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ON THE MAXIMAL MONOTONICITY OF
SUBDIFFERENTIAL MAPPINGS

R. T. ROCKAFELLAR

The subdifferential of a lower semicontinuous proper con-
vex function on a Banach space is a maximal monotone opera-
tor, as well as a maximal cyclically monotone operator. This
result was announced by the author in a previous paper, but
the argument given there was incomplete; the result is proved
here by a different method, which is simpler in the case of
reflexive Banach spaces, At the same time, a new fact is
established about the relationship between the subdifferential
of a convex function and the subdifferential of its conjugate
in the nonreflexive case.

Let E be a real Banach space with dual E*. A proper convex
function on E is a function f from E to (— oo, + ], not identically
+ oo, such that

A =Mz +wy) = 1 — M)f(@) + M)

whenever xc K, ye F and 0 < AN < 1. The subdifferential of such a
function f is the (generally multivalued) mapping of: E — E* defined
by

of(w) = {x* e E* | fly) = flw) + <y — x, x*), Vye £},

where {-, -> denotes the canonical pairing between E and E*.
A multivalued mapping T: E— E* is said to be a monotone oper-
ator if

{xy — @y 2 — x> =0 whenever o e T(x,), «f e T(x,) .
It is said to be a cyclically monotone operator if

By — @y ) + oo + LBy — Xy Th_ > + L&, — T, 5> =0
whenever «fe T(x;),1=0,-++,7n.

It is called a maxzimal monotone operator (resp. maximal cyclically
monotone operator) if, in addition, its graph

G(T) = {(x, 2*) |a* e T(®))Cc E x E*
is not properly contained in the graph of any other monotone (resp.

cyclically monotone) operator T': E— E*.
This note is concerned with proving the following theorems.
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THEOREM A. If f is a lower semicontinuous proper convex func-
tion on E, then df is a maximal monotone operator from E to E*.

THEOREM B. Let T:E— E* be a multivalued mapping. In
order that there exist a lower semicontinuous proper convex function
f on E such that T = of, it is necessary and sufficient that T be a
maximal cyclically monotone operator. Moreover, in this case T
determines f uniquely up to an additive constant.

These theorems have previously been stated by us in [4] as
Theorem 4 and Theorem 3, respectively. However, a gap occurs in
the proofs in [4], as has kindly been brought to our attention recently
by H. Brézis. (It is not clear whether formula (4.7) in the proof of
Theorem 3 of [4] will hold for ¢ sufficiently small, because x} depends
on ¢ and could conceivably increase unboundedly in norm as e de-
creases to 0. The same oversight appears in the penultimate sentence
of the proof of Theorem 4 of [4]). In view of this oversight, the
proofs in [4] are incomplete; further arguments must be given before
the maximality in Theorem A, the maximality in the necessary con-
dition in Theorem B, and the uniqueness in Theorem B can be regarded
as established. Such arguments will be given here.

2. Preliminary result. Let f be a lower semicontinuous proper
convex function on E. (For proper convex functions, lower semiconti-
nuity in the strong topology of E is the same as lower semicontinuity
in the weak topology.) The conjugate of f is the function f* on E*
defined by

(2.1) (@) = sup Kz, @) — f(@) [we B} .

It is known that f* is a weak* lower semicontinuous (and hence
strongly lower semicontinuous) proper convex function on E*, and that

2.2) S@) + fF@*) — <z, 2*> = 0,Vee K, Ya* e E*
with equality if and only if x* € 9f(z)

(see Moreau [3, § 6]). The subdifferential df*, which is a multivalued
mapping from E* to the bidual E**, can be compared with the sub-
differential of from E to E*, when E is regarded in the canonical way
as a weak** dense subspace of E** (the weak** topology being the
weak topology induced on E** by E*). Facts about the relationship
between df* and of will be used below in proving Theorems A and B.
In terms of the conjugate f** of f*, which is the weak** lower
semicontinuous proper convex function on E** defined by
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we have, as in (2.2),

2.4) @) + ) — e > =2 0, Vet e EX*  Va* e B,
with equality if and only if x** € 9f*(x*) .

Moreover, the restriction of f** to E is f(see [3, §6]). Thus, if E
is reflexive, we can identify f** with f, and it follows from (2.2) and
(2.4) that of* is just the “inverse” of df, in other words one has
zeof*(z*) if and only if x* e df(x). If E is not reflexive, the relation-
ship between of* and df is more complicated, but df* and of still
completely determine each other, according to the following result.

PrROPOSITION 1. Let f be a lower semicontinuous proper convex
Sunction on E, and let x* e E* and x** e E**. Then x** e df*(z*)
if and only if there exists a net {x}|iel} in E* converging to x*
m the strong topology and a bounded met {x;|iel} in E (with the
same partially ordered index set I) converging to x** im the weak**
topology, such that x} c of(x;) for every 4¢el.

