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INVOLUTIONS OF THE 3-SPHERE WHICH FIX 2-SPHERES

RoBERT CRAGGS

We show in that the space of involutions of the 3-sphere
whose fixed point sets are 2-spheres is pathwise and locally
pathwise connected. From Smith theory it is known that these
involutions are orientation reversing. The fixed point sets
need not be tame 2-spheres; Bing and others have many ex-
amples of involutions of the 3-sphere whose fixed point sets
are wild 2-spheres,

In order to prove the connectivity theorem (§6) just mentioned
we develop an approximation theory for involutions of the 3-sphere in
§’s3,4. Some of the results there are interesting in their own right.
Corollary 8.1 states that involutions which fix wild 2-spheres can be
approximated by involutions which fix tame 2-spheres. Theorem 4.6
states that if an involution ¢ fixing a 2-sphere R approximates an
involution f fixing a 2-sphere S very closely then R approximates S.
We also make use of Theorem 5.2, a modified version of the Alexander
deformation theorem, which states that if the boundary of a 3-cell C
in the 3-sphere approximates a given 2-sphere very closely then very
small homeomorphisms of C onto itself which fix Bd (C) can be deformed
back to the identity by small isotopies of C which fix Bd (C).

NoOTATION. Most of our notation conventions are discussed in [12].
We mention a few items here.

With one exception which we note later in this paragraph o denotes
the metric on a metric space. In the case of Euclidean space E" and
its subspaces p is given by o(z, y) = {Z(x; — ¥,)*}'* where x = (z,, + - -, 2,),
Y=y, -+, Y,). For spaces X, Y, 5~(X,Y) denotes the space of
homeomorphisms of X into Y with the compact open topology. If X
is compact and Y metric S2(X, Y) is a metric space with metric d
given by d(f, g) = sup {o(f(x), g(x)) | v € X}.

An isotopy H,(a <t < b) of a space X into itself is a continuous,
one parameter family of homeomorphisms of X into itself or alternately
a parameterized path in 5#°(X, X). In case X is a metric space we
say H, is an e-isotopy provided the track under H, of each point z of
X —{H,x)|te]a, b]}— has diameter less than . An e-set in a metric
space X is a subset of X of diameter less than e¢. If ze¢ X then
N(X, x,¢) denotes {ye X|p(x,y) <e}. If Y= X then N(X,Y,e)
denotes U {N(X, y,¢)|ye Y}.

We denote the 3-sphere, the unit sphere in Euclidean 4-space E*,
by 3. We denote by .# the subspace of 5#°(3,3) consisting of those
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involutions of Y whose fixed point sets are 2-spheres and by Z the
subspace of & consisting of those involutions whose fixed point sets
are tame 2-spheres. If S is a 2-sphere in 3, & (S), £ (S) denote the
subspaces of ., & consisting of elements which have S for a fixed
point set. A crumpled cube is a space homeomorphic to the closure
of the bounded component of the complement of a 2-sphere in E°.

We assume the reader is familiar with the works of Moise and
Bing on the triangulation theorem and Hauptvermutung for 3-manifolds
[4,6,17,18,19] as well as some of the elementary consequences of
these works—for example from [17, Corollary to Theorem 1] that tame
2-spheres bound pairs of 3-cells in Y and that disjoint tame 2-spheres
in ¥ cobound annuli. ‘

The following theorem which combines special cases of [12, § 9]
and [13, § 8] will be applied in several places in this paper:

THEOREM 1.1. Suppose M is a (pwl) 3-manifold without bound-
ary, K is a compact polyhedron with no local cut points, f is a
homeomorphism of K into M, and € > 0.

There is a 6 > 0 such that:

@) if f, and f, are (pwl) homeomorphisms of K onto tame
sets in M with d(f, f,) < d(e = 0, 1), then there is a (pwl) e-isotopy
H,(0<t<1) of M onto itself such that H,= I (Identity), H, = I on
M — N(M, f(K), ¢), and H,f,= f,, and

(b) if K is a 2-sphere and if f, and f, are homeomorphisms of
K onto disjoint tame sets in M so that d(f, f,) <o (e =0,1), then
there is a homeomorphism g of K x [0,1] into M such that g(x, e) =
f(@) (xe K,e=0,1) and o(f(x), 9(=, t)) < e(x € K, te[0, 1]).

We wish to thank Dean Montgomery for pointing out certain
elementary facts about equivalences of involutions.

2. Converting isotopies of ¥ and crumpled cubes into paths
in #. Here we introduce an isotopy construction to be used in § 6.
We omit proofs of Lemmas 2.1 and 2.2.

LeMMA 2.1. Suppose f e & (S) and S bounds crumpled cubes C
and D in X.

Then the following statements hold:

(1) If ge # (S) with g|C = f|C, then g = f,

(2) If h is a homeomorphism of X, then hfh~e F (h(S)), and

(38) If ge #(S) and h is a homeomorphism of 3 given by
h|C=gfand h|D = I, then g = hfh.

