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INDEFINITE MINKOWSKI SPACES

JOHN K. BEEM

The purpose of this article is to characterize Minkowski
general G-spaces. The unit sphere K is shown to have at
most four components.

Assume the space R is not reducible. If K has one com-
ponent, R is an ordinary Minkowski G-space. If K has two
components they are quadrics and R is nearly pseudoeuclidean.
When K has three components, one is a quadric and the other
two are strictly convex. The unit sphere has four components
only in dimension two.

The axioms of a general G-space have been given in [4] and the
interesting two dimensional spaces have been investigated in [1], We
will denote the indefinite distance from x to y by xy. We refer to xy
as a metric even though it is not in general a true metric.

DEFINITION 1.1. The general G-space R is called a Minkowski
space if R is the real 7^-dimensional affine space An, the family of Arcs
A consists of the affine segments and w = (l/2)(x + y) implies wx =
wy = (l/2)xy.

If Lr is an r-dimensional flat in R, then Lr is an r-dimensional
Minkowski space with the induced distance.

Let e(x, y) be an associated euclidean metrization of An. Then for
each line L in R there is a number φ(L) such that xy = φ(L)e(x, y)
for all x,yeL. If φ(L) = 0, we call L a null line. The number φ(L)
depends continuously on L and φ(L) = ΦiL,) if L1 is parallel to L, see
[1], It follows that the affine translations preserve the distance xy.

Let z always denote the origin in An. We call C = {x | xz = 0}
the light cone and K = {x | xz = 1} the unit sphere. If K is given
the distance xy is uniquely determined.

For x Φ y let L(x, y) denote the line through x and y and let
a(x, y) denote the affine segment from x to y. When S czAn define
— S = {x\—xeS}. I f S = — S the set S is called symmetric about
z or simply symmetric. The sets C and K are symmetric.

Two general G-spaces Rx and R2 are said to be topologically iso-
metric if there exists a topological map of RL onto R2 that preserves
the indefinite distance xy.

It is easily seen that if Rγ and R2 are Minkowski spaces defined
on An with unit spheres K and K* respectively, then Rι and R2 are
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topologically isometric if and only if there is an affinity mapping K
onto if*.

2* Two dimensional spaces* If R is A2, then by [4, p. 241]
one of the following must hold: (1) no null lines exist in R, (2) there
is exactly one null line through each point of R, (3) there are exactly
two null lines through each point of R, or (4) all lines in R are null.

In case (1) we call R a spacelike plane. By [4, p. 239], a space-
like plane is an ordinary Minkowski G-space with unit sphere a strictly
convex closed curve.

In case (2) we call R a neutral plane. A neutral plane is topo-
logically isometric to the (s, t) plane with distance from (slf tλ) to (s2, t2)
given by \t, - t2\.

When R has exactly two null lines through each point it is called
a doubly timelike (Minkowski) plane, see [1]. The unit sphere has
four components each of which is strictly convex and not compact.

If all lines in R are null, we call R a null plane.

3* Reducible spaces* Let R be an ^-dimensional Minkowski
space. Then R is reducible to Rr x Nn~r for r < n, provided affine
coordinates xί9 x2, , xn may be chosen such that

(1) Rr is given by xr+1 = xr+2 = = xn = 0 and Nn~r is given
by Xi = = %r = 0.

(2) The projection of R onto Rr preserves the metric xy.
The maximum possible value of n — r is called the index of redu-

cibility of R. A null plane has index 2 and a neutral plane index 1.
Spacelike and doubly timelike planes are not reducible.

Nonreducible spaces often contain reducible subspaces. In the
three dimensional Lorentz space any plane tangent to the light cone
is neutral and hence reducible.

Given a line N the parallel to N through x will always be denoted
by Nx.

DEFINITION 3.1. A line N through z is called a line of reduction
of R if x e K implies Nx c K.

LEMMA 3.2. The space R is reducible if and only if R has a
line of reduction.

