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ON SOME EXTREMAL SIMPLEXES
Mir M. AL

Let A be a fixed point in n-dimensional Euclidean space.
Let By, B, ---, B,+; be the vertices of a simplex S, of =-
dimensions, that is, the n + 1 vertices do not lieon a (n — 1)
dimensional subspace. Let d;, assumed to be positive, be the
distance of B; from A, and let [;; be the cosine of the angle
between the straight lines AB;, and AB; for 4,5=1,2,---,
n + 1. Let n; denote the (n — 1)-dimensional hyperplane pass-
ing through all the vertices of S, except B;, let p;, assumed
positive, be the perpendicular distance of =; from A, and let
m;; denote the cosine of the angle between the normals from
A to z; and =; for 9,5=1,2,---,n+ 1. The present paper
deals with the following problems.

(a) An expression for the content of S,, C(S,) say, in terms
of d; and l;; for 7,5=1,2,---,n + 1 is first obtained. Then
leaving di, d, -, d.: fixed, values of l;;, say 1, are deter-
mined in such a manner that C(S,) is a maximum, and the
maximum value of C(S,) is obtained for the two cases that
arise;: (i) when A is inside S,, (ii) when A is outside S..
The latter case does not arise when d, = d; = .-+ = d,1.

(b) An expression for C(S,) is obtained in terms of p; and
mi;, 1,5 =1,2,---,n 4+ 1. Then leaving p,, ps, -+, Pns+: fixed,
values for m;;, say mi;, are determined in such a manner that
C(S,) is a minimum, and such C(S,) is computed for the two
cases that arise depending on (i) whether A is inside S, or (ii)
A is outside S,. The latter case does not arise when

P =Pz = " = Pn+1.

The results are stated below.
(a) The content of S,, max C(S,) and [ are given by

(1.2) max (!C(S,)? = —u [ (d} — u)

(1.3) 15 =u/(dd;) for 4,5 =1,2,---,m+1; i+7,

where u satisfies the equation

(1.4) T+uS (@ —wi=0.

+
i=1

The unique negative root for % in (1.4) corresponds to the
case when A is inside S,. When the relation

di=dy= - =dn.na

is not satisfied, the smallest positive root for « in (1.4) cor-
responds to the case when A is outside S,. Other roots for
% in (1.4), if any, are inadmissible.
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(b) The content C(S,), min (C(S,)) and m; are given by

n+41
1.5) (n!C(Sw)? = | (pips + mi) "T] | M|
=1
where | M;;| is the cofactor of m; in |(m;;)| and
(1.6) min (WIC(S,) = —v-'n2» [ () — v)
i=1
and

1.7 mb=v/(pp;) for i +35;1,5=1,2 -, n+1;

where v satisfies the equation
n+1
(1.8) 1+vY (pi—v)t=0.
i=1
The unique negative root for v in (1.8) corresponds to the
case when A is inside S,. When the relation

P1=P2= **° = Pn+1

is not satisfied, the smallest positive root for v in (1.8) cor-
responds to the case when A is outside S,. All other roots,
if any, are inadmissible.

When d, =d, = -+ = d,+;, we obtain the special result
that the largest simplex inscribed in a sphere of n-dimensions
is a regular one, while when p;, = p; = -+ = p,+, the smallest
simplex circumscribing a sphere is a regular one,

The coordinates of B; referred to a n-dimensional Cartesian co-

ordinate system with origin at A will be denoted by (x;,., %, **
(xu Lay *

2.

where

2.1)

.., x,) will denote a general point in the nm-space.

*y xi,n)'

Extremal simplex determined by the distance of vertices.
The content of S, is given by (Sommerville, p. 124) x!C(S,) = | V|

xl,l e xl,n

wZ,l oo xZ,n
. .

cee

-xn+1,1 ctc xn+1,n 1

so that (v!C(S,)) = | VV’| = |(w;;)| say, where

(2.2)

2.3)

(2.4)

w;; =1+ s; for 4,7 =1,2, -+, n + 1; and

" ’
T 0 Ty Ly, o0 Xypn

’

xZ,l e xZ,’n xZ 1 oo a’;2'n
. . . .

’

(8:5) =

Cnt1,1 *°* Tptin an+1,1 ot Vptin

= (lijdidj) .
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Hence we have proved (1.1).

We note that s; =di, fort=1,2,.-.,% 4+ 1. From (2.3) we also
note that the rank of (s;;) is less than n» + 1 so that [(s;;)| = 0 and
(s;;) is semi-positive definite. Further we note that both (s;;) and
(w;;) are symmetric matrices and since B,, -+, B,,, do not lie on a
(n — 1)-dimensional subspace, we must have |(w;)| = 0, in fact,
[ (w;;)| > 0 since (w;;) is positive definite. Our problem of maximizing
C(S,) with respect to the [;;, i = j, for given values of d;, d; > 0, may
be re-stated as follows.

We must maximize | (w,;)| over the class of symmetric matrices
(s;;) or (w;;) with respect to s;;, 1,5 =1,---,n + 1, subject to the
conditions: [(s;;)| =0 and s; = dj for ¢ =1, ---, »n + 1. Further (s;;)
should be semipositive definite and | w;;| = 0.