LEMMA 2.2. Suppose fe F(S) and H(0 <t <1) is an isotopy
of X.
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Then h,(0 <t <1) given by h, = H,fH;* is a path in F with
h.e & (H/(S)) (te 0, 1]).

LEMMA 2.3. Suppose fe. % and e > 0.

There is a 0 > 0 such that if ge N(Z, f,0) and H(0<t<1) s
a o-isotopy of X with Hy,= 1, then h, (0 <t < 1) given by h, = HgH™
is a path in N(ZF, f, €.

Proof. Choose 6 < ¢/3 so that the image under f of each d-subset
of 3 has diameter less than /3.

Let ¢ and H, be given as in the hypothesis. For each xeX,
te0, 1], dia (x U H7'(®)) < 0 so g(x U H'(%)) & N, fle U H (), 0) &
N(Z, f(z), ¢/8 + 0) and

Hyg(x U H'(%))) & N(Z, flx), ¢/3 + 20) & N(Z, f(z), e) .
Thus o(f(x), h(x)) <e(xeZ, te]0,1]) and A0 <t < 1) S N(F f,¢).

3. ¢ is dense in %, Bing and Wu [3, 9, 22] have shown that
there are uncountably many inequivalent involutions in &% — <. (See
also [2].) In fact Bing’s methods in [9, §2] can be used to show
that &# — & is dense in % We use Bing’s approximation theorem
for spheres to show that < is also dense in .

THEOREM 3.1. Suppose fe . Z (S) and € > 0.
There is a 6 > 0 such that if R is a tame 2-sphere in X homeo-
morphically within 6 of S, then there is an element ge & (R) such

that d(f, g) <e.

Proof. Let ¢, > 0 be sufficiently small so that ¢, < e and d(f, fh) <e¢
for every ¢-homeomorphism & of X¥. Let ¢ be a homeomorphism of a
polyhedral 2-sphere K onto S. .Let ¢, < ¢, correspond to 6 in Theorem
1.1 for the substitution (¥ — M, K — K, ¢ — f, ¢,—¢€). Choose a positive
number § < &,/2 so small that p(z, f(®)) < &/2 (xe N(Z, S, 9)).

Let R be a tame 2-sphere homeomorphically within 6 of S. There
is a homeomorphism ¢, of K onto R such that d(g, ¢,) <o. Set ¢, = f4..
From the conditions on ¢ we have d(¢,, ¢,) < &,/2 s0 d(g, ¢,) < &. From
Theorem 1.1 there is an ¢,-isotopy H,(0 <t < 1) of ¥ such that H,=1
and H,¢, = ¢,. That is, H f|R = 1. Now R bounds 3-cells C and D,
and H,f switches these 3-cells.

Define g by H,f on D and by fH " on C. Clearly ge.# (R). For
xe D we have o(f(x), H f(x)) < ¢ <e. For xeC we have

o(f(@), fH () < €
by the definition of ¢,.



310 R. CRAGGS
From [10, Th. 1.1] we get:
COROLLARY 3.1. The subspace € 1is dense in F.

4. Homeomorphic closeness of fixed point sets.

LEMMA 4.1. Suppose fe . F (S) and € > 0.

There is a 6 > 0 such that if ge . F (R) with d(f, 9) < J then
(1) RS N, 8, ¢), (i) R separates two points of ¥ — N(Z, S, ¢) if and
only if S separates them, and (iii) dia (R) > dia (S) — e.

Proof. Let S separate 3 into components U and V. Let Y,, Z,
be nonempty, compact subsets of U, V such that ¥ — N(Z, S,¢) S Y, U Z,
and for each we S, NS, z,¢/6)NY, = @, NZ,z,¢/6)NZ + @. Set
e, = inf {o(x, f(x)) |xe Y, U Z}. Choose &, > 0 so that

sup {o(z, f(x)) |[xe N(Z, S, &)} < &/4.
Let Y, Z be compact, connected subsets of U, V such that
< —-N2,S,e))ESYUZ.

Set 0 = 1/4inf {p(x, f(x)) |xe Y U Z}.

Let ge # (R) with d(f, g9) < d. For each zeY U Z, p(z, g(x)) =
46 — 9. Thus RS 3 - (YUZ)S N, S,8) S N2, S,¢). Now R
bounds crumpled cubes C and D with Y = C, and g switches C and
D. Suppose R does not separate Y from Z. Then

YUZcC, DS NZ, S, ¢) ,

and o(x, g(x)) < e/d+ 6 <¢&/2(xeD). Let ceY,UZ, and let d =
g(c)e D. Then ¢ = g(d), and we have o(c, d) = ¢, — 0 = 3/4¢, because
ce Y, UZ, but p(d, c) < &,/2 because de D. From the contradiction we
conclude that R separates Y from Z. Thus R separates two points
of ¥ — N(Z, S, ¢) if and only if S separates them.

