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RINGS OF ANALYTIC FUNCTIONS

JULIANNE SOUCHEK

If F is an open Riemann surface and A(F) is the set of
all analytic functions on F, then A(F) is a ring under point-
wise addition and multiplication. This paper is concerned with
proper subrings R of A(F) which are isomorphic images of
A(G), the ring of all analytic functions on an open Riemann
surface G, under a homomorphism Φ which maps constant
functions onto themselves. The ring R has the form {goφ:
geA(G), φ an analytic map from F into G}, and will be
denoted Rφ. Relations between φ, Rφ and the spectrum of
Rφ are given as necessary and sufficient conditions for the
existence of a Riemann surface G such that R is isomorphic
to A(G).

Open Riemann surfaces will be denoted by F and G, the rings
of all analytic functions on F and G with pointwise addition and
multiplication will be denoted by A(F) and A(G), and Φ will denote
a homomorphism from A(G) into A(F) which maps constant functions
onto themselves. Let Φ be such a homomorphism. In [5, pp. 272-
273] H. L. Royden shows there is an analytic mapping φ of F into
G such that Φ(g) — g © φ, and that if Φ is an isomorphism onto A(F)
then φ is a one-to-one, onto analytic mapping. If φ is an analytic
mapping of F into G, then Φ defined by Φ(g) = goφ, geA(G), is a
homomorphism from A(G) into A(F) which preserves constant func-
tions. When φ is one-to-one and onto, Φ is an isomorphism.

The image of A(G) under Φ is the set {goφ: geA(G), φ is an
analytic map of F into G) denoted by Rφ. Rφ is a subring of A(F)
and contains the constant functions, since Φ(λ) = λ for λ a constant
function. The following conditions are equivalent: Rφ properly contains
the constant functions, Φ is an isomorphism, φ is not a constant
function. Theorems 1 and 2 give other relations between φ and Rφ.

THEOREM 1. If Rφ properly contains the constant functions,
then Rφ contains 1/f whenever feRφ> f(z) Φ 0 on F, if and only if
φ maps F onto G.

Proof. Let φ map F onto G, feRφ, f(z) Φ 0 on F. Then / =
Φh for some h e A(G) and 1/h e A(G) if h(y) Φ 0 for y e G. Suppose
h(a) — 0. Since a = φ(z) for some zeF, 0 = h(a) = h(φ(z)) = Φh(z) =
f(z). This contradicts f(z)Φθ on F. Thus h(a) Φ 0 for aeG,
l/heA(G), and 1/f = Φ(l/h)eRφ.

Suppose i?^ contains 1// when feRφ, f(z) Φ 0 on F. Let αeG.
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There is geA(G) such that g(a) = 0 and g(w) Φ 0 for wΦa [1,
pp. 591-592]. The function ΦgeRφ. If Φ#(z) = g°Φ(z) Φ 0 for zeF,
then there is heRφ such that (Φg)(h) = 1. There is fceA(G) such
that h = Φ&. Then (Φg){Φk) = 1 and Φ(#&) = 1 but Φ is an iso-
morphism implies gk = 1 and g(a)k(a) = 1. This contradicts #(α) = 0.
Therefore #(̂ (2)) = 0 and 0(s) = a for some ^eί 1 .

A straightforward argument shows

THEOREM 2. If Rφ properly contains the constant functions,
then Rφ separates the points of F if and only if φ is one-to-one.

Let R be a ring of analytic functions defined on F. The spectrum
of R, ΣR, is the set of nonzero homomorphisms π from R into the
complex numbers such that π(\) = λ for λ a constant function. For
xeF the point evaluation mapping πx — {(f,f(x))' f^R} is a homo-
morphism from R into the complex numbers, and πx(X) = λ for λ a
constant function. Therefore ΣR always contains the point evaluation
mappings defined on R. In [5, p. 272] H. L. Royden shows that the
spectrum of A(F) is the set of point evaluation mappings πx defined
on A{F), xeF. For feR let / = {(π,πf): πeΣR}; f is a function
from ΣR into the complex numbers. Let R denote {/: feR}. With
pointwise addition and multiplication R is a ring containing the con-
stant functions and is isomorphic to R under /—>/.

