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TANGENTIAL CAUCHY-RIEMANN EQUATIONS
AND UNIFORM APPROXIMATION

MICHAEL FREEMAN

A smooth (ί^0 0) function on a smooth real submanifold M
of complex Euclidean space O is a CR function if it satisfies
the Cauchy-Riemann equations tangential to M. It is shown
that each CR function admits an extension to an open neigh-
borhood of M in O whose ^-derivatives all vanish on M to a
prescribed high order, provided that the system of tangential
Cauchy-Riemann equations has minimal rank throughout M.
This result is applied to show that on a holomorphically convex
compact set in M each CR fuction can be uniformly approxi-
mated by holomorphic functions.

1* Extension and approximation of CR functions* Each point
p of a smooth real submanifold M of Cn has a complex tangent space
HPM. It is the largest complex-linear subspace of the ordinary real
tangent space TPM; evidently HPM = TPM n ίTpM. Its complex dimen-
sion is the complex rank of M at p. The theorem of linear algebra
relating the real dimensions of TPM, ίTpM and their sum and inter-
section shows that if M has real codimension k its complex rank is
not less than n — k.

DEFINITION 1.1. M is a CR manifold if its complex rank is con-
stant. It is generic if in addition this rank is minimal; that is, equal
to the larger of 0 and n — k. A smooth function / on M is a CR
function if ker dpf ID HPM for each p in M.

Here / is assumed to be extended in a smooth manner to an open
neighborhood of M and dpf is regarded as the conjugate complex-linear
part of the ordinary Frechet differential dpf. Since the condition on
dpf is independent of the extension chosen, the definition makes sense.
Computational equivalents to it and some elaboration are given in § 2.
A more comprehensive treatment of these ideas is found in the paper
by S. Greenfield [1]. It should be mentioned that his definition [1,
Definition II. A. 1] of CR manifolds also requires that the distribution
p —• HPM be involutive. That assumption is not needed here.

If M is a complex submanifold of Cn, then it is CR with complex
rank equal to its complex dimension. It is not generic if it has posi-
tive codimension. Of course the CR functions on M are just its holo-
morphic functions.

At the other extreme, every real hypersurface is a generic CR
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manifold of complex rank n — 1. These frequently have no nontrivial
complex submanifolds, which is true for example of the usual 2n — 1
sphere in C\

M is a generic CR manifold if its complex rank is everywhere
zero, which is the totally real [5] case.

An example of a proper generic CR submanifold which is neither
totally real nor a hypersurface can of course only be found if n ^ 3.
There is one in C3, a 4-sphere S4 given as the intersection of the usual
5-sphere and a real hyperplane transverse to it. Let

ft = I Si I2 + I z21
2 + I z51

2 - 1

and p2 — zz + z3, where z19 z2, z3 are the usual coordinates for C3, and
let S* = {ft = ρ2 = 0}. It follows from (2.2) below that S 4 has the
requisite properties. Furthermore, S 4 has no nontrivial complex sub-
manifolds (since the 5-sphere does not).

THEOREM 1.2. If f is a CR function on a generic CR manifold
M in Cn and m is a nonnegative integer, then there is an extension
of f to a smooth function fm on an open set U z> M such that dfm

vanishes on M to order m in all directions.

This result is known [3, Lemma 4.3] and [5, Lemma 3.1] when
M is totally real. It is also proved in [2, Th. 2.3.2'] when M is a
real hypersurface. A local version which does not require that M be
generic is proved in [5, Lemma 3.3].

Theorem 1.2 plays a key role in a program outlined by L. Hormander
for showing that CR functions can be uniformly approximated by
holomorphic functions. The basic idea is to take a compact set K in
M and a given CR function f on M and find a solution g of dg = df
with sup*: I g \ small. Then u — f — g is holomorphic and approximates
/ uniformly on K with error no larger than sup^ \g\.

