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SOME EXAMPLES IN FIXED POINT THEORY

E. FADELL

It is known that the fixed point property (f.p.p.) is not
invariant under suspension and join in the category of simply
connected polyhedra. In this paper we exhibit examples to
show that f .p.p. is not invariant under suspension and join in
the category of simply connected polyhedra satisfying the Shi
condition and more strongly, in the category of simply con-
nected compact manifolds. We also exhibit a simply connected
polyhedron X such that the smash product X A X fails to have
f.p.p. if one choice of base point is used to form X A X, while
X A X has f .p.p. using another choice of base point. In the
last section we prove that f .p.p. is invariant under Cartesian
products in very special circumstances.

It is known that the fixed point property (f.p.p.) in the category
of simply connected polyhedra is not an invariant under cartesian pro-
ducts, smash products, suspension, join or homotopy type (Lopez [3] and
[1]). In all cases the counterexamples are based upon polyhedra which
fail to satisfy the Shi condition, namely that for each vertex v, dStv
(boundary of the star of v) be connected and the dimension is ^ 3 . It
is therefore natural to consider the behavior of f.p.p. in more restric-
tive categories. As suggested in [1], one should look at f.p.p. in the
following categories:

Sf\ Polyhedra satisfying the Shi condition.
^ 0 : Simply connected polyhedra in S?.
^ \ Compact topological manifolds, dimension 2:3.
^£'0: Simply connected manifolds in ^ .
In the categories Sf and ^£ f.p.p. is a homotopy type invariant.

In fact, if X is any compact ANR dominated by Y, where Y is in
S? or ^ , then Y f.p.p. implies X f.p.p. [1]. Thus the result, Y
f.p.p. implies Y x I f.p.p., is valid in the categories £f or ^£ even
though it is false for (simply connected) polyhedra in general.

The question

(1) X f.p.p., Y f.p.p. => X x Y f.p.p.?

in the categories Sf or ^ remains open. In § 4, we prove two very
special cases for the categories .9% and ^#V In § 2 we provide the
details of the examples announced in [1] which show that in ^ 0 and
^T o f.p.p. is not invariant under the suspension and join operations.
In § 3 we use one of the examples of § 2 to construct a simply con-
nected polyhedron X which has f.p.p. and with the curious property

89



90 E. FADELL

that with one choice of base point (α, a) the resulting smash product
X A X = X x XIa x X U X x a fails to have f.p.p., while constructing
X Λ X with another choice of base point preserves f.p.p.

2* Two examples* If F:X-+X is a self-map of a compact
connected metric ANR, then for any field A

(1) L(f; A) = y\(-l)k Trace fξ
k

is the Lefschetz number of / over A and L(f A) — L(f, A) — 1 is the
reduced Lefschetz number of over A. When A = Q, the field of ration-
al numbers, then L(f) = L(f, Q) is the usual Lefschetz number of / .
χ(X) and χ(X) = χ(X) — 1 will denote the Euler characteristic and
reduced Euler characteristic, respectively. All spaces in this paper will
be connected compact metric ANR's.

We will make use of the following simple lemma.

LEMMA 2.1. Suppose A is a field of characteristic p Φ 2 and X
and Y are spaces with the property that for every self-map f: X—•» X,
L(f; A) = 0 or 1 and every self-map g: Y—> Y, L(g, A) = 0. Then any
space W ~ X V Y has f.p.p.

Proof Let

(2) X-^->XvY-^X

( 3 ) ΓΛIVΓΛΓ

denote t h e n a t u r a l inclusions and r e t r a c t i o n s . T h e n , if φ X V Y—>
X V Y is a n y m a p , let / = r^ix and g = r2φi2. I t is easy to verify
t h a t

( 4 ) L(φ, A) = L(f A) + L(g, Λ) = 0 or 1 .

Therefore, L(φ, A) Φ 0. Thus, X V Y has the property that every
self-map φ has nonzero Lefschetz number over A. Since this property
is a homotopy type invariant, it follows that if W ~ X V Y, then W
has f.p.p.

LEMMA 2.2. If HP* is quaternionic protective 4-space, then for
every self-map f: HP*->HP\ L(f Zz) = 0 or 1.

