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RINGS OF ANALYTIC FUNCTIONS

JULIANNE SOUCHEK

If F is an open Riemann surface and A(F) is the set of
all analytic functions on F', then A(F') is a ring under point-
wise addition and multiplication, This paper is concerned with
proper subrings B of A(F) which are isomorphic images of
A(G), the ring of all analytic functions on an open Riemann
surface G, under a homomorphism ® which maps constant
functions onto themselves, The ring R has the form {go¢:
g€ A(G), ¢ an analytic map from F into G}, and will be
denoted Rj. Relations between ¢, Ry and the spectrum of
Ry are given as necessary and sufficient conditions for the
existence of a Riemann surface G such that R is isomorphic
to A(G).

Open Riemann surfaces will be denoted by F and G, the rings
of all analytic functions on F and G with pointwise addition and
multiplication will be denoted by A(F) and A(G), and @ will denote
a homomorphism from A(G) into A(F') which maps constant functions
onto themselves. Let @ be such a homomorphism. In [5, pp. 272-
273] H. L. Royden shows there is an analytic mapping ¢ of F' into
G such that @&(g9) = g - ¢, and that if @ is an isomorphism onto A(F')
then ¢ is a one-to-one, onto analytic mapping. If ¢ is an analytic
mapping of F' into G, then @ defined by @(9) = gog, g€ A(G), is a
homomorphism from A(G) into A(F') which preserves constant func-
tions. When ¢ is one-to-one and onto, @ is an isomorphism.

The image of A(G) under @ is the set {go¢: ge A(G), ¢ is an
analytic map of F' into G} denoted by R,. R, is a subring of A(F)
and contains the constant functions, since @(\) = N for )\ a constant
function. The following conditions are equivalent: R, properly contains
the constant functions, @ is an isomorphism, ¢ is not a constant
function. Theorems 1 and 2 give other relations between ¢ and R,.

THEOREM 1. If R, properly contains the constant functions,
then R; contains 1/f whenever feR;, f(z) =0 on F, if and only if
6 maps F onto G.

Proof. Let ¢ map F' onto G, feR;, f(2) 0 on F. Then f=
@h for some he A(G) and 1/he A(G) if h(y) = 0 for ye G. Suppose
h(a) = 0. Since a = ¢(z) for some ze F, 0 = h(a) = h(¢(z)) = Oh(z) =
f(?). This contradicts f() #0 on F. Thus h(a) #0 for acG,
1/h e A(G), and 1/f = @(1/h) € R,.

Suppose R, contains 1/f when feR,, f() +0 on F. Let acG.
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There is ge A(G) such that g(a) =0 and g(w) = 0 for w=#a [1,
pp. 591-592]. The function @g e R,. If @g(z) = go¢(z) = 0 for ze F,
then there is 7 e R, such that (@g9)(h) = 1. There is ke A(G) such
that 7 = @k. Then (@g)(Pk) =1 and D(gk) =1 but @ is an iso-
morphism implies gk = 1 and g(a)k(a) = 1. This contradicts g(a) = 0.
Therefore g(4(z)) = 0 and ¢(z) = a for some z¢ F.

A straightforward argument shows

THEOREM 2. If R, properly contains the constant functions,
then R, separates the points of F if and only if ¢ is one-to-one.

Let R be a ring of analytic functions defined on F. The spectrum
of R, YR, is the set of nonzero homomorphisms 7 from R into the
complex numbers such that z(A\) = » for A a constant function. For
2 € F the point evaluation mapping 7, = {(f, f(x)): f€ R} is a homo-
morphism from R into the complex numbers, and 7, (A) = A for » a
constant function. Therefore YR always contains the point evaluation
mappings defined on R. In [5, p. 272] H. L. Royden shows that the
spectrum of A(F') is the set of point evaluation mappings =, defined
on A(F), zeF. For feR let f={(z,nf): Te3R); f is a function
from R into the complex numbers. Let R denote {f: feR}. With
pointwise addition and multiplication B is a ring containing the con-
stant functions and is isomorphic to R under f— f

For ye@G, let +, denote an element of YA(G). The mapping
P = {(y, ¥,): y€ G} is a one-to-one function from G onto JA(G). If
R = ®(A(G)) and @ is an isomorphism, L = {(z, 7-®): tc IR} is a
one-to-one function from YR onto YA(G). The mapping 7w — 7@ =
Jr, — y which is P~'oL defines a one-to-one correspondence between
YR and G when @ is an isomorphism.