In Hόrmander's implementation of this idea, Theorem 1.2 implies
that a certain bound on an L2 norm of the Sobolev type is imposed
on dg. The existence of solutions to dg = df subject to the same a
priori bound [2] and a Sobolev inequality are used to estimate supA- \g\.
This proof appears in [3] and [5] for the cases cited above. Since the
only step of it which depends on the complex rank of M is the con-
clusion of Theorem 1.2, this proof will, without further modification,
yield a result on uniform approximation.

THEOREM 1.3. If M is a closed generic CR submanifold of a
domain of holomorphy U in Cn and K is a compact subset of M
holomorphically convex with respect to U, then each smooth CR func-
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tion on M is a uniform limit on K of functions holomorphic on U.

In fact, the same method in conjunction with Theorem 1.2 will
prove the stronger statement that approximation holds in the < °̂°
topology; c.f. [5, Th. 6.1]. One merely replaces s u p x | # | by a ^ k

norm of g on K.
In the totally real case, it is known that the holomorphic con-

vexity of any given compact subset K with respect to some domain
of holomorphy is a consequence of the absence of complex tangent
vectors. This follows from the fact [3, Th. 3.1] and [5, Corollary 4.2]
that each K has arbitrarily small tubular neighborhoods which are
domains of holomorphy. However, the case of the 2^ — 1 sphere in
Cn shows that in the presence of complex tangent vectors holomorphic
convexity must be assumed. When there is complex tangency, the
problem of determining holomorphic convexity of a given compact sub-
set of M is very difficult, even for the examples mentioned above.

It should be remarked that in Definition 1.1 and Theorem 1.2 C*
may be replaced by any complex manifold, and if this manifold is
Stein [2], it may replace U in Theorem 1.3. No significant modifica-
tion of the exposition is required.

2* CR manifolds and functions. Each real-linear map L: Cn —*
C7; is uniquely expressible as a sum L = S + T where S, T: C%—>Cfc, S
is complex linear, and T is conjugate complex linear. If J:v—+iv, a
direct computation shows that S = i(L — JLJ) and T = i(L + JLJ).
Applying this result to the Frechet differential dpp of a smooth map
p: Cn —• Ck at p there results

dpρ = dpρ + dpp

in which dpp is the complex linear part of dpρ and dpρ the conjugate
complex linear part.

Each point of M has an open neighborhood U in Cn on which there
exists a smooth map p = (ply , ρk): U—* Rfc with maximal rank k on
U and satisfying

(2.1) Mf]U= {ze U:p(z) = 0} .

Regarding Uk as contained in Cfc in the usual way, and applying the
remarks above to Definition 1.1, it follows that M is CR if and only
if dp has constant complex rank on M Π U, and is generic exactly when
this rank is maximal. When k^n this means that HPM = 0, which
is the totally real case. The case of interest here is k ^ n, when M
is generic if and only if dp has complex rank ί onilίΠ U. Henceforth,
it is assumed that k ^ n. Since it is clear that dp = (dply , dρk) it
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follows that the condition

(2.2) dp, A Λ dρk has no zeros on M Π U

is necessary and sufficient that M be a generic CR manifold.
From Definition 1.1 and (2.2) it follows that a smooth function /

on M is CR if and only if

(2.3) df A dp, Λ Λ dpk = 0 on M.

Equivalently, since {dply •••, dpk} is, at points of M, by virtue of (2.2)
part of a basis for the space of conjugate-linear functional on Cn,
there exist smooth functions h19 , hk on U such that

(2.4) df = Σ Mft +
i=i

Here O(/0) denotes a form which vanishes on M Π ί7. It is a standard
result [4, Lemma 2.1] that if g is a smooth O((o)-form there exist
smooth forms g19 , gk such that

(2.5) g = Σ Λ Λ

More generally, O(ρm) will denote a smooth form on U which vanishes
on M n U to order m. Induction on m using (2.5) shows that if g is
such a form there are smooth forms ga on U satisfying

(2.6) g - Σ r # « ,

in which the standard multi-index notation has been used. Thus
a = (aλ, , ak) is a /c-tuple of nonnegative integers, | a \ — α\ + + ak,
and ρa = pV Plk The coefficients ga are not unique on [7, but the
fact that they are determined on M Π U will be essential.