For yeG, let ψy denote an element of ΣA(G). The mapping
p = {(yy ψy): yeG} is a one-to-one function from G onto ΣA(G). If
R = Φ(A(G)) and Φ is an isomorphism, L = {(π, πoφ): πeΣR} is a
one-to-one function from ΣR onto 2Ά(G). The mapping π-^πoφ —
ψy~+y which is P~ι°L defines a one-to-one correspondence between
ΣR and G when Φ is an isomorphism.

THEOREM 3. Let Rφ = Φ(A(G)), Φ δe cm isomorphism from A(G)
into A(F) which preserves constant functions. Let M be the func-
tion from ΣA(F) into ΣRΦ defined by M(πx) = πx\Rφ. Then M is
onto if and only if φ is onto, and M is one-to-one if and only if φ
is one-to-one.

Proof The proof that M is one-to-one if and only if φ is one-
to-one follows from Theorem 2 and the fact that A(F) separates the
points of F.

Let πeΣRφ. Then πoφ e ΣA(G) implies there is yeG such that
πoφ =z ψyy where ψy(g) = g(y) for geA(G). There are two cases:
yeφ(F), y£φ(F). If yeφ(F), then y = φ{x) for some xeF and

π(Φg) = g(y) = g(Φ(x)) = Φg(x) for every geA(G), π(Φg) = Φg(x) for
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every / = ΦgeRφ. This implies π = M(πx). lίyί Φ(F), then y φ φ(x)
f o r xeF, a n d i t m a y b e s h o w n t h a t f o r e v e r y xeF t h e r e i s feRφ

such that π(f) Φ f(x). Let xeF. Then φ(x)eG. yeG, yφφ(x),
and A(G) separates the points of G implies there is a g e A(G) such that
g(y) Φ g(Φ(x)). From Φ(g) e Rφ and π(Φg) = g(y) Φ g(φ(x)) = Φg(x) it
follows that π φ M(πx) — πx\R .

For π e ΣRφ1 πoφ = ψye ΣA(G), and it has been shown π e M(ΣA(F))
if and only if yeφ(F).

From Theorem 3 and since ΣRΦ and G are in one-to-one corre-
spondence, it follows that the point evaluation maps in ΣRΦ are in
one-to-one correspondence with the points φ(x) e Φ(F), and the elements
of ΣRΦ which are not point evaluation maps are in one-to-one corre-
spondence with the points in G — Φ(F).

Theorem 4 contains a necessary condition which a subring R of
A(F) must satisfy if R is to be Φ(A(G))1 the isomorphic image of
A(G) under Φ for some open Riemann surface G. The corollary to
Theorem 5 gives a set of sufficient conditions on R in order that R
be Φ(A(G)) when Φg = goφ and φ: F—>G is an onto mapping.

Suppose F is an open Riemann surface, pe F, f is analytic at
p and τ is a local uniformizer which maps a neighborhood of p onto
{z: \z\ < g} for some p >0, τ(p) = 0. There is a number r > 0 such
that foτ~\z) = Σ Γ = o α ^ for \z\ < r. The multiplicity of / at p is
defined as inf {k: k Φ 0 and αλ ^ 0}, denoted n(p; / ) . The multiplicity
niv; f) of / at p does not depend on τ. If i? contains functions other
than constants, m = mΐ{n(p] / ) : f ei?} is defined, and n(p; f) = m
for some fe R.

THEOREM 4. Let p e F, Rφ contain functions other than con-
stants and let m = {inf n(p; / ) : feRφ}. There is a local uniformizer
τ at p with the properties: r(0) = p, for some p > 0, τ maps {z:
\z\ < p} onto a neighborhood of p, and if feRφ, f°τ(z) = ΣΓ=o^i(^m)ί

for \z\ < p.