Proof. Let t& denote a generator in H4(HP*; Z3). Then, if
f*(u) = an,

(5 ) L(/; Z3) = a + a2 + α8 + α4 = 0 or 1 .
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LEMMA 2.3. If SHP3 is the suspension of quaternionic projective
3-space, then for every self-map g: SHP3 —* SHP3, L(g; Z3) = 0.

Proof. Choose a generator v e H5(SHP3; Z3) such that Pιv and
P2v generate the Z3-cohomology in dimensions 9 and 13, respectively.
Pι is the mod 3 Steenrod reduced power operator. Now, if g: SHP3-+
SHP3 and g*(v) = bv,

( 6 ) L(g; Z5) = b + b + b = 0.

PROPOSITION 2.4. Any space W — HP' v SHP3 has f .p.p.

PROPOSITION 2.5. Let

K = HP'Ό.SHP3

denote the union of HP4 and SHP3 along an edge. Then, K is a
simply connected polyhedron which has f.p.p. and satisfies the Shi
condition. Moreover, χ(K) — 2.

REMARK. Kr — (HP* V SHP3) x I has the same properties as K.

PROPOSITION 2.6. The suspension SK and the join KoK fail to
have f.p.p.

Proof. Since χ(SK) = -χ(K) and χ(KoK) - -χ(K)χ(K), both
SK and KoK have Euler characteristic 0. Since SK and KoK satisfy
the Shi condition, both admit maps homotopic to the identity map
which are fixed point free [5].

THEOREM 2.7. The f.p.p. is not invariant under suspension and
join in the category S^o.

Our next example will verify the above theorem in the category

Let q: S 7 -^S 4 denote the standard Hopf fibering and let A —
B — M2(q) denote two copies of the mapping cylinder of q. Then if
h:S7-+S7 is a reflection (degree —1), where Sτ is identified with one
end of the mapping cylinder of q, we may represent the connected sum

( 7 ) M= HP2 # HP2

by

(8) M=AuhB.
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There is a natural "flip" map f:M—+M which takes A to B and B to
A and which is the reflection on S 7 = i ίl 5, where A and B are
identified with the appropriate subsets of M. It is easy to see that /
is a homeomorphism which preserves orientation. Furthermore, by
identifying S7 = A f] B we obtain an identification map

(9) g:M > HP2 V HP2

which allows us to compute the cohomology ring structure (^-coefficients)
as follows:

LEMMA 2.8. The cohomology of M = HP2 # HP2 is given by

H\M) = Z, generator 1

(10) H\M) = Z@Z, generators x, y

H\M) = Z, generator x2 = y2

with Hq(M) = 0 in the remaining dimensions and xy = 0.

THEOREM 2.9. M = HP2 # HP2 is a simply connected manifold
with f.p.p. which admits a map f of Lefschetz number L(f) = 2.

Proof. The natural "flip" map f:M-+Mdefined above has L(f) = 2
so that the last part of the theorem is easy. Now, let

(11) φ:M >M

denote an arbitrary map and suppose, using (10), that

<P*(x) = ax + by

φ*(y) = ex + dy .

Then,

(13) φ*(x2) - φ*(y2) = {a2 + b2)x2 = (c2 + d2)y2

and

(14) φ(xy) = 0 = (ac + bd)x2

which yields the conditions

(15) a2 + b2 = c2 + d2 , ac + bd = 0 .

Furthermore,

(16) L{φ) = l + a + d + a2 + b2.

We now consider individual cases.
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Case 1. a = 0, δ = 0. Here £(<?) = 1.

Case 2. a2 + δ2 =£ 0, (a, 6) ^ ( - 1 , 0). Using (15), we have

(17) a\a2 + δ2) - α2(c2 + d2) = d*(a* + δ2)

so that a = ±d. If α = -<Z, L(φ) = 1 + α2 + δ2 > 0. On the other
hand if a = d, L(φ) = (1 + a)2 + δ2 > 0.

