ON THE MAXIMAL MONOTONICITY OF SUBDIFFERENTIAL MAPPINGS

R. T. ROCKAFELLAR

The subdifferential of a lower semicontinuous proper convex function on a Banach space is a maximal monotone operator, as well as a maximal cyclically monotone operator. This result was announced by the author in a previous paper, but the argument given there was incomplete; the result is proved here by a different method, which is simpler in the case of reflexive Banach spaces. At the same time, a new fact is established about the relationship between the subdifferential of a convex function and the subdifferential of its conjugate in the nonreflexive case.

Let E be a real Banach space with dual E^* . A proper convex function on E is a function f from E to $(-\infty, +\infty]$, not identically $+\infty$, such that

$$f((1 - \lambda)x + \lambda y) \le (1 - \lambda)f(x) + \lambda f(y)$$

whenever $x \in E$, $y \in E$ and $0 < \lambda < 1$. The *subdifferential* of such a function f is the (generally multivalued) mapping $\partial f: E \to E^*$ defined by

$$\partial f(x) = \{x^* \in E^* \mid f(y) \ge f(x) + \langle y - x, x^* \rangle, \forall y \in E\}$$

where $\langle \cdot, \cdot \rangle$ denotes the canonical pairing between E and E^* .

A multivalued mapping $T \colon E \to E^*$ is said to be a monotone operator if

$$\langle x_0 - x_1, x_0^* - x_1^* \rangle \ge 0$$
 whenever $x_0^* \in T(x_0), x_1^* \in T(x_1)$.

It is said to be a cyclically monotone operator if

$$\langle x_0 - x_1, x_0^* \rangle + \cdots + \langle x_{n-1} - x_n, x_{n-1}^* \rangle + \langle x_n - x_0, x_n^* \rangle \geq 0$$

whenever $x_i^* \in T(x_i), i = 0, \dots, n$.

It is called a *maximal* monotone operator (resp. maximal cyclically monotone operator) if, in addition, its graph

$$G(T) = \{(x, x^*) \mid x^* \in T(x)\} \subset E \times E^*$$

is not properly contained in the graph of any other monotone (resp. cyclically monotone) operator $T': E \rightarrow E^*$.

This note is concerned with proving the following theorems.

THEOREM A. If f is a lower semicontinuous proper convex function on E, then ∂f is a maximal monotone operator from E to E^* .

THEOREM B. Let $T: E \rightarrow E^*$ be a multivalued mapping. In order that there exist a lower semicontinuous proper convex function f on E such that $T = \partial f$, it is necessary and sufficient that T be a maximal cyclically monotone operator. Moreover, in this case T determines f uniquely up to an additive constant.

These theorems have previously been stated by us in [4] as Theorem 4 and Theorem 3, respectively. However, a gap occurs in the proofs in [4], as has kindly been brought to our attention recently by H. Brézis. (It is not clear whether formula (4.7) in the proof of Theorem 3 of [4] will hold for ε sufficiently small, because x_i^* depends on ε and could conceivably increase unboundedly in norm as ε decreases to 0. The same oversight appears in the penultimate sentence of the proof of Theorem 4 of [4]). In view of this oversight, the proofs in [4] are incomplete; further arguments must be given before the maximality in Theorem A, the maximality in the necessary condition in Theorem B, and the uniqueness in Theorem B can be regarded as established. Such arguments will be given here.

2. Preliminary result. Let f be a lower semicontinuous proper convex function on E. (For proper convex functions, lower semicontinuity in the strong topology of E is the same as lower semicontinuity in the weak topology.) The conjugate of f is the function f^* on E^* defined by

$$(2.1) f^*(x^*) = \sup \{ \langle x, x^* \rangle - f(x) \mid x \in E \} .$$

It is known that f^* is a weak* lower semicontinuous (and hence strongly lower semicontinuous) proper convex function on E^* , and that

(2.2)
$$f(x) + f^*(x^*) - \langle x, x^* \rangle \ge 0, \forall x \in E, \forall x^* \in E^*,$$
 with equality if and only if $x^* \in \partial f(x)$

(see Moreau [3, § 6]). The subdifferential ∂f^* , which is a multivalued mapping from E^* to the bidual E^{**} , can be compared with the subdifferential ∂f from E to E^* , when E is regarded in the canonical way as a weak** dense subspace of E^{**} (the weak** topology being the weak topology induced on E^{**} by E^*). Facts about the relationship between ∂f^* and ∂f will be used below in proving Theorems A and B.

