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ORTHOGONAL GROUPS OF POSITIVE DEFINITE
MULTILINEAR FUNCTIONALS

STEPHEN PIERCE

Let V be a finite dimensional vector space over the real
numbers R and let T: V— V be a linear transformation, If
¢: X" V— R is a real multilinear functional and

Ty, -+, Tn) = @(@1, ** -, Tm),

21, -+, Zm €V, T is called an isometry with respect to ¢. We
say ¢ is positive definite if ¢(x, ---,2) > 0 for all nonzero
2€ V. In this paper we prove that if ¢ is positive definite and
T is an isometry with respect to ¢, then all eigenvalues of T
have modulus one and all elementary divisors of T over the
complex numbers are linear,

Let V be an n-dimensional vector space over the real numbers R.
Let T: V — V be a linear transformation of V. The following theorem
[1, Th. 3] is easy to prove:

THEOREM 1. There exists a positive definite symmetric quadratic
form ¢: V x V— R such that

(1) (T, Ty) = p(x, y), ¢, ye V
if and only if
1. all eigenvalues of T have modulus 1,

(2) 2. all elementary divisors of T over the complex num-
bers C are linear.

Moreover, if T satisfies (2), then there is a positive definite symmetric
@ such that (1) holds.

Theorem 1 can also be expressed in matrix theoretic terms. If
A is a real n X n positive definite symmetric matrix and X is any
automorph of A;

(3) X'AX = A,

then X satisfies (2); moreover, if an n X n matrix X satisfies (2), then
there is a positive definite symmetric A such that (3) holds.

Let @: X7V — R be a real multilinear functional. Let H be a
subgroup of the symmetric group S,. If

(4 ) @(xa(l)! ct Y wa(m)) = 90(371, ] xm)
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for all e H and all ;e V,i=1, .-+, m, then @ is said to be sym-
metric with respect to H. If

(5) @(Txv ccy T.’Em) = SD(CI;I, "'xm)

forall z, -+, z, €V, T is called an isometry of V with respect to .
(Note that if m > 2, (5) has no matrix analogue). Let 2,(H, T) be
the set of all ¢ satisfying (4) and (5). Clearly 2,(H, T) is a subspace
of the vector space of all multilinear functionals symmetric with re-
spect to H. We say ¢ is positive definite if

(6) Py +oe, ) >0

for all nonzero = in V. The set of all positive definite ¢ in 2,(H, T)
is denoted by P,(H, T). It is clear that P, (H, T) is a (possibly empty)
convex cone in Q,(H, T).

The following result [1] was proved as a partial generalization of
Theorem 1.

THEOREM 2. Let T: V— V be linear. If P,(H, T) is nonempty,
then

(a) m s even

(b) every eigenvalue v of T has modulus 1

(¢) elementary divisors of T corresponding to v = +1 are linear.
Conversely, 1f m 1is even, all eigenvalues of T are +1, and all ele-
mentary divisors of T are linear, then P,(H, T) is nonempty.

We conjectured that if P,(H, T) is nonempty,then (¢) can be re-
placed by (¢’) “all elementary divisors of T over the complex field are
linear.” This would provide a complete generalization of Theorem 2,
and thus justify (6) as a definition of a positive definite multilinear
functional. The purpose of this paper is to prove this conjecture.

THEOREM 3. If P,(H, T) ts nonempty, then

(a) m 1is even

(b) all eigenvalues of T have modulus 1

() all elementary divisors of T over C are linear.
Conversely, if (a), (b), and (¢') hold, then P,(H, T) ts nonempty.

2. Proof of Theorem 3. Assume that P,(H, T) is nonempty.
Parts (a) and (b) follow from Theorem 2. We now prove two lemmas.

LEMMA 1. If v s an eigenvalue of T and (x — 7)), k >1, is a
nonlinear elementary divisor of T corresponding to v, then v™ # 1
for any integer m.
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Proof. Since T is a real transformation, it has a real elementary
divisor

(7) (@ — 7@ —7]*.