Proof. If N is a line of reduction of R and Ln~ι is a hyperplane
with Ln~ι n N = z, the projection of R onto Ln~γ along parallels to N
preserves the metric.

On the other hand if R is reducible to Rr x Nn~r any line N through
z and in Nn~r is a line of reduction of R.
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4* The r-flat topology* If {Mm} is a sequence of closed subsets
of i?,we say Mm converges to the closed set M if limΛfw = M in the
sense of Hausdorff s closed limit, see [2]. This limit induces a topology
on the closed subsets of R. If IS is an r-flat and W(Lr) is a neighbor-
hood of Lr in this topology, let Wr(Lr) denote the r-flats in W(Lr).

LEMMA 4.1. Let {14} be a sequence of doubly timelike planes,
each containing z, such that {L2

m} converges to the two flat L2. As-
sume xf eK n L2

m and xT —> α?< for i — 1,2.
(1) Let L2 be doubly timelike and let x19 x2 lie on the same com-

ponent [opposed components] of K. Then for sufficiently large m
the points x? and x™ always lie on the same component [opposed com-
ponents] ofKf] L2

n.
(2) // L2 is neutral, then for sufficiently large m the points xT

and x™ are always on the same or else always on opposed components

of κniA.

Proof. The proofs are similar and consequently we only consider
statement (2) in which L2 is neutral.

Without loss of generality assume x1 and x2 are on the same com-
ponent of K n L2 since if xrc —^xγ then — x™ —> —xL.

If y 6 a(x19 x2) then y eK and zy = 1. Therefore, there exists an
open set V containing the set a(x19 x2) such that all pe V have zp > 0.
For sufficiently large m all points of a(x?, xf) lie in V and have posi-
tive distance from z. It follows that x? and x™ lie on the same com-
ponent of K n L2

m for large m.
The components of K are arcwise connected since they are con-

nected and locally arcwise connected.

LEMMA 4.2. Let xL and x2 lie on the same component of K and
let L2 he a two flat containing z, xx and x2. If Sλ and S2 are the
components of K f] L2 containing x1 and x2 respectively then either
Sx = S2 or else Sλ = — S2.

Proof. Let x(t) for 0 ^ t ^ 1 be a curve on K connecting xγ and
,x2 with x(0) — xy and x(l) = x2.

Call the two flat L\t) admissible if z, x,, x(t) e L2(t) and Kf]L2(t)
has components S, and S(t) containing xι and x(t) respectively such that
either Sι = S(t) or else St = —S(t). For sufficiently small t there must
exist admissible L\t). Set M = {t e [0, 1] | there exists an admissible
L\t)}.

We now show M is closed. If {L2(tm)} is a sequence of admissible
planes and tm —* tQ, then there is a convergent subsequence {L2(tk)} c
{U{tm)} such that L\tk) -> L\. Clearly z, x19 x(t0) e L2(t0). Statement (1)
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of Lemma 4.1 implies L\ cannot be doubly timelike with xL and x(t0)
neither on the same nor on opposed components of K Π LI. Therefore,
toeM.

To show M is open let τ eM and U(τ) be admissible. If L2(τ) is
spacelike there must exist a neighborhood W2(U) containing only space-
like planes. But this implies the existence of a neighborhood U{τ) of
the number τ with U(τ) c M. If L2{τ) is a doubly timelike plane state-
ment (1) of Lemma 4.1 implies the existence of a neighborhood
U(τ) c M. In case L2(τ) is a neutral plane first construct a neigh-
borhood W2(L2(τ)) in which no null planes exist. If only spacelike
and neutral planes exist in W2(L2(τ)) there is nothing to show. If
there is a sequence of doubly timelike planes L\tm) converging to
I/2(r), statement (2) of Lemma 4.1 guarantees that for large m the
planes L2(tm) are admissible. It follows that there is a neighborhood
U(τ) c M. Therefore, M is open as well as closed. Since M Φ φ, M =
[0, 1] and the lemma is established.