Case 3. α = — 1, δ = 0. This case does not occur. To see this,
choose v e H\HP2) Z3) such that Pιv = v2. Then we may assume
g*(v) = x (over Z3) and P 1 ^ = x2 in iϊ4(ikf Z3). If ?>*(») = αx (over Z),
we must have

(18) φ^iP'x) = ^*(α;2) - α V = α2P^τ = α P 1 ^ = ax2

so that a2 ~ a (mod 3). This precludes α = — 1.
Thus, we see that for any map φ:M—*ikf, L(φ) Φ 0 and hence M

has f.p.p.

THEOREM 2.10. The f.p.p. is not invariant under suspension and
join in the category

Proof. Let M denote the manifold in the previous theorem and
f:M-+M the map with L(f) = 2. Then,

(19) Sf:SM >SM and fof:MoM >MoM

yield

(20) L(Sf) = -L(f) = -1 = -L(f)L(f) = L(fog)

so that

(21) L(Sf) = 0 = L(fof).

Since we are in the simply connected case, the Nielson number of Sf
(and fof) is zero. Therefore again using [5], Sf and f of can be
deformed to fixed point free maps so that SM and MoM fail to have
f.p.p.

3. The f.p.p. and smash product* Our objective in this section
is to show that there is a simply connected polyhedron X with f.p.p.
such that the smash product X Λ X = X x X/X V X has f.p.p. with
one choice of base point x0 e X while it may fail to have f.p.p. if one
employs another base point xLeX.

We will make use of the polyhedron
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(1) K = HPi{JISHP3

discussed in the previous section. If N = SHP2 and

( 2 ) X = K\J N= (HP'UjSHP") V SHP2

we will show that X A X fails to have f.p.p. if the base point xoeX
is chosen distinct from the wedge point veX. On the other hand, if
the wedge point v is employed to form X A X, then X A X retains
f.p.p.

THEOREM 3.1. If x0 Φ V, then

X A X = X x X/χ0 x X U X x Xo

fails to have f.p.p.

Proof. First we observe that since χ(X) = 0, L(id) = — 1, where
L is the reduced Lefschetz number. Since χ(K) — 1 (reduced Euler
characteristic) we see that X admits a map g such that L(g) = 1.
Thus, L(id A g) = L(id)L(g) = — 1, and we see that f — id A g is a
self-map of i Λ l with L(/) = 0. i Λ l is simply connected and
can be shown to satisfy the Shi condition (using the fact that
x0 x X U X x x0 fails to separate X x X). It follows that there is a
map g ~ f such that # has no fixed points. Thus, X A X fails to have
f.p.p.

We now show that using the wedge point v

(3) XAX^XxX/vxXuXxv

has f.p.p. Although the details are lengthy, the idea is quite simple.
X = K U N with K Γ) N = v, the wedge point. Using v as base point
in the formation of X A X yields

( 4 ) X A X = (K A K) V (K A N) V (N A K) V (N A N)

where the four-fold wedge on the right is understood to have a single
wedge point v' corresponding to v x X U X x v. Now, since f.p.p. is
invariant under the wedge operation, it suffices to show that the four
individual wedge factors KAK, KAN, NAK, NAN have f.p.p.

LEMMA 3.2. HP* A HP* has f.p.p. Specifically, for any self map
φ, L(φ, Zz) = 0 Or 1.

Proof. We will identify ff*(A Λ ΰ) with H*(A x B, A V B) ~
H*(A, a0) 0ff*(B, 60) using always field coefficients. Then, working
over Zz, H*{HPA) has a basis of the form
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( 5 ) 1, a, Pιa, P2a, a4

where Pi is the Steenrod reduced power operator. Then, we may
arrange a basis for H*(HP4 A HP4) in positive dimensions as follows:

a x a ax Pιa + Pιa xa ax P2a + Pιa x Pιa + P2a x a

Pιa x a Pιa x P'a - P2a x a -P2a x Pιa + Pιa x P2a

a x P2a Pγa x P2a P2a x P2a

a4 x a a4 x P1a a4 x P2a

ax a4 Pιa x a4 P2a x a4 .

a4 x a4

Notice that (for the first five rows) applying Pι and P2 to the first
column yields the second and third columns. This means that for a
self-map φ: of HP4 A HP4, L(φ, Zz) = λ4, where φ*(axa) = X(a x a).
This concludes the proof.