THEOREM 3. Let R, = ®(A(G)), @ be an isomorphism from A(G)
into A(F') which preserves constant functions. Let M be the func-
tion from SA(F) into ZR, defined by M(r,) = nx]%. Then M 1is
onto if and only if ¢ is onto, and M is one-to-one if and only if ¢
18 one-to-one.

Proof. The proof that M is one-to-one if and only if ¢ is one-
to-one follows from Theorem 2 and the fact that A(F') separates the
points of F.

Let we¢ JR,. Then wo®c JA(G) implies there is y e G such that
wo® = +,, where +,(g) = g(y) for ge A(G). There are two cases:
yeo(F), yes(F). If yeo(F), then y = ¢(x) for some xe F and
T(Dg) = 9(y) = 9(¢(x)) = Pg(x) for every ge A(G), m(Pg) = Dg(v) for
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every f = @ge R,. This implies 7 = M(x,). If y ¢ ¢(F), then y = 6(x)
for x € F', and it may be shown that for every xze F there is fe R,
such that z(f) = f(z). Let xcF. Then 4(x)ecG. yeG, y+4(x),
and A(G) separates the points of G implies there is a g € A(G) such that
9(y) # 9(¢(x)). From &(g)e R, and 7m(Pg) = g(y) # 9(8(x)) = Pg(x) it
follows that = # M(w,) = nxl%.

Forre ZR;, mo® = 4, € ZA(G), and it has been shown 7w € M(ZA(F"))
if and only if y e ¢(F).

From Theorem 3 and since ZR; and G are in one-to-one corre-
spondence, it follows that the point evaluation maps in XZR, are in
one-to-one correspondence with the points #(x) € ¢(F'), and the elements
of XR,; which are not point evaluation maps are in one-to-one corre-
spondence with the points in G — @(F").

Theorem 4 contains a necessary condition which a subring R of
A(F') must satisfy if R is to be ®(A(G)), the isomorphic image of
A(G) under @ for some open Riemann surface G. The corollary to
Theorem 5 gives a set of sufficient conditions on R in order that R
be @(A(G)) when @9 = go¢ and ¢: F'— (G is an onto mapping.

Suppose F' is an open Riemann surface, pe F, f is analytic at
» and 7 is a local uniformizer which maps a neighborhood of » onto
{z: |2]| < g} for some p >0, 7(p) = 0. There is a number # > 0 such
that for='(z) = 2, a2 for |z| <. The multiplicity of f at p is
defined as inf {k: k = 0 and a, # 0}, denoted n(p; f). The multiplicity
n(p; f) of f at p does not depend on . If R contains functions other
than constants, m = inf {n(p; f): fe R} is defined, and =n(p; f) = m
for some fe R.

THEOREM 4. Let peF, R, contain functions other than con-
stants and let m = {inf n(p; f): fe R,}. There is a local uniformizer
T at p with the properties: ©(0) = p, for some p >0, ¢ maps {z:
|z] < o} onto a meighborhood of p, and if fe R,, for(2) = 3.2, a;(z™)
for |z| < p.

The proof of Theorem 4 is based on two lemmas:

LEmMMA 1. If peF, m =inf{n(p; f): feR,} and feR,, then
n(p;f) = km, where k is a positive integer.

LEMMA 2. Given 332, ¢2' convergent for |z] <o, ¢, # 0, m %= 0,
there is 3,7, bz’ convergent for |z| < o, b, # 0, such that (3., bz)" =

o i
i=m Ci%’ .

Lemma 1 follows from the two relations: For fe R;, f = go¢ for
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some g € A(G), which implies n(p; f) = (n(p; $))(n(4(p); 9)), and if m =
inf {n(p; f): fe R,} then n(p; ¢) = m. Lemma 2 is proved by defining
W a subset of the natural numbers N as W ={neN:b,b, -+, b,
can be defined in such a way that the coefficients of z* for 1 < m <
1<m+n—1of 2 b2)™ and 32, ¢#° are equal} and using induc-
tion to show W = N.