THEOREM 4.3. Let Kγ and K2 be distinct components of K that
are opposed (i.e., K2 — — Kγ). Then Kγ and K2 are convex hypersurfaees.

Proof. Let K? = {y \ a(z, y)f]K1Φφ}. Then Kΐ has boundary K,
and y e Kΐ implies zy ^ 1. If ylf y2 e Kl let L2 be a two flat through
z, y1 and y2. Then L2 must either be neutral or doubly timelike. In
either case a(y19 y2) c Kl if yγ and y2 lie on the same component of
Kλ Π L2. Clearly yλ and y2 lie on the same component for L2 neutral.
If L2 is doubly timelike, then Kt Φ K2 and Lemma 4.2 imply yλ and
y2 lie on the same component of Kγ Π ZΛ It follows that K[ is convex
and that its boundary Kx is a convex hyper surf ace. In the same
fashion one may show K2 is a convex hypersurface.

LEMMA 4.4. Let K have a component Kγ that is symmetric about
z. Then for each xe Kι there is a two flat L2 through z and x that
is spacelike.

Proof. Assume the statement is false. Any two flat containing
L(z, x) is then either neutral or doubly timelike. Orient L(z, x) to
get L+(z, x). If L1 is a line parallel to L+(z, x), orient Lt in the same
direction. This gives an ordering < on each line parallel to L(z, x).

Let x(t) for 0 ^ t ^ 1 be a curve on Kx with x(0) = x, x(l) — —x
and x(t) £L{x, —x)ίovO<t<l. Let L+(t) be the oriented line con-
taining x(t) and parallel to L+(z, x). The line L+(t) is never a null line.

In the ordering < along L+(t) let p(t) be the first element in
{y I y e L+(t) and zy ~ 0}. Let f(t) be the signed euclidean distance
from x(t) to p{t) where f(t) < 0 if x(t) < p(t). If z < x then /(0) < 0
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and /(I) > 0.
The function f(t) is continuous at 0 and 1 since p(t) ~+z for t —• 0

and t —• 1. To show f(t) is continuous on (0, 1) let 0 < ί0 < 1 and
t"m —* U F ° r 0 < t < 1 let L2(t) denote the unique plane containing
L+(t) and z. Clearly if L(t0) is neutral we have L(z, p(tm)) —> L(z, p(Q).
If L2(t0) is doubly timelike, one can show using (1) of Lemma 4.1 that
L(z, p(tm)) —> 1/(2, p(ίo)) In either case p(tm) —> p(£0) and /(ί) is continu-
ous. But then f(τ) = 0 for some 0 < τ < 1 which implies x(τ) =
This is impossible since z&(τ) = 1 and zp(τ) = 0.

5* Three dimensional spaces* In this section we only consider
three dimensional Minkowski spaces.

LEMMA 5.1. Let K have three components K17 K2 and K3 with
K3 — — K3. Then Kγ = — K2 and Kλ (hence also K2) is strictly convex.

Proof. By Lemma 4.4 there is a two flat L2 through z that is
spacelike with L2 [\KZΦ φ. This flat separates As and does not in-
tersect iΓ2. Hence Kz Φ —K2. Consequently, Kι = —K2.

To see that Kx is strictly convex let x, y e Kx. If LI is a two flat
through x, y and z it must be doubly timelike since LI Π L2 Φ φ. Then
LI Π ULI is a strictly convex curve. It follows that u e a(x, y) — x — y
implies zu > 1. Therefore, Kx must be strictly convex.

If Kι is a component of K then so is —Ki. Consequently, if K
has exactly three components there is always one, say iΓ3, that is
symmetric about z.

Extend A3 to the real three dimensional protective space P 3 by
adding a plane Lt at CXD. The protective lines that the light cone C
determine intersect LL in a curve C^. Let K have exactly three com-
ponents. Since spacelike planes exist in this case, there is a line
Lo c LL with Lo n Coo = φ. The set LL — Lo is an affine plane with
Lo the line at ©o.