In terms of the conjugate f^{**} of f^* , which is the weak** lower semicontinuous proper convex function on E^{**} defined by

(2.3)
$$f^{**}(x^{**}) = \sup \{\langle x^{**}, x^{*} \rangle - f^{*}(x^{*}) \mid x^{*} \in E^{*} \},$$

we have, as in (2.2),

(2.4)
$$f^{**}(x^{**}) + f^{*}(x^{*}) - \langle x^{**}, x^{*} \rangle \ge 0, \forall x^{**} \in E^{**}, \forall x^{*} \in E^{*},$$
 with equality if and only if $x^{**} \in \partial f^{*}(x^{*})$.

Moreover, the restriction of f^{**} to E is $f(\text{see [3, \S 6]})$. Thus, if E is reflexive, we can identify f^{**} with f, and it follows from (2.2) and (2.4) that ∂f^{*} is just the "inverse" of ∂f , in other words one has $x \in \partial f^{*}(x^{*})$ if and only if $x^{*} \in \partial f(x)$. If E is not reflexive, the relationship between ∂f^{*} and ∂f is more complicated, but ∂f^{*} and ∂f still completely determine each other, according to the following result.

PROPOSITION 1. Let f be a lower semicontinuous proper convex function on E, and let $x^* \in E^*$ and $x^{**} \in E^{**}$. Then $x^{**} \in \partial f^*(x^*)$ if and only if there exists a net $\{x_i^* \mid i \in I\}$ in E^* converging to x^* in the strong topology and a bounded net $\{x_i \mid i \in I\}$ in E (with the same partially ordered index set I) converging to x^{**} in the weak** topology, such that $x_i^* \in \partial f(x_i)$ for every $i \in I$.

Proof. The sufficiency of the condition is easy to prove. Given nets as described, we have

$$f(x_i) + f^*(x_i^*) = \langle x_i, x_i^* \rangle, \forall i \in I$$

by (2.2), where $f(x_i) = f^{**}(x_i)$. Then by the lower semicontinuity of f^* and f^{**} we have

$$f^{**}(x^{**}) + f^{*}(x^{*}) \leq \liminf \{f^{**}(x_{i}) + f^{*}(x_{i}^{*})\}$$

$$= \lim \langle x_{i}, x_{i}^{*} \rangle = \langle x^{**}, x^{*} \rangle.$$

(The last equality makes use of the boundedness of the norms $||x_i||$, $i \in I$.) Thus $x^{**} \in \partial f^*(x^*)$ by (2.4).

To prove the necessity of the condition, we demonstrate first that, given any $x^{**} \in E^{**}$, there exists a *bounded* net $\{y_i \mid i \in I\}$ in E such that y_i converges to x^{**} in the weak** topology and

(2.5)
$$\lim f(y_i) = f^{**}(x^{**}).$$

Consider $f + h_{\alpha}$, where α is a positive real number and h_{α} is the lower semicontinuous proper convex function on E defined by

(2.6)
$$h_{\alpha}(x) = 0 \text{ if } ||x|| \le \alpha, h_{\alpha}(x) = +\infty \text{ if } ||x|| > \alpha.$$

Assuming that α is sufficiently large, there exist points x at which f and h_{α} are both finite and h_{α} is continuous (i.e., points x such that $f(x) < +\infty$ and $||x|| < \alpha$). Then, by the formulas for conjugates of

sums of convex functions (see Moreau [3, pp. 38, 56, 57] or Rockafellar [5, Th. 3]), we have $(f + h_{\alpha})^* = f^* \square h_{\alpha}^*$ (infimal convolution), and consequently

$$(2.7) (f + h_{\alpha})^{**} = (f^* \sqcap h_{\alpha}^*)^* = f^{**} + h_{\alpha}^{**}.$$