Proof of Theorem 4. Let 7, be a local uniformizer about p such
that 7z,(0) = p. If m = inf {n(p; f): f € R,}, thereis f,e R, and p > 0
such that f,o7,(2) = 32, ¢2* for |2| < p,¢, + 0, and the range of
2. C2' contains |z] < o™,

There is a power series >, b;2', b™ = ¢,, such that > ,.cz' =
Sz, bz for |z] < p as stated in Lemma 2. k(z) = D2, b2' is
defined for |z| < p, is one-to-one, and its range contains |[z| < p.
Thus k~'(y) is defined for |y| < p and f,oT,0k™'(2) = (2, bi(k'(2)))™ =
zm for |z| < p, T,0k7'(0) = p. The function 7 =r7,ok" is a local
uniformizer about p and there is f,e R, such that f,oz(z) = 2™ for
2| < Q.

Let feR,, f not a constant function. Then foz(2) = 3.2, a;’
for |z] < p. Let N denote the natural numbers and define W =
{ne N: for(2) = 3,1 @p; 2™ + 2™"h,(2), Where h,(2) = 2.2, b,,:2" and j;
are nonnegative integers, 0 =7, <7, < ++- < J.}.

It follows from Lemma 1 that for [z|<p,for(2) = 3=,ar =
@y + ;2" + 2™, (2), where h,(0) =0. If ke W, then for(z) =
S @y 2™+ 2™ kR (2), h(0) = 0. Since fe Ry, 2" € R, and constants
are contained in R, 2™¢h(z) = f(2) — ¥ @n; 2" € Ry If hy # 0,
w(p; 2™khy) = Mgy, and  for(z) = D ;2™ 4 2™k 1R, (2), Where
hpe(®) = D2 bpa,2' on |2|< o and Joy, > 5. If k=0, then the
above statement is true with a,; ., =0, Ay, =0. By induction
W = N and for(2) = D2 @,:2™ on |z] < p.

If R, a subring of A(F'), has the property that for every ac F,
fe R, for some local uniformizer 7 about a, for(z) = >, a;(z™*)" for
m(a) = inf {n(a; f): f€ R}, then R has property (§). If R contains
functions other than constants and has property (¢), then for ac F,
m(a) = inf {n(a; f): fe R} =1 if R separates the points of F.

THEOREM 5. If R is a subring of A(F) which contains func-
tions other thanm constants and has property (&), then there is an
open Riemamn surface G, an analytic mapping ¢ of F onto G, and
a separating subring S of A(G) such that S is tsomorphic to R
under f— fop, feS.!

Proof. Let G = {r,: pec F} where ©, = {(f, f(p)):feR} and ¢ =
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{(p, 7,): pe F}. The topology on G will be that which makes ¢
continuous and open. If N, is an open neighborhood of pe F, then
N., ={m;:qeN,} is an open neighborhood of 7,. The set G with
this topology is a connected Hausdorff space.

Let pe F, n,€G and m = inf {n(p; f): fe R}). By the same argu-
ment used in the beginning of the proof of Theorem 4, there is a
function f,e R and a local uniformizer ¢ about p such that z(0) = p
and f,ot(2) = 2™ for |z| < p'™ for some o >0. Then for feR,
fot(z) = 2, ai(2™) = g,(z™) for |z] < p''™, g, analytic on |z| < p.

It will be shown that o.= {(z", 7.,):|2| < p'"} is a local
uniformizer about x,. If 2" =27, then for(z) = g,(z") = g;(z") =
fot(z;), for feR implies x.,, = m.,,, which implies that o. is a
function. If 7., = 7., then in particular f,oz(z,) = f,°7(z,), which
implies z™ =z, and o, is one-to-one. Since the relations z™ — 2z —
7(2) — 6(7(2)) = 7., are open and continuous, ¢, is open and continuous.
Thus 0. is a homeomorphism from {w: |w| < p} onto goz({z: [2]| < p'™}) =
N, .
’ If re W=o0.,]2] <p)No.(z] <p), there are points z, 2, such
that 7. (2,) = 7.,(2,). Then for,(2) = fo7,(2;) for every fe R, and 2=
fi(z(z)) = fi(Tu(2) = gfl(zg"z), 80 9y, is analytic on {w: Jw| < a}, which
contains o7(W). This shows that 2" = 0700, (27) is analytic on o7}(W)
to o7 (W). The function o. is a local uniformizer of a neighborhood of
7, and G is a Riemann surface.