Let p, q eCoo with p Φ q. Let L2 be two flat in P 3 that contains
2, p, g. Then L2 Π A3 cannot be a null plane, since if it were it would
separate A3 and Kz could not be symmetric. Consequently, L2 Π A3

must be a doubly timelike plane.
It follows that L2 n (LI - Lo) is an afline line in LI - Lo that

intersects C^ in only the two points p and q. But C«, is a closed
curve. Hence, CL is a strictly convex curve in LL — Lo.

THEOREM 5.2. Lei dim iϋ = 3. If K has three components Kly K2

and K3 with Kd — —K3y then Kz is a hyperboloid of one sheet.

Proof. Let ue LI — Lo and let u be exterior to the convex set
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in LL — I/o whose boundary is CL. Then there are lines Lι and L2

through u that are supporting lines of CL. Let L\ be the protective
plane containing z and I/; for i = 1, 2. Then L2. π CL is a single point
and hence L2 n i 3 is a neutral plane.

The set LI f] A3 f] K consists of two parallel lines which must be
on Kz since Kγ and K2 are strictly convex. For any q e Kz let u =
L{z, q) ΓΊ Llo and without loss of generality assume u £ Lo. Then u
must be exterior to C^. By the above arguments there must be two
straight lines on Kd through q. By [5, p. 272] the set Kz is a hyper-
boloid of one sheet.

Notice that the above theorem gives the additional information that
C is elliptic and CL is an ellipse in Uu — Lo.

LEMMA 5.3. K can have at most four' components. If K does
have four components, R is reducible and no component of K is sym-
metric about z.

Proof. Let K, be a component of K. Assume Kγ = —K19 then
there is a spacelike plane LI through z with LI Γ) Kx Φ φ. Take K2 Φ Kx

and x e K2. Let L\θ) be a two flat containing L(z, x) that revolves
continuously in θ and sweeps out A3 for 0 ^ θ ^ π. Each L2(θ) inter-
sects LI in a line through z so that L\θ) Π Kt Φ φ for all θ. There-
fore, each L2(θ) is doubly timelike and intersects K in four components.
Two of these components lie on K19 and the other two are subsets of
K2 and — K2. Since this holds for all θe[Q,π\,K can have at most
three components. Therefore, Kγ Φ — K± if K has four components.

By the above, it must be possible to find at least two components
K, and K2 of K with K, Φ -Kly K2 Φ ~-K2 and K, Φ -K2. Set iΓ3 =
— Ki and if4 = — K2. Let y e Kλ and let L2(ψ) be a two flat through
L(z, y) that sweeps out A3 continuously for 0 ^ f g π. It can be as-
sumed without loss of generality that L2(0) Π K2 Φ ψ. Therefore, let
x2 belong to L2(0) Π K2. L2(ψ) cannot be doubly timelike for all ψ or
else x2 and — x2 would be on the same component of K. Therefore,
there is a first ψQ with L2(ψQ) neutral. Let NaL2(ψQ) be the null
line through z. Claim N is a line of reduction of R.

It is clear that if x e K, U Ks then Nx(zKιU Ks since these are
convex surfaces and Ny c Kx as well as N_y c K3. For x G K2 U K±
consider the following argument. Let L2(y) be a plane through L(z, x2)
sweeping out A3 continuously for O g γ g π with y e L2(0). By the
same reasoning as before, there is a first τ0 with L2(τ0) neutral. The
above N must be in I/2(γ0) since Ny c Kx and Kγ is not flat. This im-
plies Nxa K2{J K4 whenever x e K2 U K±.

It is now possible to show K has at most, four components. If
L\ is a two flat containing the above N either L\ is neutral or null.
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If it is null, it intersects L2(τ) for 7 = 0 in a null line. If it is neutral,
it intersects either Kγ and K3 or else K2 and iΓ4. In any case it can-
not contain a point of K not on Kx U K2 U K3 U K4.