LEMMA 2.1. If smooth forms g, ga are related on U by

9 = Σ P°9a + O(pm+1)

/or βαcfe α, Dag \ M Π Z7 = ^!^α ilί" Π ί7. In particular, if g = 0
[/ ί/iew eαcΛ grα I i f Π Ϊ7 = 0.

Here Da = Df1- D?fc, where D, denotes differentiation with re-
spect to ^ and a\ = α j <zΛ!.

Proof. The statement is local and since ^ has rank fc, the proof
can be reduced to the case where each pά — xd, the jth ordinary
Euclidean coordinate function. Then the lemma follows from the gen-
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eral Leibniz formula

with / = x", noting t h a t Drxa = 0 on Mf]U if 7<a and Daxa = a\.

Here (*z) — otl/yl(a — 7)1 and 7 < a means t h a t y3- < aά for some j .

3* Proof of Theorem 1.2. The proof is an induction on m in
which fm+1 is obtained by subtraction of an O(pm+1) function from fm.
Similar procedures have been used in [2, Th. 2.3.2'], [3, Lemma 4.3],
and [5, Lemmas 3.1 and 3.3]. The one used here borrows ideas from
all of these. Since the totally real generic cases where k ^ n are
treated in [3] and [5], it will be assumed that k ^ n. However, the
proof below can be read with k >̂ n, with some slight modifications.

In the presence of complex tangent vectors, the only known result
is local in nature [5, Lemma 3.3]. Its proof refers to a particular
local coordinate system for Cn and uses an initial extension fQ which
is independent of the coordinates normal to M. This feature is clearly
not preserved by the patching construction intended here, so an arbi-
trary extension of / must be admitted at each step. This introduces
remainder terms of the form O(pm), and it is necessary to keep an
accurate account of their effects.

To begin the induction, extend a given CR function / from M to
a smooth function f0 on an open set U~D M.

First assume that the representation (2.1) holds on U. Then 3/0

is of the form (2.4) and if u = Σ*=i P3 hd it is clear that 3(/0 -u) = O(ρ).
In general U has a locally finite cover by open sets UL on each

of which there exists a defining function ρL presenting M f] UL as in
(2.1) and a O(pL) function ut satisfying 3(/0 — uL) = O(pt) on Ut. If
{φL} is a partition of unity subordinate to {UL} and

(3.1) u = Σc ΦM

then

(3.2) 3(/0 - U) = Σc φβ(fo - U) - Σ t ^dφL .

By construction each term of either sum in (3.2) vanishes on M. There-
fore so does 3/j. if f1=f0 — u.

For the inductive step assume that m > 0 and / has an extension
fm to U such that dfm vanishes on M to order m. A global modifi-
cation of fm will again be obtained by patching local ones, so the
construction is again begun by assuming that M is globally presented
by (2.1).
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Then by (2.6) there are smooth (0,1) forms ga such that

\a\-m

Hence

(3.4) 0 = 9a/m = Σ Σ <*sP"-*dpi Λga +
| α | = m 3=1

in which a — j denotes (al9 , aό — 1, , ak) if a3- > 0. Wedge this

equation with dp, A Λ dρό A Λ 9 ^ Φρό is missing) to show
that for each j

(3.5) 0 = Σ ajpa-idp, A Λ dpk A ga + O(pm) .
\a\=m

Now for fixed j , the map a —>α — j is a one-to-one correspondence
of {a:\a\ = m and a:,. > 0} with {β: \ β | = m - 1}. Therefore (3.5)
may be rewritten as

0 - Σ (βj + l)P

βdPl A Λ dpk A gβ+j + O(ρm)
\β\=m-l

and Lemma 2.1 applied to deduce that gβ+j A dp, Λ Λ dpk = 0 on
ilf. Since this holds for every j and β, it follows from the linear
independence of dPl, , dpk on ikf that for each a, \ a \ = m, and each
j , 1 ^ i ^ ^̂  there is a function fcαi such that

(3.6) ga = Σ /^ft- + O(^) .