Let p, q be points of S such that o(p, q) = dia (S), and let v, y,€ Y,
2, 2,€ Z be points such that o(p, ¥, U z,) < ¢/6, p(q, . U 2,) < ¢/6. We
have o(y, 2,) < ¢/3, 0(¥, 2,) < €/3. Since R separates Y from Z there
are points p’, ¢’ of R on the shorter segments of the great circles
through y,,2 and v, 2. We have p(p, »") < ¢/2, 0(q,q') < ¢e/2 so
dia (R) = (', ¢') > dia (S) — ¢

LEMMA 4.2. Suppose fe. 7 (S) and ¢ > 0.

There is a 6 > 0 such that tf ge . & (R) with d(f, g) <, then
every simple closed curve of diameter less tham 6 on R bounds an
e-disk on R.
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Proof. We suppose dia (S) > 4e. Choose ¢, > 0 so that every
5e,-subset of X is contained in the interior of a 8-cell of diameter less
than ¢/3. Choose ¢, > 0 so that o(z, f(x)) < ¢ (xe N(Z, S, &,)). Choose
g, > 0 so that e, < &,/2 and

& < inf {p(xr f(x)) [ reld — N(Er S, 52)} .

Choose 0 from Lemma 4.1 for f and ¢, sufficiently small so that every
30-subset of X is contained in the interior of a 3-cell of diameter less

than e,/2.
Let g ¢ % (R) with d(f, g) < 9, and let J be a simple closed curve

on R with dia(J) < d. Use Theorem 3.1 and [10, Th. 1.1] to get a
tame 2-sphere R’ in X, a /-homeomorphism ¢ of R onto R/, and an
element ¢’ € .# (R') such that d(f, ¢')<d. From Lemma 4.1, dia (R’) > 3¢.
Use [4, 6,19] to give Y a triangulation T in which R’ is a polyhedron.
The set J' = ¢(J) has diameter less than 36 and so lies in the interior
of a 3-cell C of diameter less than ¢,/2. From [6] we can suppose
that Bd (C) is a polyhedron in T and is in general position with respect
to R’. Each component of Bd (C) N R’ is a simple closed curve which
we claim bounds an ¢/3-disk on R'.

Let L be a component of Bd (C) N R’. Now L bounds an &,/2-disk
D on Bd (C). Let D, ---, D, denote the closures of the components
of Int (D) — R’. From Lemma 4.1, " & N, S,¢,) so D < N, S, &),
o(x, g'(x)) < &, + d(x € D), and dia (D U ¢’(D)) < &, + 2¢, + 20 < 5¢,.  From
the choice of ¢, D U ¢’(D) is contained in an open 3-cell U of diameter
less than ¢/3. Because Int (D) is in general position with respect to
R', each D, U ¢'(D,) is a surface which bounds a 3-manifold @; in U.
Furthermore @; N R’ is a surface F; whose boundary is Bd(D;). We
show that L is contained in a disk in R'Nn U.

Some D,, say D,, is a disk so @, is a 3-cell and F, is a disk.
Either LS F, or LN F, = @. In the first case L bounds a subdisk
of F, in R’ which has diameter less than ¢/3. In the second case
locate an inner most simple closed curve L; of DN F, in F,, cut out
the disk D,; it bounds in D, replace that disk by the disk F,; which
L; bounds in F), and push a neighborhood of F',; in the adjusted disk
slightly to one side of R’ to obtain a new polyhedral disk D(1) with
boundary L such that Int (D(1)) is in general position with respect to
R, Int (D(1)) N R’ consists of a proper subcollection of the simple closed
curves of Int(D)N R, and D) U ¢'(D(1)) & U. After a sufficient
number of repetitions of this process we arrive at a polyhedral disk D(n)
such that D(n) N B’ = Bd (D(n)), D(n) U ¢'(D(n)) bounds a 3-manifold P
in U, and L & P. But then F(n) = R’ N P is an ¢/3-disk, and L bounds
a subdisk of F(n) in R’.

Let K, - -+, K, denote the ¢/3-disks on R’ which the simple closed
curves on Bd (C) N R’ bound. Since dia (C U (U K;)) < ¢ and dia (R') >
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3¢, the set B’ — U K, is connected, has diameter greater than ¢, and
thus does not intersect C. This shows that J’ is contained in one of
the disks K; and so bounds an ¢/3-disk K on R’. Then J bounds the
€/3 + 20 < e-disk ¢~ (K) on R.

LEMMA 4.3. Suppose fe F (S), A is a tame arc in X which
pierces S at a point p and otherwise fails to intersect S, and € > 0.

There is an 7 > 0 such that if C is a tame 3-cell of diameter
less than 1 whose interior contains p and which intersects A in an
unknotted arc A’ that spans Bd (C), then the following statement is
valid:

There is a 0 >0 such that if ge T (R) with d(f, g) <o and
RN BA(C) is a finite collection of simple closed curves at which R
crosses Bd (C), then RN A < Int (4'), there is a component U of R — C
such that each component of R — U 1is an e-disk, and exactly one
component of ClL(U) N Bd (C) separates the two endpoints of Bd (4')
on Bd (C).