Moreover $h_{\alpha}^*(x^*) = \alpha ||x^*||$ for ever $x^* \in E^*$, so that

$$egin{aligned} h_{lpha}^{**}(x^{**}) &= \sup\left\{ \left< x^{**}, \, x^{*} \right> - lpha \mid\mid x^{*} \mid\mid\mid x^{*} \in E^{*}
ight\} \ &= \left\{ egin{aligned} 0 & ext{if } \mid\mid x^{**} \mid\mid \leq lpha \ + \infty & ext{if } \mid\mid x^{**} \mid\mid > lpha \end{aligned}
ight.. \end{aligned}$$

Hence by (2.7), given any $x^{**} \in E^{**}$, we have

(2.8)
$$f^{**}(x^{**}) = (f + h_{\alpha})^{**}(x^{**})$$

for sufficiently large $\alpha > 0$. On the other hand, it is known that, for any lower semicontinuous proper convex function g on E, g^{**} is the greatest weak** lower semicontinuous function on E^{**} majorized by g on E (see [3, § 6]), so that

$$(2.9) g^{**}(x^{**}) = \liminf_{y \to x^{**}} g(y) ,$$

where the "lim inf" is taken over all nets in E converging to x^{**} in the weak** topology. Taking $g = f + h_{\alpha}$, we see from (2.8) and (2.9) that

$$f^{**}(x^{**}) = \liminf_{y \to x^{**}} [f(y) + h_{\alpha}(y)]$$
,

implying that (2.5) holds as desired for some net $\{y_i \mid i \in I\}$ in E such that y_i converges to x^{**} in the weak** topology and $||y_i|| \leq \alpha$ for every $i \in I$.

Now, given any $x^* \in E^*$ and $x^{**} \in \partial f^*(x^*)$, let $\{y_i | i \in I\}$ be a bounded net in E such that y_i converges to x^{**} in the weak** topology and (2.5) holds. Define $\varepsilon_i \geq 0$ by

$$\varepsilon_i^2 = f(y_i) + f^*(x^*) - \langle y_i, x^* \rangle$$
.

Note that $\lim \varepsilon_i = 0$ by (2.5) and (2.4). According to a lemma of $\text{Br}\phi \text{ndsted}$ and Rockafellar [1, p. 608], there exist for each $i \in I$ an $x_i \in E$ and an $x_i^* \in E^*$ such that

$$x_i^* \in \partial f(x_i), ||x_i - y_i|| \leq \varepsilon_i, ||x_i^* - x^*|| \leq \varepsilon_i$$
.

The latter two conditions imply that the net $\{x_i^* \mid i \in I\}$ converges to x^* in the strong topology of E^* , while the net $\{x_i \mid i \in I\}$ is bounded and converges to x^{**} in the weak** topology of E^{**} . This completes the proof of Proposition 1.

3. Proofs of Theorems A and B. In the sequel, f denotes a lower semicontinuous proper convex function on E, and j denotes the continuous convex function E defined by $j(x) = (1/2)||x||^2$. We shall make use of the fact that, for each $x \in E$, $\partial f(x)$ is by definition a certain (possibly empty, possibly unbounded) weak* closed convex subset of E^* , whereas $\partial j(x)$ is (by the finiteness and continuity of j, see [3, p. 60]) a certain nonempty weak* compact convex subset of E^* . Furthermore

(3.1)
$$\partial(f+j) = \partial f(x) + \partial j(x), \forall x \in E$$

(see [3, p. 62] or [5, Th. 3]). The conjugate of j is given by $j^*(x^*) = (1/2) ||x^*||^2$, and since

$$(f+j)^*(x^*) = (f^* \square j^*)(x^*) = \min_{y^* \in \mathbb{Z}^*} \{f^*(y^*) + j^*(x^* - y^*)\}$$

([3, § 9] or [5, Th. 3]) the conjugate function $(f + j)^*$ is finite and continuous throughout E^* .