The proof of Theorem 4 is based on two lemmas:

LEMMA 1. // peF, m = inf {n(p; f): fe Rφ) and feRφ, then
n(p;f) = km, ivhere k is a positive integer.

LEMMA 2. Given ^ΣJZ-^C^ convergent for \z\ <p, cm Φ 0, m Φ 0,
there is Σ*°°=i M* convergent for \z\ < p, bγ Φ 0, such that (ΣΓ-i 6<2*)w =

Lemma 1 follows from the two relations: For feRφJ f= goφ for
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some g e A(G), which implies n(p; f) == (n(p; Φ))(n(φ(p); g)), and if m =
inf {n(p; / ) : feRφ} then n(p; ψ) = m. Lemma 2 is proved by defining
W a subset of the natural numbers N as W = {n e N: blf 62, , bn

can be defined in such a way that the coefficients of zί for 1 ^ m <̂
ί ^ m + w — 1 of (ΣΠ=i &i^)m and ΣΓ=m ̂  are equal} and using induc-
tion to show W = N.

Proof of Theorem 4. Let zp be a local uniformizer about p such
that τp(0) = p. If m = inf {^(p; / ) : / e RΦ}, there is /„ e Rφ and /> > 0
such that fP°τp(z) = Σ^m^s* for | s | < p, cm Φ 0, and the range of
ΣΠ=mC*s* contains |«| < jθm.

There is a power series ΣΠ=i M% &Γ = cm, such that Σî mCiίδ* =
(ΣΓ=i M Γ for I«I < p as stated in Lemma 2. &(z) = ΣΓ=i M is
defined for |«| < /o, is one-to-one, and its range contains \z\< p.
Thus Λ-1^) is defined for \y\<p and/poTpofc-1^) = (ΣΓ=i δΛA - W Γ =
^m for |2 | < p, τpok~\0) = p. The function τ = τTok~ι is a local
uniformizer about p and there is fpeRφ such that fpoτ(z) — zm for
| s | < / 0 .

Let feRφ, f not a constant function. Then /°r(«) = Σ<^o «»«*
for I s I < p. Let N denote the natural numbers and define W =
{neN:foτ(z) = ΣUa^.z^ + zm^hn(z), where hn(z) = ΣΓ=i &»,<«* and i ,
are nonnegative integers, 0 = j 0 < j \ < < jn}.

It follows from Lemma 1 that for \z\<p1foz(z) = y£^=0aiz
i^

a0 + amjlz
mjι + z^h^z), where ^(0) = 0. If keW, then foτ(z) =

ΣjLoamj.z
mji + z

mjkhk(z)1 hk(0) = 0. Since feRφ, zmeRφ and constants
are contained in Rφ, zmjkhk{z) = f(z) - Σ<=o α w i . s m * e ^ . If Λfc Φ 0,
w(p; ^miA;Λ&) = mjk+1 and /oτ(a ) = Σiίo1 α«i^ m i ί + zmj^hk+ι(z), where
ΛΛ+I(«) = ΣΓ=i δfc+i,*̂  on \z\< p and jk+1>jk. If Λfc = 0, then the
above statement is true with amjk+1 = 0, λfc+1 = 0. By induction
W = JV and /oτ(2) = ΣΓ=o α«»2mi on |«| < p.

If iϋ, a subring of -4(2^), has the property that for every aeF,
feR, for some local uniformizer z about α, f°τ(z) = ΣΓ=o α^^^O 4 for
m(α) = inf {w(α; f):feR}, then ϋ? has property (ί). If R contains
functions other than constants and has property (f), then for aeF,
m(a) = inf {n(a; f):feR} — liΐR separates the points of F.