LEMMA 3.3. HP4 A SHP3 has f .p.p. Specifically, for any self-
map φ, L(φ, Zz) = 0.

LEMMA 3.4. SHP3 A SHP* has f .p.p. Specifically, for any self-
map φ, L(φ, Zz) = 0.

The proofs of these lemmas are modelled after the proof of Lemma
3.2 and consequently are left as exercises.

PROPOSITION 3.5. K A K has f .p.p.

Proof. Let Kf = HP4 V SHP\ then using the above lemmas every
self-map φ' of

(6, K ' Λ K '

has the property that L(φ, Z3) = 0 or l(using the technique in the proof
of Lemma 2.1). Since this property is a homotopy type invariant,
every self-map φ of K A K has L(<p, Zz) Φ 0. Thus, K A K has f.p.p.

LEMMA 3.6. HP4 ASHP2 has f.p.p. Specifically, for every self-
map φ, L(φ, Z2) = 0.

Proof. We may choose basis for the Z2-cohomology of HP4 and
SHP2, respectively, as follows

( 7 ) HP4:1, a, Sq4a, β, Sq4β
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(8 ) SHP2:1, u, Sq4u .

Then, we may arrange a basis (in positive dimensions) for the Z2-
cohomology of HP4 A SHP2 as follows

a x u ax Sq'u + Sq'a + Sq'a x u

Sq'a x u Sq*a x Sq*u

β x u β x Sq'u + Stf4/3 x u

Sq'β x w Sq'β x Sg%

where >Sg applied to the first column yields the second column. This
is enough to show that for every self-map φ, L(φ, Z2) = 0.

LEMMA 3.7. SHPZ A SHP2 has f.p.p. Specifically, for every self-
map φ, L(φ, Z2) = 0.

The proof of this lemma is similar to the proof of Lemma 3.6.

PROPOSITION 3.8. K A N has f .p.p.

Proof. K A N has the same homotopy type as

( 9 ) W = {HP' V SHP") A SHP2 = (HP' A SHP2) V (SHP" A SHP2) .

But by the previous lemmas, every self-map φf of W has the property
that L(φf, Z2) = 0 and hence every self-map of K A N has Lefschetz
number 1 (over Z2). Thus, K A N has f.p.p.

PROPOSITION 3.9. N A N has f.p.p.

Proof. Working with Z2 coefficients, a basis for the cohomology
of N = SHP2 has the form 1, u, Sq4u. A basis for the cohomology (in
positive dimensions) ofNAN can be written

u x u Sq'u x u + u x Sq4u

Sq'u x u Sq'u x Sq'u

where SqA applied to column one yields column two. This, given any
self-map φ of Λf, L(φ; Z2) = 0.

THEOREM 3.10. Using the wedge point v of X

XAX = XxX/vxX{jXxv

has f.p.p.
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4* Very special cases of the product theorem* Consider the
following property:

Property F: X is said to have property F if, and only if, L(f) Φ 0
for every self-map / : X—> JSΓ.

In terms of this property we recall the following theorem [1]:

THEOREM 4.1. If X belongs to ^ 0 or ^T o , then X has f.p.p. if,
and only if, X has property F.

Thus for spaces in S^o (or ^t0), the question of the invariance
of f.p.p. under Cartesian products (see (1) of § 1) is equivalent to the
question

(1) X and Y have property F =^ X x Y has property Ft

Our next theorem answers (1) in the affirmative under quite special
hypothesis. In the following we use rational singular cohomology.

THEOREM 4.2. Suppose X and Y are spaces having property F.
Suppose further that X has trivial cup products and X and Y have
disjoint cohomology, i.e., HP(X) Φ 0, Hq(Y) Φ 0, p, q >̂ 1, implies pφq.
Then X x Y has property F.

We will make use of the following lemma whose proof is left to
the reader.

LEMMA 4.3. Suppose ψ: X—> Y is a map and ψ0: Y—+Y is defined
by the diagram

X x 7 Λ l χ Y

Y JU Y

where σ is a section given by σ(y) = (x0, y), xoe X and π is a projec-
tion on the second factor. Then, for v e Hn(Y)

(2) ψ*(l x v) - 1 x ψ*(v) + E(v)

where E(v) is a linear combination of terms of the form a x b where
dim a ^ 1.