Proof. We suppose dia (S) = 4e. Complete A to a tame, unknotted
simple closed curve L in . Let ¢, < ¢ be a positive number such that
N(Z,p,26) N L < A. Let n correspond to ¢ in Lemma 4.2 for the
substitution f— f, ¢, — .

Let C be a tame 3-cell with the properties described in the hy-
pothesis of the lemma. Let ¢, > 0 be a number such that

N, S, 5e;) N A < Int (4)

where A’ = CN A and N(Z, p, be,) & Int (C). Choose ¢, > 0 less than
¢, so that p(z, f(x)) < & (xe N2, S, &)). Choose ¢, > 0 so that ¢, < ¢,
and N(X, S,e) N A is contained in an arc A” in N(Z, p, ). Choose
0 < ¢, from Lemma 4.1 for f, e,

Let g be given as in the hypothesis of the lemma. It follows
from the conditions on 7 that each component of R N Bd (C) bounds
an ¢-disk on R. By throwing away disks contained in the interiors
of others we find mutually exclusive ¢,-disks F', - - -, F',, such that each
Bd(F;) £ Bd(C) and RN Bd(C) = UF;. From the conditions on ¢, no
F'; intersects L — A, and from the conditions on é, RN A < Int (4’).
Set U=R - UPF;. Now U is connected so either U < Int (C) or
UNC= 2. In the first case dia(R) < 2¢, + 1 < 3¢, < dia(S) — e.
But from the choice of 4, dia (R) > dia(S) — ¢ so UNC = @. Because
A pierces S the endpoints of A’ lie in different components of ¥ — S.
Lemma 4.1 shows that the endpoints of A’ also lie in different compo-
nents of 3 — R.

Suppose no Bd (F;) separates the endpoints of A’ on Bd (C). From
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[7, Th. 7.3] there is a homeomorphism of ¥ onto itself which is the
identity on L — A’ and pulls R entirely off C. But this contradicts
the fact that R separates the endpoints of A4’. Suppose Bd (F,;) and
Bd (F;) (7 # j) both separate the endpoints of A’ on Bd(C). Both Bd (F)
and Bd (F;) link L, and both F; and F; fail to intersect L — Int (4’)
so they both intersect Int (A’). Thus there are distinct components
H and K of RN C and there is a subarc B of A’ with endpoints r ¢ H
and se€ K so that Int (B) fails to intersect R. The conditions on §
show that B < A” < N(Z, p, &;). Furthermore

o, g(x)) = 0+ & = 2e(xe N2, p, &))

so g(A") & N(Z, p, 5¢,) < Int (C). Now H separates C into components
U and V. Suppose K < U. Because g switches the 3-cells bounded
by R, g(B— R)< V. But this is nonsense for g(s) = s. From the
contradiction we conclude that exactly one Bd (F);) separates the end-
points of A’ on Bd (C).

The following lemma is essentially Theorem 6.1 of [11]. It is
obtained by changing E*® to X, the disk D to a 2-sphere S, introducing
a triangulation of 3, and making a few small adjustments in the proof
of the theorem—one of them is pushing the triangulation of 3 keeping
S fixed rather than the other way around.

LEMMA 4.4. Suppose S is a 2-sphere in X and & > 0.

There is a triangulation T of ¥ with i-skeleton T; and mesh less
than e, there is a tame Sterpinski curve X on S, and there is an
e-homeomorphism g of S onto a tame sphere S’ so that

(1) each component of S — X has diameter less than e,

(2) g is the identity on X,

(8) S misses T, and SN T, is a finite collection of points in
I(X, S) (the inaccessible points of X in S) where l-simplexes of T
pierce S,

(4) g(S) is a polyhedron in T which is in general position with
respect to T, and

Following [11] we say, for a 2-sphere S in 3, a tame Sierpinski
curve X in S, and a triangulation T of ¥ with i-skeleton T; and mesh
less than ¢, (S, X, T,, ¢) has Property @ provided there is an e-homeo-
morphism ¢ of S onto a tame sphere S’ so that the five conditions are
satisfied in the conclusion of Lemma 4.4.

Bing [7] defines a stable graph as a finite, planar graph such that
each homeomorphism between two embeddings of it into 2-spheres can
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be extended to a homeomorphism between the 2-spheres. The following
lemma about stable graphs is similar to Theorem 3.2 of [7].

LEMMA 4.5. Suppose fe . (S) and € > 0.

There is a stable graph G = U Bd (D;) where D,, ---, D, are &-
disks filling up S and having mutually exclusive interiors, and there
s @ 0 > 0 such that +f g€ F (R) with d(f, g) < 0, then there is an
e-homeomorphism @ of G into R.