Proof of Theorem A. Theorem A has already been established by Minty [2] in the case of convex functions which, like j, are everywhere finite and continuous. Applying Minty's result to the function $(f+j)^*$, we may conclude that $\partial (f+j)^*$ is a maximal monotone operator from E^* to E^{**} . We shall show this implies that ∂f is a maximal monotone operator from E to E^* .

Let T be a monotone operator from E to E^* such that the graph of T includes the graph of ∂f , i.e.,

(3.2)
$$T(x) \supset \partial f(x), \ \forall x \in E.$$

We must show that equality necessarily holds in (3.2).

The mapping $T + \partial j$ defined by

$$(T + \partial j)(x) = T(x) + \partial j(x)$$

= $\{x_1^* + x_2^* \mid x_1^* \in T(x), x_2^* \in \partial j(x)\}$

is a monotone operator from E to E^* , since T and ∂j are, and by (3.1) and (3.2) we have

$$(3.3) (T + \partial j)(x) \supset \partial (f + j)(x), \forall x \in E.$$

Let S be the multivalued mapping from E^* to E^{**} defined as follows: $x^{**} \in S(x^*)$ if and only if there exists a net $\{x_i^* \mid i \in I\}$ in E^* converging to x^* in the strong topology, and a bounded net $\{x_i \mid i \in I\}$ in E (with the same partially ordered index set I) converging to x^{**} in the weak** topology, such that

$$x_i^* \in (T + \partial i)(x_i), \forall i \in I$$
.

It is readily verified that S is a monotone operator. (The boundedness of the nets $\{x_i \mid i \in I\}$ enters in here.) Moreover

(3.4)
$$S(x^*) \supset \partial (f+j)^*(x^*), \forall x^* \in E^*$$

by (3.3) and Proposition 1. Since $\partial(f+j)^*$ is a maximal monotone operator, equality must actually hold in (3.4). This shows that one has $x \in \partial(f+j)^*(x^*)$ whenever $x \in E$ and $x \in S(x^*)$, hence in particular whenever $x^* \in (T+\partial j)(x)$. On the other hand, one always has $x^* \in \partial(f+j)(x)$ if $x \in \partial(f+j)^*(x^*)$ and $x \in E$. (This follows from applying (2.2) and (2.4) to f+j in place of f.) Thus one has $x^* \in \partial(f+j)(x)$ if $x^* \in (T+\partial j)(x)$, implying by (3.3) and (3.1) that

$$(3.5) T(x) + \partial j(x) = \partial f(x) + \partial j(x), \forall x \in E.$$

We shall show now from (3.5) that actually

$$T(x) = \partial f(x), \forall x \in E$$
,

so that ∂f must be a maximal monotone operator as claimed. Suppose that $x \in E$ is such that the inclusion in (3.2) is proper. This will lead to a contradiction. Since $\partial f(x)$ is a weak* closed convex subset of E^* , there must exist some point of T(x) which can be separated strictly from $\partial f(x)$ be a weak* closed hyperplane. Thus, for a certain $y \in E$, we have

$$\sup \{\langle y, x^* \rangle \mid x^* \in T(x)\} > \sup \{\langle y, x^* \rangle \mid x^* \in \partial f(x)\}$$
.

But then

$$\begin{split} &\sup\left\{\left\langle y,\,z^*\right\rangle\,|\,z^*\in T(x)\,+\,\partial j(x)\right\}\\ &=\sup\left\{\left\langle y,\,x^*\right\rangle\,|\,x^*\in T(x)\right\}\,+\,\sup\left\{\left\langle y,\,y^*\right\rangle\,|\,y^*\in\partial j(x)\right\}\\ &>\sup\left\{\left\langle y,\,x^*\right\rangle\,|\,x^*\in\partial f(x)\right\}\,+\,\sup\left\{\left\langle y,\,y^*\right\rangle\,|\,y^*\in\partial j(x)\right\}\\ &=\sup\left\{\left\langle y,\,z^*\right\rangle\,|\,z^*\in\partial f(x)\,+\,\partial j(x)\right\}\,, \end{split}$$

inasmuch as $\partial j(x)$ is a nonempty bounded set, and this inequality is incompatible with (3.5).