(By Theorem 2, v cannot be real in this case.) Let W be the invariant
subspace of T determined by (7), and let S be the restriction of T to
W. Then S is an isometry of W with respect to ¢, and hence S” is
also an isometry for any integer . Now if v* = 1, then all eigenvalues
of S” are 1, and hence Theorem 2 implies that all elementary divisors
of S” are linear. Therefore, S is the identity on W, and thus, the
elementary divisors of S are linear, a contradiction.

LEMMA 2. If Theorem 3 1is true for the case H = S, then it is
true for any subgroup H of S,.

Proof. Let H be a subgroup of S, and letpe P, (H, T). For
each o¢ S, define

(8) Doy =y Tw) = P(Xotryy ** %5 Totm)) »

X, +++, &, € V. In general, ¢, is not symmetric with respect to H,
but ¢, is positive definite and 7' is an isometry with respect to o,.
Set

(9) V= 2P

Clearly + is positive definite, and 7T is an isometry with respect to
4. Moreover, for any t€S,, and ,, +--, 2, €V,

Flr'f(xr(l)! tt Y xr(m)) = Zl @a(mr(l)’ °t xr(m))

oeSy,

= ZI @(xra(lb ] xz‘a(m))

geSy,

= 2 Py * 00y Tuimy)

yesm

Z q’,«(mu ceey By)

HESy

= P(By 200y Tu) -

Il

Thus e P,(S,., T), and hence the elementary divisors of T' are linear.
This proves Lemma 2.

We may assume henceforth that H = S,, and abbreviate P,(S,, T)
to P,. If P, is nonempty, and T has a nonlinear elementary divisor
over C corresponding to the eigenvalue v = a + b (b # 0), then there
exist four linearly independent vectors v,,--:, v, in V such that
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Tv, = av, — bv,
(10) Tv, = bv, + av,
Tx, = v, + av, — b,
Tv, = by, + av, .

Let V be the extension of V' to an n-dimensional space over C, i.e.,
V consists of all vectors of the form x + iy, ®, y€ V. By linear ex-
tension, we regard T as a linear transformation of V, and by multi-
linear extension, ¢ becomes a complex valued multilinear functional
on x™V. Equation (5) still holds in V, but ¢ is no longer positive
definite. Set

e, =V, + 10, 6 = UV, — 0,

1) . .
€ = Vs + T, 6 = V; — 1V, .

From (10) and (11),

Te, = ve,, Te, = e,

12
(12) Te, = ve, + v, Te, = Ve, + v, .

By Lemma 1, v is not a root of unity; thus,

@(611 ceey @y Oy tee6y) = @(Teu coe, Te,, Te,, +++, Te,)
(13) = 7k7m_k@(319 ceeBy €y vty 6y)
=0,

unless k¥ = m — k, where k is the number of times e, occurs in (13).
With r» = m/2, we set

r r
Py, »vy €y €y 200y 8) =V,
Now v %= 0; otherwise

QD(’UU cee, ) = 27"p(e, + €y v+, 6 + e,)

(14) _0.

contradicting (6). (Note that we are using the assumption that ¢ is
symmetric with respect to S,; this gives us a convenient way of
sorting expressions such as those on the right side of (14).)

Let ¢ = ¢(vy, -+-, v, &). Using (13) and (14), we compute,

[l = 2—m+1¢(31 + 6y 00, € + (2% 63)
= 27"Hp(ve, + ey + -+, Ve, + Ve, Ve + Vs)

_ _ — &
= 2"”“@(’7& + Fey, « -7, + T, Ve, + & 57 2)

Il

—2—’"i<m ; 1>(~7 — MY + Y27 p(ve, + Vey Ve, + Ve, €;)
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—_— —-m'm'—l ~7 —m
= —2 'c( r )(7—7)v+'72 +

@(7231 + ,7262, ey 7261 + ’726” 763 + 6;2:-—6'2'>
1

N —2_mi(m r 1>(27 -7 =W+
@(7261 + ey + 0+, Y0, + Ve, e) .