THEOREM 5. If R is a subring of A(F) which contains func-
tions other than constants and has property (ξ), then there is an
open Riemann surface G, an analytic mapping φ of F onto G, and
a separating subring S of A(G) such that S is isomorphic to R
under f-+f<>φ, feS.1

Proof. Let G = {πp: peF} where πp = {(f,f(p)):feR) and φ =



RINGS OF ANALYTIC FUNCTIONS 237

{(p, πp): peF}. The topology on G will be that which makes φ
continuous and open. If Np is an open neighborhood of p e F, then
NZp = {πq; q e Np} is an open neighborhood of πp. The set G with
this topology is a connected Hausdorff space.

Let p e F, πpeG and m = inf {n(p; f):feR}. By the same argu-
ment used in the beginning of the proof of Theorem 4, there is a
function fpeR and a local uniformizer τ about p such that τ(0) = p
and fpoτ(z) = zm for \z\ < ρίlm for some p > 0. Then for / e i 2 ,
foT(z) = ΣΓ=o «*(«*)* = #/(*m) for |z | < ^1 / w, ^ analytic on \z\ < p.

It will be shown that στ — {(zm, πτU)): \z\ < ρUm) is a local
uniformizer about πp. If z? = s?, then foτ{z^ = g/(zΓ) = 0/(sΓ) =
/or(22), for / e i ? implies ττΓ(Zi) = πΓ(Z2), which implies that σr is a
function. If πτ{tύ = τrΓ(β2> then in particular /^rfe) = /P°r(s2), which
implies #Γ = Γ̂> and σΓ is one-to-one. Since the relations zm—+z—*
τ(z) —> 0(r(z)) = τrr(2) are open and continuous, σΓ is open and continuous.
Thus σ. is a homeomorphism from {w: | w \ < p) onto φoτ({z: \ z \ < ^1/m}) =

If 7ΓG W — cϊτ2(\z\ < p2) Π crri(|^I < (O,), there are points z19 z2 such
that πTl(Zj) = τrΓ2(^2). Then /o^fe) =f°τ2(z2) for every / e J?, and ^Γ1 =
/i(Γi(Si)) = fi(τ2(z2)) = gfl(

z?2)> s o ^A ί s analytic on {w:\w\< ft}, which
contains σr2(T7). This shows that zf1 — σ~^oσH(z™2) is analytic on σ~2

ι{W)
to σ~l(W). The function α Γ is a local uniformizer of a neighborhood of
τrp, and G is a Riemann surface.

For feR, let / = { ( ^ , / ( ? ) ) ) : p 6 ί 1 } , S = {/:/e#}. ^Since / is
continuous and φ is open, / is continuous. The function / is analytic
at πp, because if \w\ < p, w = 2W, then f°στ(w) = f{πτ{z)) = /(r(«)) =
ΣΓ=o <Xi(̂ m)ί = Σ?U ttiW*. The mapping ^ is analytic at ^, because
σ-ιoφoτ(z) = σ-\πτω) = zm for |^ | < |01/w. With pointwise addition and
multiplication, S is a ring and is isomorphic to R under the mapping
f-+f°Φ = / • The ring S separates the points of G. Since S contains
functions which are not constant and are analytic on G, G is an open
Riemann surface.

If S is to be A(G), then by Theorem 3 the mapping M(πp) = πp\R

from ΣA(F) to ΣR must be onto, since φ is an onto mapping of F to
G. Thus ΣR may contain only point evaluation mappings and ΣR = G.

COROLLARY TO THEOREM 5. If R is a subring of A(F) which
properly contains the constant functions and has property (ξ), if
ΣR contains only point evaluation mappings, and R contains all
feA(F) such that f<>τp(z) = Σ*~=o a^z")* for \z\ < ρίlm, peF, m =
inf {n(p: / ) : fsR}, then ΣR = G is an open Riemann surface, and R
is isomorphic to S = A(G).