Proof. The sufficiency of the condition is easy to prove. Given
nets as described, we have

Sl + f(af) = <o,y 07D, Viel

by (2.2), where f(x;) = f**(x;). Then by the lower semicontinuity of
f* and f** we have

FER@*) + f*(@*) < iminf {£*%(x) + f*@F))

(The last equality makes use of the boundedness of the norms | «;||,
1e1.) Thus x** e df *(x*) by (2.4).

To prove the necessity of the condition, we demonstrate first that,
given any x** e K**, there exists a bounded net {y;| 7€ I} in £ such
that ¥y, converges to x** in the weak** topology and

(2.5) lim f(y;) = f**(@**) .
Consider f + h,, where « is a positive real number and %, is the lower
semicontinuous proper convex function on FE defined by

(2.6) ha@) =0 if [[2]] S @, ho(e) = +o0 if |[2]>a.

Assuming that « is sufficiently large, there exist points x at which
f and A, are both finite and 7%, is continuous (i.e., points # such that
fl®) < 4+ and ||z|| < @). Then, by the formulas for conjugates of
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sums of convex functions (see Moreau [3, pp. 38, 56, 57] or Rockafellar

[5, Th. 8]), we have (f + h.)* = f* ] h¥ (infimal convolution), and
consequently

(2.7 (f + h)*™ = (YOO RD* = f** + hZ*.
Moreover h¥(x*) = a||x* || for ever x* ¢ E*, so that

hi*(x**) = sup {{a**, a*) — a || || | v* € B¥}
(0 if ||o**|| <L «a,
Tl i e >a.

Hence by (2.7), given any 2** ¢ E**, we have
(2.8) FEH@) = (f + ha)**(x*¥)

for sufficiently large o > 0. On the other hand, it is known that, for
any lower semicontinuous proper convex function g on E, g** is the
greatest weak** lower semicontinuous function on E** majorized by
g on K (see [3, §6]), so that

(2.9) g**(@**) = lim inf g(y) ,
Yoz

where the “liminf” is taken over all nets in E converging to «** in

the weak** topology. Taking g = f + h,, we see from (2.8) and (2.9)
that

fr(@e) = lim inf [£(y) + ha(w)]

implying that (2.5) holds as desired for some net {y;|ie I} in E such
that y; converges to z** in the weak** topology and ||y;|| < a for
every t¢€l.

Now, given any xz*e E* and x**edf*(x*), let {y;ieI} be a
bounded net in E such that y; converges to x** in the weak** topology
and (2.5) holds. Define ¢; = 0 by

& = fly) + fr@*) — <y, v .

Note that lime;, =0 by (2.5) and (2.4). According to a lemma of
Brgndsted and Rockafellar [1, p.608], there exist for each 7¢Il an
x; € F and an x} ¢ E* such that

xfeof(@), lla; —wll S &, [laf —a* || Ze; .

The latter two conditions imply that the net {x}|7e I} converges to
x* in the strong topology of E*, while the net {z;|7e I} is bounded
and converges to 2** in the weak** topology of E**. This completes
the proof of Proposition 1.
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3. Proofs of Theorems A and B. In the sequel, f denotes a
lower semicontinuous proper convex function on E, and j denotes the
continuous convex function E defined by j(x) = (1/2)||z [’ We shall
make use of the fact that, for each x¢ F, df(x) is by definition a
certain (possibly empty, possibly unbounded) weak* closed convex sub-
set of E*, whereas dj(x) is (by the finiteness and continuity of 7, see
[3, p. 60]) a certain nonempty weak* compact convex subset of E*.
Furthermore

(3.1) o(f +J) = of(x) + dj(x), Ve e B

(see [3, p.62] or [5, Th. 3]). The conjugate of 7 is given by j*(z*) =
(1/2) || =* ||?, and since

(f +9)7(@) = (f* 59" = min {f*(y*) + j*@* — y*)}

(3,89] or [5, Th.3]) the conjugate function (f + j)* is finite and
continuous throughout E*.

Proof of Theorem A. Theorem A has already been established by
Minty [2] in the case of convex functions which, like j, are every-
where finite and continuous. Applying Minty’s result to the function
(f + 7)*, we may conclude that o(f + j)* is a maximal monotone op-
erator from E* to E**. We shall show this implies that df is a
maximal monotone operator from E to E*.

Let T be a monotone operator from E to E* such that the graph
of T includes the graph of of, i.e.,

(3.2) T(x) D df(x), Ve e E .

