ai — {Pi} is parallelizable.

PROPOSITION 5.2. (Aly 7rx) and (A2, π2) are isomorphic.

Proof. Let /: Ŝ  —> S2 be a homeomorphism. Then for each
xeAί — {pj there exists a unique £(#) such that xπxt{x) Π Si (1, VII,
4.4]). Moreover since <A< — {p{} is parallelizable, £(•) is a continuous
mapping of A1 — pi onto jβ1.

It can be verified that

- t(x) if a? ̂  Px

(p a if a? = Pi

is a homeomorphism. Noting that tixπ^) = t(x) — s we get that
hixπ^) — h(x)π2s for aj e Aγ and s e JB1, If we denote the identity
mapping of Rι onto itself by i, (h, i) is an isomorphism of (Aly πx) onto
(A2, π2).
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CALIFORNIA STATE COLLEGE AT LOS ANGELES