An immediate consequence is that if K has four components R =
R2 x JV where R2 is a doubly timelike plane.

Consider now the case of K having one component. If R has no
null lines, then by [4, p. 239] it is a Minkowski G-space and K must
be strictly convex.

LEMMA 5.4. Let K have one component and not be strictly con-
vex. Then K is a cylinder and R = R2 x N1 where R2 is a spacelike
plane.

Proof. Let K contain a segment a and consider the two flat LI
through z and a. LI must be neutral, hence the line containing a
must lie on K. Let N be the null line in LI through z. Since K
has only one component, there is a spacelike plane L2 through z. Any
two flat LI containing N must intersect L2 in a line through z.

The plane L\ cannot be a doubly timelike because of Lemma 4.2
and the fact that K has only one component. Therefore, L\ is neutral
and contains two lines on K parallel to N. It follows K must be a
cylinder with generators parallel to N.

Projecting R onto L2 along parallels to N gives R — R2 x Nι for R2

the spacelike plane ZΛ
If K has two components Kι and K2 in dimension three, then Kγ —

— K2 since otherwise there would be a spacelike plane L2 through z
intersecting only one component of K yet separating A\ Both Kγ and
K2 must be flat since if x, y e Kγ with x Φ y, the two flat LI contain-
ing x, y and z would have to be neutral.

It can easily be shown that for K having two components, the
space is always topologically isometric to (xί9 x2, *τ3)-space with the
distance from (aly α2, α3) to (bu &2, δ3) given by \aλ — 6J. K consists of
two parallel planes and R = R1 x N2 for R1 the real line.

6* Higher dimensional spaces. The n dimensional situation is
now investigated by the use of r-flats.

LEMMA 6.1. K19 K2J Kz be three distinct components of K, then
two are reflections through z of each other.

Proof. Consider pt e Kι for i = 1, 2, 3 and let L3 be a three flat
containing z, plf p2, and pz. Let St = Kif] L3, then S19 S2, and S3 are
disjoint components of K Π L\ By the last section K Π L3 has either
three or four components, and in any case, any three of the components
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of K n U contain a pair that are symmetric to each other. If we as-
sume Si = — S2 then clearly Kx = — K2.

LEMMA 6.2. K has at most four components. If K does have
four components Kly K2, K3 and K4, without loss of generality, one
may assume Kγ— — Kz and K2 — — K4.

Proof. Assume K has five components K19 K2, K3, K4 and K5.
Then lemma 6.1 applied to Kγ, K2 and K3 allows the assumption K3 = —K^
Applying Lemma 6.1 to K^ K2 and K4 yields K2 = ~K,.

Let px e Kίy p2 e K2 and p5 e Kδ, then let L3 be a three flat contain-
ing ply p2, p5 and z. K Γi L* then contains five disjoint components,
which is impossible by Lemma 5.3.

LEMMA 6.3. Let NxaK then if one of the following holds, Nz

is a line of reduction.
(1) K has exactly one component.
(2) K has exactly two components Kx and K2 that are symmetric

to each other.
(3) K has exactly three components K19 K2, Kz with K3 — —Kz

and NxcKιΌ K2.
(4) K has four components.

Proof. The proofs of the above four cases all follow the same
general pattern. Therefore, the first case is the only one discussed.

If NxdK and K has one component, consider y e R and let U be
a three flat containing z, y and Nx. Either Ny c K or else K Π Ls has
three components. If K Π L3 has three components, there is a two
flat L2 c U through z that is doubly timelike. But then K Π L2 has
four components, and Lemma 4.2 would imply K had more than one
component.