For feR, let f={(, f»):pecF}, S={FffeR). Since f is
continuous and ¢ is open, f is continuous. The function f is analytic
at 7,, because if |w| < p, w = z™, then foo.(w) = f(7..) = f(z(2)) =
e a(z™) = . a;w'.  The mapping ¢ is analytic at p, because
0-togot(2) = 07 (w.,y) = 2™ for |z| < p'™. With pointwise addition and
multiplication, S is a ring and is isomorphic to R under the mapping
F— fo¢ =f. The ring S separates the points of G. Since S contains
functions which are not constant and are analytic on G, G is an open
Riemann surface.

If S is to be A(G), then by Theorem 3 the mapping M(w,) = 7, |,
from ZA(F') to XR must be onto, since ¢ is an onto mapping of F' to
G. Thus IR may contain only point evaluation mappings and IR = G.

COROLLARY TO THEOREM 5. If R s a subring of A(F) which
properly contains the constant functions and has property (&), if
SR contains only point evaluation mappings, and R contains all
fe A(F) such that for,(z) = .2, a,(™)" for |z] < p'™, peF, m=
inf {n(p: f): fe R}, then ZR = G s an open Riemann swrface, and R
1s 1somorphic to S = A(G).

1 This result and proof are similar to one given by M. Heins for a subfield of
the field of all meromorphic functions on a Riemann surface [2, pp. 268-269].
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Proof. Everything except S = A(G) was shown in the proof of
Theorem 5. The function fe A(G) if and only if for every z,cG,
foo. (w) = S, aw for |w| < p. Let feAG), peF, m,eG, and
f= Foo. Then fe A(F) and fe R, because for [z| < p'/", for,(z) =
foo(T,(2)) = f(T. ) = foo. (3") = 22, a:(z™)"

If R={fe¢:feS} and S separates the points of G, then R
separates the points of F' if and only if ¢ is a one-to-one function.
If S separates the points of G, and S = A(G), then R may not separate
the points of F, because if it did ¢ would be a one-to-one, onto
analytic function from F to G, and R = A(F'). If S = A(G) there
may be a surface H, a mapping ¢, and a separating subring T of
A(H) such that ¢, is analytic and one-to-one but not onto, and T =
A(H).

In this part of the paper it is noted that if R = @(A(G)), then
IR with the Gelfand topology is an open Riemann surface, and R
which is isomorphic to R, is the ring of all analytic functions on XR.
Theorem 8 gives sufficient conditions on a subring R of A(F) and on
R in order that TR be an open Riemann surface and R be a ring of
analytic functions on TR. In conclusion sufficient conditions for R
to be A(ZR) are given.

If R is a ring of complex valued functions on F, then the Gelfand
topology on XR is the weakest topology on XR which makes each
element of R continuous, where R = {f:fe R}, f = {(x, nf): meZR}.
Let 7,e SR, K be a finite subset of B, ¢ > 0. An open neighborhood
of 7, will be {re2R: |f(z) — f(m,)| < ¢ for feK}. If R = 0(AG))
and @ is an isomorphism, then YR and YA(G) with the Gelfand
topology are homeomorphic under the mapping L(7) = 7@ from SR
onto YA(G). The mapping P(y) =+, from G onto YA(G) with the
Gelfand topology is one-to-one, onto and continuous. The mapping P
is also open. As Royden observes [4, pp. 287-288], this is a con-
sequence of a theorem of Remmert that an open Riemann surface
can be mapped one-to-one and holomorphically into C* [3, p. 118].
Thus P~'oL is a homeomorphism from YR with the Gelfand topology

onto G.

THEOREM 6. If R is a subring of A(F') such that R = ®(A(G)),
and if @ s an isomorphism which preserves constant functions, then
SR with the Gelfand topology is an open Riemann surface, and R is
the ring of all analytic functions on SR. Moreover R is isomorphic
to R.