Let ¢ and g, ---, ¢t,,, be Lagrange multipliers. We seek the
extreme values of the function L with respect to s;;, 7,5 =1, -,
n 4+ 1, where

Lzlwul“‘0[3ij|+§/li(3ii—d§)~
Hence s;; must satisfy
L 0L Wy =018y =0 for i£j,4,4, =1, m+1
2 0sy

and_gi: Wil —01Su| + s =0for i =1, -0, +1;

122

where | W, | and |S;,| denote co-factors of w,, and s,, in | (w;;)| and
{ (s;;) | respectively.
This implies that
ntl 1 oL oL

Wiy — + Wy, =0
Jg: b 2 aSU k 5Sii

80 that
n+1 n+1
ZwkjlWijl - ‘92wkj|sij| + pwg; = 0.
j=1 J=1

Let k =+ 4; then using (2.2), w,; =1 + s,; and by the well-known
property that expansions in terms of alien co-factors vanish identically
(Aitken, p. 51) we finally obtain

n+1
_0§IS«UI + paw; = 0
80 that s,; = wy; — 1 =0/, 37211 S;;1 — 1, for all k== 4. Since the

above expression for s, is constant for values of k. =1, .-+, % + 1,
k # 1, we conclude that the elements of the 4th column of (s;;), except
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s; = di, must be equal. Since s;; is a symmetric matrix, the above
property extends to the rows of (s;;) and it is easily seen that the
extreme values of L correspond to values s} of s;; where

(2.5) si=ufor i #4,4,7=1,--,n+1
while
si=dy,1=1,---,n+1.

Now w can be determined from the relation |s;;| = 0 so that we must
have

a uw - - u
u - - u

(2.6) ’ =0.
w o ow - - di

Let us define the determinant

a, x
r a,
2.7 D (x;a, + 0, a0) =

R A

From the relation due to Grabeiri (1874) (see Muir, vol. 3, 4, p. 110),
or by subtracting the first row of the above determinant from the

remaining rows and by the use of Cauchy expansion in terms of the
first row and first column, we have

)l

k
@8  Diwia, e a) = {1+ 03 @ - o) @—).
Hence from (2.6) v must satisfy the equation
n+1 nt+1
2.9) (1 + s (- u)“) 1 (& —u) = 0.

From (2.2) and (2.5) the extreme value of (n!C(S,))* for any wu
satisfying (2.9) is equal to

D, A +wu;l+d--o,14+d2)
(2.10) - (1 L+ u)g(di _ u)“)(]i[ (@ — u))
= (S @ - w)(T é - w)

by the use of (2.9).
Since » = 0 does not satisfy (2.6), we immediately obtain from
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(2.9) that the expression (2.10) is equal to

n+1

(2.11) —u™ 1 (di — u)

which is the extreme value of (n!C(s,))? in terms of u. In order that
the content is nonzero we must have w =d: for 1 =1, ---,n + 1.
This statement along with (2.9) implies that % must satisfy the equa-
tion

(2.12) 1+uS (@ —ut=0.

The roots for u, temporarily assuming that d,, ---, d,., are distinct,
can be located by Decartes rule of signs by checking the signs of the
left-handside of (2.12) for values of u, equal to — oo, 0, + o and in
the neighborhood of di, ¢ =1, ---,n + 1. Relabelling d; such that
d, <d, < +++ <d,y, it is easily verified that all the roots for u are
real, say u,, -, #,.; and may be labelled in such a manner that

(2.13) Uy <O < B Uy < B oo < Uy < By

Consider the characteristic roots of (s¥) given by |s}; — N[| = 0. By
(2.5) and (2.7) » must satisfy D, (u;d? — \, +-+,d%., — ) = 0. Hence
from (2.9)

n+1 n+1
(1+u2‘,(d%—k—u)—l)H(dﬁ—x-u):o.

By similar method as used to obtain (2.13) we find that the roots
for A may be so labelled that », = 0 and

d%<k’z+1+u<df+l i:l,...,/n.

In order that all the roots for A are nonnegative it is easily seen
that the relation

(2.14) B —u>n=0

must be satisfied so that we must have w < d2. From (2.13) we find
that the only admissible roots for u are %, and wu,.

To establish (1.4) it only remains to show that wu, corresponds to
the case when A is inside the extremal simplex whereas u, corres-
ponds to the case when A is outside the extremal simplex.

Consider the equation of =;, passing through all the vertices of
S, except B; having the coordinates (;,, ---, 2;,), given by

Li(xn Tty xn) =0 ’

where
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1,1 cr ppn 1

[

Licir 0 Tieryn
L'i(xl! e ?wn) = |2 e Xy 1

Lit1,1 *** Lit1,n 1

Lnt1,1 *** Loti,n 1.

Now A and B; lie on the same side of x; if and only if L2, ++-, %;,.).
L0, ---,0) > 0 while 4 and B; lie on opposite sides of x; if and only
if Li(xi,u M) xi,n)' L,(O, ] 0) < 0.