For convenience the following notation is adopted. If k, p, , m
are r distinct integers from the set 1, 2, , n let Lr

kp...m be the unique
r-flat through the xk, xp, , xm axes. If LQ is a line with Lo φ LlP...m

let Lltp...m be the r + 1 flat containing LQ and Lr

kp...m. Here we assume
LQ Π L r

k p . . . m Φ φ.
Repeated application of the last lemma gives the following partial

description of the nonreducible spaces:

THEOREM 6.4. In all cases K has at most four components. Let
R be nonreducible.

(1) If K has one component, then R is a Minkowski G-space.
(2) If K has two components that are opposed to each other then

R is isometric to the real line.
(3) // K has three components, then one is symmetric about z
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and the other two are strictly convex.
(4) If K has four components, then R is a doubly timelike plane.

The case where K has two components which are not opposed is
discussed in Theorem 6.13 and additional information on the case of
three components is found in Theorem 6.8.

LEMMA 6.7. Let n — 3 and K have three components. Assume
coordinates xίy x2, x3 are chosen such that the light cone is given by
x\ + χ\ — χ\. Then the plane x3 = 0 intersects K3 in a set x\ + x\ — a2

for some a > 0.

Proof. Let p lie on K3 and in the plane x3 = 0. For some a > 0
the point p lies on x\ + χ\ — χ\=z a2. We claim that the only hyperboloid
of one sheet containing p that has C as light cone is x\ + x\ — x\ = a2.

Since p is contained in exactly two planes tangent to C, the two
lines on K3 through p are determined. For any q on one of these two
lines, the same argument yields that the two lines on K3 through q
are determined. It follows K3 is determined by p and C.

Consider now n > 3 and extend An to Pn by adding a hyperplane
Ll"1 at CXD . Let the protective lines that contain the lines of the light
cone C intersect LΞΓ1 in a set C^.

If R is nonreducible and K has three components, let L'Γ1 be a
supporting hyperplane to Kλ. If Ln~ι is the hyperplane parallel to
Llι~~ι through z, then Ln~ι f)C — z. Otherwize Ln~ι Π C would contain
a line N. For p e Llι~" n Kλ then the two flat U through p and N
would be neutral or doubly timelike. It could not be neutral because
of Lemma 6.3. It could not be doubly timelike since then NP would
not be a supporting line of Kλ.

Set Ln-1 Π Ll~L = Ll~2 an n - 2 dimensional flat. By taking L r 2 as
the n — 2 flat at °o of LZ~L the set L ^ 1 — L2Γ2 becomes an n — 1 dimen-
sional affine space. Let x,y eC^ for x Φ y and let L\ be the two flat con-
taining x, y and z. Then L\ Π A" is a doubly timelike plane. In the
same manner as the argument after Lemma 5.1, we conclude C^ is a
strictly convex n — 2 dimensional surface in the space L2Γ1 — LZ~2

LEMMA 6.6. C^ is an ellipsoid in L2Γ1 — LZ~2.

Proof. Let Lt be a two flat in L^~ι with LL Π CL containing
more than one point. Let U be the three flat containing z and Lt.
Then L3 Π An is an indefinite metric space whose unit sphere has three
components. By Theorem 5.2, LI Π CO, is an ellipse and hence by [2,
p. 91] Ceo is an ellipsoid.

Take now coordinates xlf x2, •••,#„ in An such that C has the form
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xl = χ\ + . . . + χ\_x and let L?-1 be the hyperplane xn = 0.

LEMMA 6.7. Ll~ι Π i£ has the form $ + . . . + a;2^ = α2 /o?̂  α > 0.

Proof, Let L2 be any two flat in L?-1 passing through z. Let
I/3 be the three flat containing L2 and the xn axis. Since L3 f] K always
has three components, L2 Π K is always an ellipse of center 2. There-
fore, I/Γ"1 Π -ίΓ is an ellipsoid in L?"1 of center 2.

If L2 contains^the x{ and xό axis Lemma 6.5 implies L2 Π iξ$ has
the form x\ + #2 = a\ό. If j>< and p y are points of L2 ΓΊ K3 that lie on
the ith and j t h axes respectively, \Pi\2 = l^ l 2 = α2y. Therefore, α^ is
independent of i and y. Setting α = aiά yields the desired result.