When substituted for ga in (3.3) and (3.4) this relation yields

(3.7) dfm= Σ Σ PahajdPj + C K ^ 1 )

and

(3.8) 0 = Σ . Σ ajp
a-jhaιdρj A dp, -

α | = m * , ί = l

The expression (3.7) suggests modifying fm by

1 k

<y^ :=z \Λ \Λ QaQ .fo .
Ύl + 1 l«|=m j = l

(the need for the constant l/(n + 1) will appear as a consequence of
(3.11)). Now

(3.9) (n + l)du = Σ PahajdPj + Σ Σ pjOCiP^Kβp, + Σ PaPβKj
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The first term of this is dfm. The second is

(3.10) Σ PJ( Σ aφ^
ij l \ | |

which will be shown to equal ndfm + O(pm+1).
To that end, for each i < j , wedging (3.8) with

dp, A Λ dpi A Λ dpj A Λ dpk

(dpi and dp3- are missing) gives the symmetry relation

(3.11) 0 - Σ (ajpa-jhai - aφ^Kj) + O(pm) .
\a\=m

Using this in (3.10) it becomes

Σ Λ ( Σ <χsP°-> ha%)dPi + O(p^)
i,j = ί \\a\=m J

which when the summation over j is performed first is

Σ iL
\a\ —m i = i

Noting that Σy=i aj = n completes the argument that the second term
of (3.9) is ndfm + O(ρm+1). Therefore du = dfm + O(ρm+1).

Thus on each UL there is a function uL = 0{ρT+ι) such that
3(/« - We) I Ut = O(p?+1). With u defined again by (3.1) and fm+ί = fm - u
it follows as before from (3,2) that dfm+ί vanishes on M to order m + 1.
This completes the proof.

4* Remarks* We know of no nongeneric examples where Theorem
1.2 fails. However, when M is not generic, the above proof breaks
down at the inductive step from m = 1 to m — 2: Since dp does not
have maximal rank it may be assumed that there is an integer I < k
such that dpι A Λ dpt has no zeros on M but dp, A Λ dp3- = 0
on M if j > I. Thus there are more unknowns ga than equations avail-
able from (3.4). There are very simple cases where this occurs:

EXAMPLE 4.1. If the usual coordinates of C2 are denoted zL, z.z

and M = {z: z2 = 0} then the function / = z2zλ is CR, for df = zΛz^
The most general function u vanishing to second order on M is by
(the complex analogue of (2.5)) of the form

w = z\gγ + z2z2g2 + z\gz

for suitable smooth functions gλ1 g2, and g3. Therefore

du = ztdg, + z2g2dz2 + z2z2dg2 + 2z2gβz2 + z$gz .
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Each of these terms either vanishes to second order on M or is line-
arly independent of 3/. Therefore no such u will satisfy d(f — u) —
O(p2).

However since / is zero on M, it obviously satisfies the conclusion
of Theorem 1.2. In fact, if M is a complex manifold, each CR func-
tion / is holomorphic, so if U is a domain of holomorphy Theorem 1.2
for U and M f] U follows from Cartan's Theorem B [2], which implies
that / has a holomorphic extension to U. Moreover, standard results
in several complex variables show that Theorem 1.3 is true for any
complex manifold M. Thus Theorem 1.2 and a consequent Theorem 1.3
may still hold in the nongeneric case, but some new ideas for proof
are necessary.
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