Proof. From Lemma 4.4 and [7, § 9] it follows as in [12, Lemmas
6.2 and 6.3] that there is a triangulation T of X with ¢-skeleton T,
a tame Sierpinski curve X on S, and an ¢ > 0 so that (S, X, T,, ¢)
has Property @, and if G’ denotes the graph which consists of the
sum of the components of X N 7T, containing points of 7T,, then G’
contains a stable subgraph G = U Bd (D;) where D,, - .-, D,, are ¢/3-disks
filling up S and having mutually exclusive interiors. Let ¢, ««-,¢;, «+-
denote the arcs which are the closures of the components of G — T,
and let p, -+, s, - -+ denote the points of G N T..

Let &, > 0 be so small that each dia (N(X, D,, ¢,)) < ¢/3. Because
the accessible points of X fail to intersect T, there is a homeomorphism
N of G X [—1,1] into T, so that (1) for each simplex s of T,

MInt(s) N G) x [—1,1])) S Int (s),
@ MGENTY) X[-L,1IDpNGE=GN T, (3) for each D,,
AMBd (D;) x [-1,1]) & N(Z, Dy, &) ,

and (4) G_, = MG x —1) and G, = MG X 1) lie in different components
of ¥ — S. One obtains G_,, G, satisfying (4) in much the same way
that one finds the piercing arcs in [8, §4]. For each p, set 4, =
Mpe X [-1, 1]

Choose ¢, > 0 so that ¢, < ¢, N2, S, &) N (G-, UG, = @&, the sets
N(Z, py, &) are mutually exclusive, and each N(Z, p;, &) N T, < Int (4,).
Choose ¢, < &/2 so that it corresponds to » in Lemma 4.3 for f and
&/2. For each p, let C, be a 3-cell of diameter less than &, whose
interior contains p,, which is polyhedral in 7 and in general position
with respect to T, and whose intersection with each simplex s of T
is either empty or a cell of the dimension of s. For each C, let A4}

. denote the subarec C, N T, of A,. Finally choose 6 so that it is subject
to the conditions on ¢ in Lemma 4.1 for f and ¢, and subject to the
conditions on ¢ in Lemma 4.3 for each substitution (f — f, 4, — A4,
C,—C, &/2—¢).

Let ge # (R) with d(f,9) <d. Use [5, Th. 7] and Theorem 3.1
to find a polyhedral 2-sphere R’ in T which is in general position with
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respect to T, and each C, so that there is a d-homeomorphism ¢ of R
onto R’ and an involution ¢’ € & (R') with d(f, ¢') < o.

From the conditions on 6, ¢,, and ¢, we find that (1) G_, and G,
lie in different components of ¥ — R’, (2) each A, N R’ & Int (4}), (3)
there is a component U of R’ — |J C, such that each component of
R’ — U is an ¢,/2-disk — denote these disks by F',; so that Bd (F;) &
Bd (C,)—and (4) for each k exactly one Bd (F',,), say Bd (F,), separates
the endpoints of A} on Bd (C,).

Following Step 2 in §4 of [7] we define a homeomorphism % of 2
which is the identity on Cl(U) U (T, — UC:) U — U N, ps, €)) so
that each A(F;) (5 > 1) fails to intersect T, and each h(Int (F,)) &
Int (C,). We can suppose that #(R’) is in general position with respect
to T, and that each A(Fy,) N T, is the single point p,. Because i(R’)
separates G_, from G, there must be an arc ¢} in each disk \(¢; X [—1, 1])
which spans Bd (M(¢; x [—1, 1])) and has

Bd (¢;) = M(R') N Bd (\(¢; x [—1,1]))

for its endpoints. Define a homeomorphism 7’ of G into A(R’) so that
each 7'(p,) = p, and each 7'(¢;) = ).

Define the homeomorphism 7 by 7 = ¢~*A~'n’. Each of @/, »~, and
¢! is an ¢/3-homeomorphism so 7 is an e-homeomorphism of G into R.

THEOREM 4.6. Suppose fe . Z (S) and € > 0.
There is a 6 > 0 such that if ge Z (R) with d(f, g) <6 then
there is an e-homeomorphism of S onto R.

Proof. We suppose dia (S) > 5e. Let 3¢, < ¢/2 correspond to o
in Lemma 4.2 for f and &/2. Choose ¢ from Lemma 4.5 for f and e¢,.

Let ge & (R) with d(f, 9) < d. From Lemma 4.5 there are ¢,-disks
D, ---, D, which fill up S and have mutually exclusive interiors so
that G = |J Bd (D;) is a stable graph, and there is an ¢,-homeomorphism
7w of G into R. Since G is stable we can extend 7= to a homeomorphism
of S onto R which we also call #. Each 7(Bd (D)) has diameter less
than 3¢, so by the choice of ¢, it bounds an ¢/2-disk F; in E. Suppose
for some D;, n(D;) # F;. Then n(G) S F;. But dia (G) > 3¢ and 7 |G
is an ¢,-homeomorphism so dia (7(G)) > ¢ > dia (F;). Thus each 7(D;) =
F; and 7 is a 3¢, + ¢/2 < e-homeomorphism of S onto R.