THEOREM 6.8. Let R be nonreducible and K have three com-
ponents. If K3 is the components of K symmetric about z it is a
quadric. In proper affine coordinates K3 is given by

x\ + + a?n-i - a& = α2

Proof. Using the same notation as in Lemma 6.9 define

S = {(xly x2, , xn) I xl + + x\-ι - xl = a2} .

If L3 contains the xn axis then U π S = I/3 Π i^3. The result follows
by letting U sweep out An.

In order to investigate nonreducible spaces in which K has two
components, we first consider nondegenerate central quadrics that have
z as a center. The general form in affine space is

n

X dijXiXj = 1 where aiά = aάi and det (αίy) Φ 0 .

If two such quadrics Eγ and ^ are given respectively by

Σ α ϋ ̂ i^i = 1 a n ( i Σ Q'ifi&i = — λ2 for λ > 0 ,

they will be called semiconjugate. We will refer to Ex as the λ
semiconjugate to 2£2. For λ = 1 the quadrics are conjugate in the
usual sense. Notice that one of the quadrics does not have a real
locus if the quadric form is definite.

LEMMA 6.9. Suppose the nonempty sets Bx and B2 contained in
Ui^j L\j are such that the locus B2 Π L\ό is always the λ semiconju-
gate quadric to Bt Π L\5 for fixed λ. Then there are exactly two
central quadrics Et and E2 such that E1Π L\ό = Bx Π L2

i3 and E2 Π L\ά —
B2 Π L\j for all i Φ j . Furthermore, E2 is the λ semiconjugate to Ex.

LEMMA 6.10. Let n = 4 and K have two components Kx and K2
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each symmetric about z. Let If be a three flat through z such that
If Π K has three components. Then If Π K consists of two semi-
conjugate quadrics.

Proof. By Theorem 5.2 one component of If n K must be a hyper-
boloid of one sheet. Choose coordinates x19 x2, x3 in If such that If Π G
takes the form x\ + x\ = x\. Let If Π K have components Sί9 S2, S3

with S3 = — S3. For some a > 0, S3 is given by x2

L + xl — xl = a2. Let
Lo be a line through z in Z4

In R let L2 be a spacelike plane containing the x3 axis, so L2 <£ U.
Choose the xi axis in ZΛ Assume i£ has components Kx and iΓ2 with
SsaK19 then L?34 Π ίΓ2 is a hyperboloid of one sheet in Ls

03i. Conse-
quently, Los n K2 is a hyperbola. This hyperbola is determined given
only the intersection of K2 with the x3 axis and the intersection of L2

3

with the surface x\ + x\ — x\ in L3.
Revolving Lo in the plane L\2 shows ΊJ Π i^2 consists of a hyper-

boloid of two sheets that is a semiconjugate of U Π Kγ.

LEMMA 6.11. Ifn = A and K has two symmetric components,
they are semiconjugate quadrics.

Proof. Let the notation and coordinates be the same as in the
last proof. Set Bγ = U M i (L\s Π KJ and B2 = \Jw (U5 Π K2).

If U Π K2 is the λ semiconjugate to U Π ̂  in L3, then L3

34 Π iί2

is the λ semiconjugate to Llu Π ίΓi in L3

34 for the same λ. This follows
since L2

03 is common to both three flats and intersects both components
of K. Therefore, Bx and B2 satisfy the hypothesis of Lemma 6.9. Let
J5Ί and E2 be the semiconjugate quadrics determined by Bλ and B2.

U Π -EΊ — I? Π Kλ since each are quadrics in L3 determined by
Bt Π L°° and B2 Π I/3. By the same reasoning, Lz Π E2 = U f] K2. Also
L\u n X* = L k ίΊ JK* for i = 1, 2.