1 This result and proof are similar to one given by M. Heins for a subfield of
the field of all meromorphic functions on a Riemann surface [2, pp. 268-269].
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Proof. Everything except S = A(G) was shown in the proof of
Theorem 5. The function feA(G) if and only if for every πpeG,
f°σZp(w) = Σr=o (LiW* for \w\ < p. Let feA(G), peF, πpeG, and

f = foφ. Then feA(F) and feR, because for \z\ < ρllm, /°r p(s) =

foφ(τp(z)) = f(πTpω) = foσTp(zm) = Σr=o α<(zw)\

If R = {foφ fe S} and S separates the points of G, then R
separates the points of F if and only if φ is a one-to-one function.
If S separates the points of G, and S = A(G), then i? may not separate
the points of F, because if it did φ would be a one-to-one, onto
analytic function from F to G, and R = A(F). If S Φ A(G) there
may be a surface H, a mapping φ1 and a separating subring Γ of
A(H) such that & is analytic and one-to-one but not onto, and T =
A(H).

In this part of the paper it is noted that if R = Φ(A(G)), then
ΣR with the Gelfand topology is an open Riemann surface, and R
which is isomorphic to R, is the ring of all analytic functions on ΣR.
Theorem 8 gives sufficient conditions on a subring R of A(F) and on
R in order that ΣR be an open Riemann surface and R be a ring of
analytic functions on ΣR. In conclusion sufficient conditions for R
to be A(ΣR) are given.

If R is a ring of complex valued functions on F, then the Gelfand
topology on ΣR is the weakest topology on ΣR which makes each
element of R continuous, where R = {f'.feR}, f = {(π, πf): πeΣR}.
Let π0 e ΣR, K be a finite subset of R, ε > 0. An open neighborhood
of τr0 will be {πeΣR: \f(π) - f(πo)\ < ε for feK). If R = Φ(A(G))
and Φ is an isomorphism, then ΣR and ΣA(G) with the Gelfand
topology are homeomorphic under the mapping L(π) = πoφ from ΣR
onto ΣA(G). The mapping P(y) = ψy from G onto 2Ά(G) with the
Gelfand topology is one-to-one, onto and continuous. The mapping P
is also open. As Royden observes [4, pp. 287-288], this is a con-
sequence of a theorem of Remmert that an open Riemann surface
can be mapped one-to-one and holomorphically into C3 [3, p. 118].
Thus P~ιoL is a homeomorphism from ΣR with the Gelfand topology
onto G.

THEOREM 6. If R is a subring of A(F) such that R = Φ(A(G)),
and if Φ is an isomorphism which preserves constant functions, then
ΣR with the Gelfand topology is an open Riemann surface, and R is
the ring of all analytic functions on ΣR. Moreover R is isomorphic
to R.

Proof. The spectrum of R with the Gelfand topology is a
Hausdorff space. It is homeomorphic to G under the mapping Zr^oP,
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and is connected. Let πqeΣR where qeG, ψqeΣA(G), and L~ιoP
maps q-~+ψg—»πq. If Nq is a neighborhood of q then Nπ<j = L~ίoP(Nq)
is a neighborhood of 7rff. There exists hqeA(G) which has a simple
zero at q [1, pp. 591-592]. Λ,g is a local uniformizer on a neighbor-
hood of q, Nq = h~\\ z\ < p) for some p > 0. If c^ = Ag |^, then
hqoσ~\z) = z for \z\<ρ. For ΛeA(G), i/eiSΓff, h(y) = ΣΓ=o αA,(i/))\

If fq = φhq then /ff is a local uniformizer on JV^ = L~1oP(Nq).
From /β(ττy) = Λff(i/) follows fq(πy) = hqoP~ιoL{πy), πy e Nπq, which implies
/ g is a homeomorphism of JV^ onto \z\ < p. If πye Nπqί Π iVffg2, then
Afo) = M#) = ΣΓ=o a%ihqi(y)y = ΣΓ̂ o α4( A(^))* since ' 7Γy e ^ 2 or^ 2

2/ G i\Γg2. The function /ff is a local uniformizer on Nπ and -ΓJ? is a
Riemann surface.