Proof of 4.2. Let <p: X x Y—>X x Y denote an arbitrary map
and let / and g be defined by the diagrams
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X x

Ί , Γ
x -ί-» x

X x y Λ l x Γ

where σx and σ2 are sections and πx and π2 are projections (see Lemma
4.3).

We choose bases 1 = ulf , uk and 1 = v19 , vx for the rational
cohomology of X and Y, respectively. Then, elements of the form
Ui x Vj form a basis for the cohomology of X x Y. If u and v are
typical basis elements, then using Lemma 4.3

φ*(u x 1) = f*(u) x 1 + E(u)

φ*(l x v) = 1 X g*(v) + J&(v)

where E(u) is a linear combination of terms of the form a x b with
dim 6 ^ 1 and E(v) is a linear combination of terms of the form α' x δ',
dim α' ^ 1. Suppose dim u = m and dim i; = w. Then

= f*(u) x g*{v) + E(u)(l x g*(v)) + (/*(%) X l)E(v) +

Now E(u) is a linear combination of terms of the form a x b where
dim a ^ m — 1 so that u x v cannot appear in the term E(u)(l x g*(v)).
Similarly, u x v cannot appear in the term (f*(u) x l)E(v). In E(u)E(v)
a typical term has the form

( 4 ) (ax b){a' x V) - ±αα' x bb'

where dim a ^ m — 1, dim 6 ^ 1 , dim a' ^ 1, dim br ^Ln — 1. If dim a ^ 1,
aaf = 0 so that (4) is 0. On the other hand if dim α = 0 then dim 6 = m.
Since dim % = m we see that 6 = 0 and hence (4) is 0 in this case.
Thus E(u)E(v) = 0. Thus, we see that φ*(u x v) and (/ x g)*(u x v)
have the same coefficient of u x v. Thus,

( 5 ) L(fxg) = L(f)L(g) = L(φ) Φ 0 .

THEOREM 4.4. Suppose X and Y belong to ^ 0 (or ^£Ό) and have
f .p.p. Then X x Y has f .p.p. if X or Y has trivial rational cup
products and X and Y have disjoint rational cohomology.
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EXAMPLE. Using Theorem 4.4, we see that CPι x SCP5 has f.p.p.
for i and j even, ί, j ^ 2. To prove that CPι has f.p.p., arrange a
basis for the Z2-cohomology of CPι in the form (i even)

( 6 ) 1, x19 Sq%, x2, Sq2x2,

so that for any self-map φ of CPί we have L{φ, Z2) = 1. Since Sq

commutes with suspension the same argument works for SCP\

Theorem 4.4 raises the following question:

QUESTION 4.5. If S I x 7 has f.p.p., does this imply that X x Y
has f.p.p.?

An affirmative answer to this question would settle the following
conjecture.

CONJECTURE 4.6. Suppose X and Y belong to S^o and X and all
its suspension have f.p.p. Then if Y has f.p.p., so does X x Y.

The technique used to prove Theorem 4.2 can also be used to
prove the following.

THEOREM 4.7. Suppose X and Y belong to S^ {or ^£Ό) and have
f.p.p. Suppose further that H*(X) is a truncated polynomial ring
on a single generator ueHk(X). Then, if Hk(Y) — 0, X x Y has
f.p.p.

EXAMPLE. CPί x HPj, where i is even (£, j ^ 2) has f.p.p. The
argument that HPj has f.p.p. goes as follows. First of all, if φ is a
self-map of HP5, then working over the rational field

( 7 ) L(φ) = 1 + a + α2 + + aj

where φ*(u) = au, u a generator in H\HPj). Of course, if j is even
we're done, since L(φ) Φ 0 in this case. If j is odd, j ^ 3 we need
only preclude the case a = — 1. Working over Z3, we may assume that
Pιu = u2 in H8(HPj; Z3). This forces

( 8 ) a2 = a (mod 3)

which precludes a = — 1.

REMARK. G. Bredon was the first to observe that HP3 has f.p.p.
using the above argument.
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