5. Small deformations of cells whose boundaries approximate
a given sphere. We omit a proof of Lemma 5.1. The proof is straight
forward but involves a tedious pasting together of small isotopies.

LemMmA 5.1. Suppose M is a 3-manifold, F is a compact surface,
f is a homeomorphism of F into M, and € > 0.
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There is a 6 > 0 such that if g is a homeomorphism of F x [0,1]
onto a solid P in M where o(f(x), g(x, 1)) < o (xe F, te|0,1)]), and if
h 1s a o-homeomorphism of P onto itself which 1is the identity on
Bd (P), then there is an e-isotopy H,(0 <t < 1) of P onto itself such
that H, = I, H,|Bd (P) = I, and Hh = I.

The following theorem is the key to establishing the connectivity
properties of A

THEOREM 5.2. Suppose S is a 2-sphere in 3 and & > 0.

There is a 6 > 0 such that if C 1s a 3-cell in X whose boundary
R is homeomorphically within 6 of S, and if h 1s a 6-homeomorphism
of C onto itself which is the identity on R, then there is an e-isotopy
H,(0<t<1) of Conto itself such that H,= I, H,|R = I, and Hh = I.

Proof. If S were tame the problem would be relatively easy.
With the help of Theorem 1.1 and Lemma 0 of [15] we could construct
the isotopy essentially as the Alexander isotopy is constructed in [1].
However, in order to deal with 2-spheres which are possibly wild we
have to reach our goal by a devious route.

It is easily seen that an equivalent theorem is obtained if in the
hypothesis 3 is replaced by E®. It is this equivalent version which
we prove. Except for item (5) we suggest that on first reading one
skip the epsilonics which follow in the next paragraph and concentrate
on the geometry in the proof.

Consider then a 2-sphere S in E® and a number ¢ > 0. We suppose
for convenience that dia (S) > 10e. Let f be a homeomorphism of a
polyhedral 2-sphere K onto S. We obtain in succession seven positive
numbers—e,, +--, &, and 4.

(1) Conditions on ¢: Substitute (E*—> M, K—F, f — f, ¢/4—¢)
in Lemma 5.1 to get & > 0 corresponding to ¢ there.

(2) Conditions on ¢,: Substitute (BF—>M,K— K, f — f,6,—¢€)
in Theorem 1.1 to get ¢, > 0 corresponding to ¢ there.

(3) Conditions on &;: Choose &, > 0 so that e, < ¢,/8 and ¢,/400.

(4) Conditions on ¢: Choose &, > 0 so that every 3¢-subset of
S is contained in a disk on S of diameter less than &,/3.

(5) A special polyhedral neighborhood M of S: Use [16] to find
a pwl homeomorphism g of K x [0,1] onto a polyhedron P in E°
with boundary components S, = g(K x 0) and S, = g(K x 1) so that
09y, e, fy) <e(yeK,e=0,1) and to find mutually exclusive, poly-
hedral cubes-with-handles G,, -- -, G,., K, - - -, K, so that each dia (G;) <
&, each dia (K;) < ¢, each G; N P is a polyhedral disk on S,, and each
K; N P is a polyhedral disk on S, and so that M = PU (UG, U (U K))
contains a neighborhood of S in E°. We suppose that S, < Int (S,).
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Let F denote the component of Bd (M) which intersects S,, and let
@ denote the polyhedral 3-manifold which F bounds in Int (S).

(6) Conditions on &: Choose ¢; less than one fourth the distance
from Q to S and so small that any 2-sphere in E°® which is homeomor-
phically within ¢, of S contains N(&®, Q, 4¢;) in its interior. Theorem
VI 10 of [14] guarantees that the second condition can be met.

(7) Conditions on &: Substitute (E*— M, Q— K, I (Identity)—
f, & —¢) in Theorem 1.1 to get &, corresponding to o there.

(8) Conditions on 6: Choose 0 < &/2.

Now let C, R, and % be given as in the hypothesis of the theorem.
We construct in succession isotopies H/(0 <t<1)(¢ =1, :--,4) of C
onto itself such that each H{ = I.

Use [6, 18] together with [15, Lemma 0] to obtain a d-isotopy H;
which is the identity on Bd (C) so that H!h is locally pwl on Int (C).
Now H!h|Q is an e-homeomorphism so from items (6) and (7) there
is a pwl e-isotopy H? of C which is the identity on Bd (C) such that
HHh|Q = 1.