Proof. The spectrum of R with the Gelfand topology is a
Hausdorff space. It is homeomorphic to G under the mapping L~'oP,
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and is connected. Let 7,e ¥R where ¢e G, +,c3A(G), and L~'P
maps q¢ — ¥, — 7,. If N, is a neighborhood of ¢ then N,,q = L7 P(N,)
is a neighborhood of 7,. There exists &,c A(G) which has a simple
zero at q [1, pp. 591-592]. &, is a local uniformizer on a neighbor-
hood of ¢, N,=h;(|z]| < p) for some 0>0. If o, = hly, then
heoo7'(2) = z for |z| < p. For he A(G), ye N, hy) = 32 ai(hy(v))"
If fq = @h, then fq is a local uniformizer on N, = L7'°P(N,).
From f,,(7r,,) = h,(y) follows f,(r,) = heoP~'oL(m,), T, € Ny, Whlch implies
fq is a homeomorphism of N, onto |z| < - If =, eN N Nz, then
Fu(@) = ho(y) = Stoah, @) = Soalfy(m) since’ m,e N, or
ye N,. The function f,, is a local uniformizer on N,,q and Z’R is a
Riemann surface.
The ring R is contained in A(ZR), because if f eR, T, €N,
z= f,,(n,,), then fof;'(2) = f(,) = h(y) = 32, ailho()) = S0 ai( Fo(m,))i=
2oa®'. The function T(q) = m, is an analytic map of G onto XR.
If 6 is analytic on IR, then 6T e A(G) and 6 e R because 0(r,) =
0oT(q) Y (0oT) = n'q(f) for f = @(#-T). This implies @ :f. Thus
R = A(CR). Since R contains functions which are analytic and are
not constant on YR, YR is an open Riemann surface.

THEOREM 7. Let R = O(A(GR). If ZeXR, then 77'(0) is a
principal maximal ideal of R, and every principal maximal ideal
of R is the kernel of me 3R. If 7-%(0) is generated by f, then f is
a local homeomorphism on a neighborhood N: of 7 and if we N2,
keR, then k(r) = 32, a(f(m)).

Proof. If #eXR, then 7o® = 4, JA(G) and 77'(0) = O (y;*(0)).
The kernel of +,, M, = 47'(0), is a principal maximal ideal of A(G),
and every principal maximal ideal of A(G) is a kernel of + € JA(G)
[5, pp. 271-272]. If h generates M,, then A has a single zero and it
is a simple zero at ¢ [5]. Thus % is a homeomorphism on a neighbor-
hood of ¢, N,. If f= @h, then 7#~'(0) is the ideal generated by f. Also
7 is a uniformizer on N: = L~P(N,), and if we N3, keR, then
13(77) = 3=, a:(f(7))} as shown in the proof of Theorem 6.

LEMMA. Let S be a ring of continuous functions on X with
tdentity. Then X is not connected if and only if S is contained in
a ring Q of continuous functions on X, where Q =1, + 1, I, I,
proper ideals of @, I, N I, = {0}.

THEOREM 8. Let R be a subring of A(F) which properly contains
the constant functions, and suppose R is not contained in a ring Q
of continuous functions on SR where Q = I, + I,, I,, I, proper ideals
of Q, InNIL ={0}. If for 2eXR, T7'(0) is a principal ideal of R



240 JULIANNE SOUCHEK

generated by f and f, the function in B which corresponds to f in
R, is a homeomorphism on a meighborhood of 7T, and for m in this
netghborhood, ge R, mg = 3.2, a,(nf)’, then R is an open Riemann
surface and R is a ring of analytic functions on ZR.

Proof. The spectrum of R with the Gelfand topology is a Haus-
dorff space. By the lemma SR is connected. Let #e XR. There is
7 a homeomorphism of N: onto |z| < o for some o > 0. If e Ny,
g€ R, then g(m) =3, ay(f(m)). If we N NN, =W then fiofi'(fi(m))=
fim) = Sz, ai(fum)) implies fiofi* is analytic on fyW). {(N.,fo):
we YR} defines an analytic structure on YR. It is immediate that
Rc A(SR). Since B contains functions which are not constant and
are analytic on YR, YR is an open Riemann surface.

If {R,} is a sequence of subrings of A(F') such that R, satisfies
the conditions of Theorem 8, ¥R, |z = 2R, R,_,C R,, then the chain
has a maximal element, {fo¢: fe A(SR,) and ¢(x) = 7,, e F}. Let
7#e3XR, and f be a local homeomorphism at #. If R, satisfies the
conditions of Theorem 8 and contains all functions g in A(F') such
that §(7) = 32, a:(f(w))' for te N», = and 7 elements of IR, then
R ACR), because if geRl, then there is 7 € YR, such that go f‘1
is not analytic on {z2: |2| < o} which implies § ¢ A(ZR)).
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