We must show that equality necessarily holds in (3.2).
The mapping T + 07 defined by
(T + oj)(=z) = T(x) + 97 (x)
= {of + o |z e T(x), 5 € 0j(»)}

is a monotone operator from E to E*, since T and 95 are, and by (3.1)
and (3.2) we have

(3.3) (T + ag)(@) Do(f + J)(x), Ve e K .

Let S be the multivalued mapping from E* to E** defined as follows:
x** ¢ S(z*) if and only if there exists a net {x}|ie I} in E* converg-
ing to z* in the strong topology, and a bounded net {x;|ieI} in E

(with the same partially ordered index set I) converging to x** in the
weak** topology, such that

xfe (T + o) x,), Viel.
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It is readily verified that S is a monotone operator. (The boundedness
of the nets {x;| 7€ I} enters in here.) Moreover

(3.4) S@*) D o(f + 9)* (&), Va* e E*

by (3.3) and Proposition 1. Since o(f + 7)* is a maximal monotone
operator, equality must actually hold in (3.4). This shows that one
has € d(f + 7)*(z*) whenever x ¢ F and x e S(x*), hence in particular
whenever z* € (T + 07)(x). On the other hand, one always has
x*ed(f + j)x) if xed(f + 5)*(@*) and xzeE. (This follows from
applying (2.2) and (2.4) to f+7 in place of f.) Thus one has
x*ed(f + J)(x) if «* e (T + 05)(x), implying by (3.3) and (3.1) that

(3.5) T(x) + 0j(x) = of(x) + 0j(x), Vxe E .
We shall show now from (3.5) that actually
T(z) = of(z), Ve e E ,

so that of must be a maximal monotone operator as claimed. Suppose
that e F is such that the inclusion in (3.2) is proper. This will lead
to a contradiction. Since 9f(x) is a weak* closed convex subset of E*,
there must exist some point of T(x) which can be separated strictly
from oJf(x) be a weak* closed hyperplane. Thus, for a certain y e E,
we have

sup {Ky, «*> | «* € T(x)} > sup Ky, ™) | x* € of(x)} .
But then

sup {<y, 2%y | 2" € T(x) + 0j(x)}
= sup {Ky, »*> | x* € T(x)} + sup Ky, y*> | y* € 0j(v)}
> sup {{y, *) | a* € 3f(2)} + sup Ky, ¥*) | ¥* € 07 (»)}
= sup Ky, 2*) | #* € of(x) + dj (@)} ,

inasmuch as 0j(x) is a nonempty bounded set, and this inequality is
incompatible with (3.5).

Proof of Theorem B. Let g be a lower semicontinuous proper
convex function on £ such that

(3.6) dg(x) D of(x), Vo e E .

As noted at the beginning of the proof Theorem 3 of [4], to prove
Theorem B it suffices, in view of Theorem 1 of [4] and its Corollary
2, to demonstrate that g = f + const.

We consider first the case where f and ¢ are everywhere finite
and continuous. Then, for each ze E, df(x) is a nonempty weak*
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compact set, and
3.7 f(%; ) = max {{u, *> | 2* €df(x)}, Vuec K,
where

@ u) = lim [Fz + ) = F@I

[3, p. 65]. Similarly, dg(x) is a nonempty weak* compact set, and
(3.8) g'(x; w) = max {{u, «*> | x* € dg(x)}, Vuec E .

It follows from (3.6), (3.7) and (3.8) that

3.9) fl;u) < d@;u), Vee E, Vue .

On the other hand, for any e K and y € E, we have
) = fig) = | (L = o + My — @),
0@) — 9@) = [ ¢ — Ve + M3y — B

(see [6, § 24]), so that by (3.9) we have
Sy — f(®) = 9(y) — 9@), Vee B, Vyc K .

Of course, the latter can hold only if ¢ = f + const.
In the general case, we observe from (3.6) that

dg(x) + 05 (x) D af(x) + 0j(x), Ve e E ,
and consequently
og + @) Do(f + J)), Vee k
by (8.1)(and its counterpart for g). This implies by Proposition 1 that
(3.10) o(g + 5)*(@*) Do(f + 5)*(z*), Va* e E* .

The functions (f + j7)* and (g + j)* are finite and continuous on E*,
so we may conclude from (3.10) and the case already considered that

G+)r=0+N"+a
for a certain real constant «. Taking conjugates, we then have
(3.11) (9 + )% =(f +5)** —a.

Since (¢ + 7)** and (f + j)** agree on K with g +j and f + j, re-
spectively, (3.11) implies that

g+.7:f+.7'—a’
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and hence that g = f + const.

REMARK. The preceding proofs become much simpler if E is re-
flexive, since then o0f* and o(f + j)* are just the “inverses” of df
and d(f + j), respectively, and Proposition 1 is superfluous. In this
case, S may be replaced by the inverse of T + 05 in the proof of
Theorem A.
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