In each K, there are mutually exclusive, polyhedral ¢,-disks D;;
spanning Bd (K;) such that the closure of K; minus thin, disjoint
regular neighborhoods of the D,;’s is a 3-cell. We can suppose that
the D,;’s fail to intersect S,. Use [5, Th. 7] and the fact that R is
collared in C to find a d-homeomorphism ¢ of S onto a polyhedral
2-sphere R’ in Int (C) N Int (M) which is in general position with respect
to U D;;. Each component of 6~'(({J D;;) N R') has diameter less than
€, + 20 < 3¢, and so by (4) bounds an ¢,/3-disk on S; thus each component
of (U D;;) N R bounds a disk on R’ of diameter less than ¢,/3 + 26 < ¢,
By cutting away some closures of components of (D;; — R')’s, replacing
them by closures of components of (R’ — {J D;;), and then pushing
these modified disks slightly into Int (R’) we obtain a new collection
of mutually exclusive, polyhedral 3e¢,-disks {E;;} in M N Int (C) which
span F' and have the same boundaries as the D,;’s. Choose mutually
exclusive regular neighborhoods N;; of the E;;’s in M N Int(C) so that
each N;; has diameter less than 3¢, and intersects Bd (M) in a regular
neighborhood of Bd (E;;) missing S,. Then in each N;; choose a smallar
regular neighborhood N}; of E;; so that N/, N Bd(N;; is a regular
neighborhood of Bd (E;;) in Int (N;; N Bd (M)).

Now H!H'h is a 0 + d + ¢ < e;-homeomorphism so each H:Hh(N/;)
has diameter less than 5e;. Pushing each H!H'R(N/,) N Int (M) slightly
so it is in general position with respect to |J N;; and then using [7,
§ 7] (see also [12, Lemma 2.9]) we define a 65¢,-isotopy HI(0 <t < 1)
of C so that H}|Q UBA (C) = I and H!H!H!h|Q U (U N/;) = L.

Consider the 3-manifold T'= Cl(C — (Q U (U N/)))). Its boundary
components are the 2-spheres R = Bd(C) and R” which is obtained
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from F by cutting out annuli and replacing them by pairs of disks.
More specifically, for each K;, U; (N, N F) is replaced by

CL(U Bd (V) — F) .

Each dia (K; U (U; N/))) < & + 2(3e,) < Te;. Define a homeomorphism
fo of K onto R” such that f,(y) = g(y, 0)(y ¢ g~'(U K;)) and for each
K, flg7(K; 0 So)) & K; U (U; Nij). We have d(f, f;) < e, + Te, <8& < €.
Let f, be a homeomorphism of K onto R such that d(f, f.) < o.

From (2) and the fact that R is collared in C there is a homeo-
morphism ¢ of K x [0,1] onto T such that é(y, ¢) = f.(y)yc K,e=0,1)
and o(s(y, t), fy)) <e (ye K, te]0,1]). Furthermore by (3) H:H H'h
is an ¢-homeomorphism. Thus by (1) there is an ¢/4-isotopy HA0 <
t <1) of C such that H{|C — Int(T) = I and H!H}HH!h = L.

The promised isotopy H, is given by H, = I and

Ht = H4i(t—(i—1)/4H(i—1)/4((i - 1)/4 =t = @/4, 1= 1, ) 4) .

Each H; is an ¢/4-isotopy so H, is an e-isotopy.
6. Pathwise and local pathwise connectivity of .Z.,

THEOREM 6.1. The space % 1s pathwise and locally pathwise
connected.

Proof. The proof is divided into four parts.

(1) The subspace < s locally pathwise connected at each point
of . That is, if fe.%# and ¢ > 0, there is a § > 0 such that if
90 9. € N(F, f,0) N <, then there is a path 2, (0 <t <1) in N(&F, f, )N
<& with endpoints %, = g, and &, = g,.

Proof of (1). Let ¢, correspond to 6 in Lemma 2.3 for f and e.
Let &, correspond to 6 in Theorem 5.2 for S and ¢,. Let ¢, <e¢, be a
positive number so small that d(f.f,, I) < ¢, for each pair of elements
fi fie N(7, f,e). Let ¢, correspond to ¢ in Lemma 2.3 for f,¢,.
Let ¢ be a homeomorphism of a polyhedral 2-sphere K onto S. Let
g correspond to ¢ in Theorem 1.1 for the substitution (¥ — M, K — K,
¢ — f,e,—¢). Finally choose § < ¢ from Theorem 4.6 for f and e,

Let g, g.€ N(.7, f, 0) N = with g,e Z(S,) and g, <(S,). From
the conditions on ¢ and ¢; there are homeomorphisms ¢, ¢, of K onto
S, S, so that d(g, ¢.) < & (e = 0, 1) and there is an ¢-isotopy H}(0 <
t <1) of ¥ such that H} = I and H!¢, = ¢,. Define k(0 < ¢ < 1/2)
by h, = Hig(HL)*. From Lemmas 2.2 and 2.3, h(0<t<1/2) <
N(&F, fie) N Z and ke ©(S)). The conditions on &, show that
A9t I) < &,

Let S, bound 3-cells C and D in X¥. From Theorem 5.2 there is
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an ¢-isotopy HX0 <t < 1) of 3 onto itself such that H} = I, H?| D = I,
and H?|C = g,h,,. Define h,(1/2 <t <1) by H;_h,(H} ). Lemmas
2.1 and 2.3 show that 2,1/2<t<1) S N(F,f,e) N Z(S) and h, =
9. Thus B, 0Z<t<1)ES N&F,f,e)N ¥ with b, =g, and h, = g,.