Continuing this procedure, we obtain for any positive integer s

18) g = —27i(™ 7 1)o7 = Sy 4 yrzome

7=0

P(7r%e, + Voey + oY%, + Ve €;) .
Let
f(z) = Z¢(zel + —2—62, R + _z—ezy 63) ’

where z is a complex variable. Then f is a continuous function of z
on the complex plane, and hence f is bounded on the unit circle.
Moreover, since v is not a root of unity (in particular, v # +1),

s—1
Z y2i=1
i=0

is also bounded as s becomes large. Thus, letting s approach infinity
in (15) forces g to become infinite, a contradiction. This proves
Theorem 3 in one direction.

Now suppose all eigenvalues of T are 1 in absolute value and all
elementary divisors of T are linear over C. Let 1 (p times), —1 (¢
times) and 7v; ¥; = a; = b, |v;| =1, =1, ---, ¢, be the eigenvalues
of T. Then there is a basis of V, v, «««, vy, Uy ++ oy Ugy 1y Yyy =+ Xsy Y,
such that

T’Uj:'vj’jzl’ --.,p
Tu; = —u; 3 =1, -,
(16) d pd =
Te; =a@; —by;g =1+,
Ty; =bw; + a;y;,5 =1, --«, t.
Set

w; = ; + 1Y;
%T)jzxj—iyj,jzl,---,t.

Then , «««y Vpy Uy *++y Ugy Wy, Wy ==+, W,y W, form a basis of V of
eigenvectors of T. Let fi, =<, for Guy ***s 9o iy by <+, By kb, e the
corresponding dual basis. If 1, ---, [, are linear functionals on a space
V, then [,.-.l, is the m-linear functional on x™V such that
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bovos L@ ooy @) = TT (@) -

Define ¢ as follows:
» q t —_—
an =307+ 307 + 3 sk + Bk

where r = m/2 and f(v) = f(v). Now h; and k; are not linear on the
complex space V, but they are complex valued linear functionals on V,
l.e., they are linear functionals on V but are not in the dual space
of V. Thus ¢ is a real multilinear functional on V. Set
P o= ZS‘, Po -

We assert that +eP,(H, T). Clearly 4 is symmetric with respect
to S,, and thus with respect to any subgroup H of S,. It remains
to show that + is positive definite and that T is an isometry with
respect to . It suffices to prove these last two properties for o.
Let

xr =

i

Il

q t
av; + 2B + (0,25 + Nyj)
J=1 J=1

J

be an arbitrary vector of V. Then from (17),

? q t 5.\2 pAYE
P, ) = Sy + 367 + 23 [ (%) + ()T
i=t =1L\ 2 2
Since m is even and «;, B;, 0;, M; are all real, ¢ is positive definite.

Now let 2, k =1, -.-, m, be arbitrary vectors in V, with

P q t
(18) 2y = Z,lakjv,- + ]Z:f bkj'wj + jZ{ (ijxj + dkjyj) .
Then
» m q m
@(zn y zm) = . H Qr; + 2 H bkg
J=1 k=1 1=1 k=1
t
cZk—l.j dzk—l,j><02k,j . dzk,j)
(19) +§}3( 5 o N2 T
+ A <Czk—1,j . d2lc—l,j>< Cok, dzk,j) .
F=1k=1 2 21 2 T 2
From (16)
» q
Tz, = 3, a0 + 2 (—bij)u;
(20) = =

t
+ Zl (a;e; + b;di)x; + (a;di; — bje)Y;
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k=1,.--,m. Let

e,w- - ajckj + bjdkj
Sii = @;dh; — bicy;

Then from (19) and (20)

p» m g m
@(Tzv R = Z].—.[aka EH('—ka)
J=1k=1 =1k=1
07 (Con—,i o Jone m)(ezk,j _ fzk,j)
@1) + EE( AN 2
t m
ezk—-l,j . fzk—xd)(ezk,y fzk,;) .

It is easily verified that
i o S Vj(cki + d_ka_)

2 % 2 2

(22) (3 (3
Eﬁ__@zfy.(cw _iu).
2 23 \2 %

Using (22) in (21) and the fact that |v,| = 1, we obtain

@(Tzn Tty sz) = @(zu ety zm) .
This completes the proof of Theorem 3.
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