The ring R is contained in A(ΣR), because if felt, πyeNπq,
z = Mπy), then M " 1 ^ ) = f(πy) = Λ(l/) = ΣΓ= ^
ΣΓ=o «»«*. The function T(q) = 7Γg is an analytic map of G onto ΣR.
If 0 is analytic on ΣR, then ^ Γ e i ( G ) and θeR because θ(πq) =
^oΓ(g) = ψq{θoT) = τrff(/) for / = Φ{θoT). This implies ^ = /. Thus
jξ = Aίi/J?). Since β contains functions which are analytic and are
not constant on ΣR, ΣR is an open Riemann surface.

THEOREM 7. Let R = Φ(A(G)). If πeΣR, then TΓ^O) is a
principal maximal ideal of R, and every principal maximal ideal
of R is the kernel of π e ΣR. If ίr~1(0) is generated by f, then f is
a local homeomorphism on a neighborhood N* of π and if π e NpL,
k 6 R, then k(π) = ΣΓ=o ^(/(TΓ))*.

Proof. If πeΣR, then ττ°Φ = ψqeΣA(G) and π-'φ) = Φ(ψ^(0)).
The kernel of ψq, Mq = ^^(O), is a principal maximal ideal of A(G),
and every principal maximal ideal of A(G) is a kernel of ψ e ΣA(G)
[5, pp. 271-272]. If h generates Mq, then h has a single zero and it
is a simple zero at q [5]. Thus h is a homeomorphism on a neighbor-
hood of q, Nq. If / = Φλ, then if-̂ O) is the ideal generated by/. Also
/ is a uniformizer on N% = L~1oP(Nq), and if π e Ni, tceR, then
k(π) — ΣΓ=o a,i(f(π)y as shown in the proof of Theorem 6.

LEMMA. Let S be a ring of continuous functions on X with
identity. Then X is not connected if and only if S is contained in
a ring Q of continuous functions on X, where Q = Iι + J2, Iu I2

proper ideals of Q, £ n I2 = {0}.

THEOREM 8. Let R be a subring of A(F) which properly contains
the constant functions, and suppose R is not contained in a ring Q
of continuous functions on ΣR where Q = Iι + I2, Ily I2 proper ideals
of Q, Iι Π I2 = {0}. If for πeΣR, 7Γ-1(0) is a principal ideal of R
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generated by f and /, the function in R which corresponds to f in
R, is a homeomorphism on a neighborhood of π, and for π in this
neighborhood, g eRf πg = ΣΓ=o α»(^/)S then ΣR is an open Riemann
surface and R is a ring of analytic functions on ΣR.

Proof. The spectrum of R with the Gelfand topology is a Haus-
dorff space. By the lemma ΣR is connected. Let πeΣR. There is
/ a homeomorphism of N% onto \z\ < p for some p > 0. If π e N^t

geR, then g(π) = ΣΓ=o a^fo))*. lΐπe NZlΠNπ2=W then fcoff^faπ)) =
fi(π) = ΈT=oai(f2(π))i implies Z^/-1 is analytic on f2(W). {(NπJπ):
πeΣR} defines an analytic structure on ΣR. It is immediate that
R c A(ΣR). Since R contains functions which are not constant and
are analytic on ΣR, ΣR is an open Riemann surface.

If {Rn} is a sequence of subrings of A(F) such that Rn satisfies
the conditions of Theorem 8, ΣRn\Rl = ΣRlf Rn^ciRn, then the chain
has a maximal element, {foφ: feA{ΣR^) and φ(x) = πx, xeF}. Let
πeΣRί and / be a local homeomorphism at π. If Rί satisfies the
conditions of Theorem 8 and contains all functions g in A(F) such
that g(π) = Σ7=o ai(f(π)Y f°r πeiV^ π and π elements of ΣRίy then
Rx = AiΣRJ, because if ggRly then there is πeΣRι such that g°f~h

is not analytic on {z: \z\ < |θ} which implies g £ A(ΣRt).

The author wishes to thank Professors H. B. Curtis and H. E.
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