Proof of Theorem B. Let g be a lower semicontinuous proper convex function on E such that

(3.6)
$$\partial g(x) \supset \partial f(x), \forall x \in E$$
.

As noted at the beginning of the proof Theorem 3 of [4], to prove Theorem B it suffices, in view of Theorem 1 of [4] and its Corollary 2, to demonstrate that g = f + const.

We consider first the case where f and g are everywhere finite and continuous. Then, for each $x \in E$, $\partial f(x)$ is a nonempty weak*

compact set, and

$$(3.7) f'(x; u) = \max \{\langle u, x^* \rangle \mid x^* \in \partial f(x) \}, \forall u \in E,$$

where

$$f'(x; u) = \lim_{x \to 0} [f(x + \lambda u) - f(x)]/\lambda$$

[3, p. 65]. Similarly, $\partial g(x)$ is a nonempty weak* compact set, and

$$(3.8) g'(x; u) = \max \{\langle u, x^* \rangle \mid x^* \in \partial g(x) \}, \forall u \in E.$$

It follows from (3.6), (3.7) and (3.8) that

$$(3.9) f'(x; u) \leq g'(x; u), \forall x \in E, \forall u \in E.$$

On the other hand, for any $x \in E$ and $y \in E$, we have

$$f(y) - f(x) = \int_0^1 f'((1 - \lambda)x + \lambda y; y - x) d\lambda,$$

$$g(y) - g(x) = \int_0^1 g'((1 - \lambda)x + \lambda y; y - x) d\lambda$$

(see $[6, \S 24]$), so that by (3.9) we have

$$f(y) - f(x) \le g(y) - g(x), \forall x \in E, \forall y \in E$$
.

Of course, the latter can hold only if g = f + const.In the general case, we observe from (3.6) that

$$\partial g(x) + \partial j(x) \supset \partial f(x) + \partial j(x), \forall x \in E$$

and consequently

$$\partial(a+i)(x) \supset \partial(f+i)(x), \forall x \in E$$
.

by (3.1) (and its counterpart for g). This implies by Proposition 1 that

(3.10)
$$\partial (g+j)^*(x^*) \supset \partial (f+j)^*(x^*), \forall x^* \in E^*$$
.

The functions $(f+j)^*$ and $(g+j)^*$ are finite and continuous on E^* , so we may conclude from (3.10) and the case already considered that

$$(q + j)^* = (f + j)^* + \alpha$$

for a certain real constant α . Taking conjugates, we then have

$$(3.11) (g+j)^{**} = (f+j)^{**} - \alpha.$$

Since $(g+j)^{**}$ and $(f+j)^{**}$ agree on E with g+j and f+j, respectively, (3.11) implies that

$$g+j=f+j-\alpha,$$

and hence that g = f + const.

REMARK. The preceding proofs become much simpler if E is reflexive, since then ∂f^* and $\partial (f+j)^*$ are just the "inverses" of ∂f and $\partial (f+j)$, respectively, and Proposition 1 is superfluous. In this case, S may be replaced by the inverse of $T+\partial j$ in the proof of Theorem A.

REFERENCES

- 1. A. Brøndsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc. 16 (1965), 605-611.
- 2. G. J. Minty, On the monotonicity of the gradient of a convex function, Pacific J. Math. 14 (1964), 243-247.
- 3. J.-J. Moreau, Fonctionelles convexes, mimeographed lecture notes, Collège de France, 1967.
- 4. R. T. Rockafeller, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-510.
- 5. ———, An extension of Fenchel's duality theorem, Duke Math. J. 33 (1966), 81-90.
- 6. , Convex analysis, Princeton University Press, 1969.

Received July 17, 1969. This work was supported in part by the Air Force Office of Scientific Research under grant AF-AFOSR-1202-67.

THE UNIVERSITY OF WASHINGTON, SEATTLE