(2) If fe s and >0 thereis a path h(0<t<1)in N(F, f, €)
such that h, = f and h,e & (t < 1).

Proof of (2). From (1) there is for each j =1 a d, such that any
two points in N(#, f, 0;) N & can be joined by a path in N(&, f, ¢/5) N
<. We suppose that 6, >0, > -+ >0, > ---. Use Corollary 3.1 to
find for each j an element f;e N(%, f, ;) N <. For each j there is
apath 2,1 -1/ <t<1—-1/(F+ 1) in N(&F, f, ¢/j) N & such that
hy_y; = f; and Ry = fi+. Because lim f; = f we can set b, = f
to get the promised path.

(3) The space F is locally pathwise connected.

Proof of (3). Let fe s and ¢ >0. Choose ¢ from (1) for f
and e.

Let f,, fie N(&, f,0). From (2) there are paths 7,0 <t < 1/4)
and 2,(3/4 <t <1) in N(&F, f,0) such that h, = f,, h, = f, and hy,,
hy,€ <. Then (1) enables us to define A,(1/4 <t < 3/4) in N(7, f, ¢)
so it connects up A, and hy,.

(4) The space & 1is pathwise connected.

Proof of (4). In view of (2) it is sufficient to show that < is
pathwise connected.

Let f,9e & with fe<(S) and ge £ (R). Let T be a tame 2-
sphere in Y disjoint from both S and R so that T bounds a 3-cell B
containing both S and R. The pairs (T, S) and (7, R) both bound
annuli and S, R bound 3-cells C, D in Int (B). Thus there is a homeo-
morphism % of B onto itself which is the identity on Bd (B) and takes
C onto D. From [1] there is an isotopy H/(0 <t < 1) of ¥ which is
the identity on ¥ — Int(B) so that H; =1 and H!|B = h. From
Lemma 2.2, h(0 £t < 1/2) given by h, = HLf(H.) ™ is a path in &
with k, = f and h,,€ £ (R).

Use [1] to define an isotopy HX0 <t < 1) of Y onto itself such
that Hy = I, H}|¥ — D = I, and H?|D = gh,;,. Define h(1/2<t<1)
by h, = H},_h;(H3_)™'. As in the proof of (1) %, is a path in &
with &, = g.

The following corollary shows that pseudo isotopies like the one
Bing uses in [3] can be used to obtain all elements of % — & from <.

COROLLARY 6.1. For each pair of involutions f € F ,ge & there
is a pseudo isotopy H, (0 <t <1) of I such that Hy=1I and f= H,g(H,)™.

Proof. Let fe.# and ge & be given. From (2) there is an



320 R. CRAGGS

element g, & and there is a path %,(1/2<t¢t<1) in % such that
hy, =g, and h, = f. From the proof of (2) we can assume that 2,(1/2 <
t < 1) is made up of pieces h,(1 —1//<t<1—-1/G+ )G =2,83,-:+)
where h,(1 -1/ <t<1-1/(j +1) &S NF,f1/7)NZ. From the
proof of (1) each piece of %, can be chosen to have the form

Hihj(H)7 A1 -1j =t <1-1/G+ 1)

where H/(1 —1/j <t <1-—1/(§ + 1)) is a 1/j-isotopy of X with H/ ,; =
I. Define a pseudo isotopy H)(1/2 <t <1) of ¥ by the rule H}, = I,
I{t1 = Hth11~1lj(1 - l/j é t é 1- 1/(j + 1)yj = 2y 3, "')’ and

H =lim H{t —1) .

Note that H'h,,(H))™ = limA,(t— 1) = f.

By a similar argument we obtain from the proofs of (4) and (1)
an isotopy H{(0 <t <1/2) of X such that HY = I and g, = H/,g(H),) ™.
Define the pseudo isotopy H, by the rule H, = HX0 <t < 1/2) and
H,=HH,12<t<1). For 1/2<t<1 we have H,yg(H,)" =
H!H,,9(H;H,,)" = H}g,(H,)™" = h,; thus f = H,gH".

Both Bob Daverman and the referee suggested the following alter-
native way to obtain H}: Let S bound crumpled cubes C and D.
Split open ¥ along S and add S x [—1,1] so that ¥ is represented as
the sum CUS x [-1,1]UD. Define g,= f on C and D, and set
9:((z, t)) = (, —t) for (x,t)eS x [—1,1]. A result of Price’s [20]
provides a pseudo isotopy H(1/2 < t < 1) of X which shrinks the fibers
of S x [—1, 1] back to points and transforms g, to f by the conjugation
f = Hllgz(Hll)—l-
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