Therefore, L2, Π ̂  = L2

y Π ̂  for i = 1, 2 and i - 3, 4. But then
using Lemma 6.11 one last time, we find Lo34 Π Et — L5

QM f) K{. By
revolving Lo in L\2 it follows E{ = K{ for i = 1, 2.

LEMMA 6.12. Lβί ^ = 5 and K have two components Kλ and K2

symmetric about z. If R is not reducible, Kt and K2 are semiconju-
gate quadrics.

Proof. Two cases are considered.

Case 1. Let there exist a three flat If through z such that If n K
has one component. Assume If Π K2Φ φ. Choose coordinates xx, x2, x3

in If. We may assume that L\2, L\3, L\3 are spacelike planes. Choose
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coordinates x4, x5 such that L% is spacelike and intersects Kγ. By
arguments as in Lemma 6.10 and Lemma 6.11, it is possible to
show L\ό Π Kx and L\$ Π K2 are always semiconjugate quadrics for fixed
λ. Therefore, B, = \JW {L\ό Π K,) and B = {Jw (Us Π K2) satisfy the
hypothesis of Lemma 6.9.

Let Eλ and E2 be the quadrics determined by B1 and B2. Let L{

be a line through z in L?2. Since L\2j Π 2£, = L\u Π i^, clearly L^ Π Et =
L2

0j n Kλ for i = 1, 2 and i = 3, 4, 5. Therefore LJ345 Π Et = L%4δ f] K,.
By revolving Lo in L?2 it follows that Et = ir^.

Case 2. Assume no U through z exists with L3 f] K having only
one component. We will show this leads to a contradiction.

Choose coordinates x19 x2, xs, x4, xδ such that L\2 and L2

U are space-
like planes intersecting respectively Kγ and K2. By Theorem 6.8, the
set K Π £2345 cannot have exactly three components. Consequently,
L2345 Γl K consists of two symmetric components. The same must also
be true of Lt235 Π K.

By Lemma 6.11 the sets Lt234 Π K, Li34δ Π -K" and Lί235 Π K each
consists of two quadrics. In each of the three sets one quadric is
the semiconjugate of the other for some fixed λ. Define

B, = {JiφΛLh Γi K,) and B2 = U w <JΛi Π K2) .

Let £Ί and JE^ be the quadrics determined.
Let LQ be a line through 2 in L\2. Then L^ Π if\ — L2

0j π J?» for
i = 3, 4, 5 and i = 1, 2. Therefore, Z445 Π ̂  = 3̂45 Π ̂  and revolv-
ing Lo in L?2 gives ^ = Ki for ΐ = 1, 2.

Then in proper affine coordinates yly y2, y3i y±, y5 the components of
K are given by y\ + y\ + 2/3 — v\ — vl = 1 and y\ + y\ + y\ — y\ — y\ =
— λ2. This contradicts the assumption of Case 2.

The w dimensional case now follows using induction.

THEOREM 6.13. If R is not reducible and K has two components
which are not opposed, then n ^ 4 and the components are semiconju-
gate quadrics.

Proof. Assume n Ξ> 6. Take Ln~ι to be a hyperplane containing
L\ and L\, which are spacelike two flats through z with L\<Γ\ KiΦ φ.
Then Ln~ι Π K has exactly two symmetric components. Because of
Lemma 6.12, there exists an U through z and contained in I / " 1 with
U n K having one component. Take the x19 x2, x3 affine coordinates in
II and xly x2, , xn_1 affine coordinates in Ln~ι. For pe K — Ln~ι let
the xn axis be L(z, p). Take Lo to be a line through z in 14. By
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induction Llΰl..n Π K{ must consist of two semiconjugate quadrics.
The argument is the same as before, letting LQ revolve in L\2.

An interesting result of this section is the following.

COROLLARY 6.14. If R is a nonreducible Minkowskί space and
not a G-space, then any spacelike plane in R is euclidean.
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