Now by direct multiplication of the determinant L,(x;., «--, @;,.)
with the transpose of the determinant L,(0, 0, --., 0) we obtain

Li(wi,u ) xi,n)'Li(O’ 09 Sty 0)
1+ sy, 148, cceleeel 48,0
1 sw 148, coeleeel 48,4

14+ 8pu 1+ Suppeee1 1+ susian -

We now assume that S, is an extremal simplex so that from (2.5)
s,=d,yv=1,--,n+1and s, =u,v=k,v,k=1,.--,n-+1. Then
in the last determinant each entry in the ¢-th column is 1, the jth
diagonal entry is d% + 1 for j #14,5 =1, ---, 7 + 1 while the remaining
entries are 1 4 #. Subtracting (1 + u) times the ¢-th column from the
remaining columns we immediately obtain

Li@oss o+ %0) Li(0, ==+, 0) = (d2 — w)= TI (d% — w)
j=1

—u TL (2 — )
(—u (@i — u))

Since from (2.11) the numerator of the last expression is positive, we
find that 4 and B; lie on the same side of x; if and only if

—u N (di —u) >0,

while they lie on opposite sides of z; if and only if —u~'(d? — u) < 0.

Since —u; (d: — u,) < 0 and —u7(d? — u,) > 0, it is readily checked
that we have proved (1.2), (1.3) and (1.4) in the case when d,, ---, d,,,
are distinct.

Necessary modifications are easily made when some or all of the
d; are not distinet.

Finally we remark that the simplex corresponding to «, has larger
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content than that for u,. This is because

@ —w,>di—u,>0for i=2--,m—1

and

Ut —w) =1 — -Z— S1— dfuy = —u(ds — w) ,
so that
2.15) — i TL (A — w) > —ug 1L (d5 — u,)

We also note that when d, =d, = .-+ = d,,, (1.4) has a unique nega-
tive root for u and the point A corresponding to this value of 4 must
lie inside the extremal simplex.

3. Simplex determined by distances of faces. We recall that
the (n — 1)-dimensional hyperplane 7; passes through all the vertices
of S, except B;. The distance of 7; from A is p;. The point B; does
not lie on 7; but does lie on all the remaining % hyperplanes

T #4,J=1, e ,m+1.
Let 7; be given by (in normal form)
3.1) Tt €%y + €:5%s + + o0+ €%, = € pts
where for notational convenience we have written

(3.2) Di = €intr s

and ¢;,, ---, ¢;n are the direction cosines of the normal to 7;, so that
we have

k
(3.3) Z ei,jek’j = mik; ?:, k = 1, 2, ceey, n + 1; m“ = 1 .
=1

The notations used in this section will be listed first and some rela-
tions needed later will be established in order to avoid future digres-
sion.

We define the (n + 1) X (n + 1) matrix F in double suffix notation
as

(3.4) E = (e;,;)

and E;; will denote the co-factor of e¢;; in E. We also define the
(n + 1) X (n + 1) matrix M as

(3.5) M = (my;)
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and M,; as co-factor of m;; in M.
Let o; denote the signature of |E;,,,| so that

1if |Eipn| >0
(3.6) o, = for e =1, e,m+1.
—1if |E;,.| <0
We remark here that E;,., is nonsingular. This is because
Ty ooy T gy Tiyy %y Tyt

have one and only one point in common, namely (x;,, +--, 2;,). Since
7; does not pass through the above common point, it is easily seen
that the matrix E is also nonsingular, so that

3.7 |E|=+0and |E;,,,|#0,1=1,---,m +1,
Furthermore it is easily seen that

(3.8) | Eipis| = 0| By i By [P = 03| My [P
fore=1,---,n+1

where the radical above as well as all radicals appearing in this paper
will be always taken as positive. Hence from (3.2) and (3.4) we have

n+1 n+1
(39  |E|= 30| By | = S0 | Mu|™ = 0 (say) -

D will denote the diagonal matrix

(3°1O) D = Diag' (pu M) pn+1)
and let
(3.11) R = (r;;) = D'MD™

so that »; = p;® for 1 =1, ---,n + 1. Since

’

€:,1 cec € €1, R
M . . .
en+1,l cr Chirn en+1,1 e en+1,n

we also remark that M and consequently R are symmetric positive
semi-definite matrices, so that |M| =0 and |R| = 0.
Finally, it follows that

(3.12) M| = R |(103) .

To obtain the content C(S,), we will use the formula (2.1). Since
(®s1y *++2;,) lieson w5 5 #14,7 =1, ---,n + 1, we may directly solve
for z;; from the following % linear equations:
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61,1y cry € i1 €1,n+1 W
. . .
Li2
€i1,15 ***y €i1,n * €i1,n+1
Cit1,1y * %y Gitiyn . €it1,nt1
. . .
LEn+1,10 ** %y €ntrn J_ Tisn Len+int1 )+

A simple calculation shows that (see (3.4))
Ty = (=" (=™ | By | /(D) | By |) -
Hence we obtain
iy = —|Eii /| Bipnsn ;40 =1, «-o,m + 1.

Substituting these values in | V| of (2.1) and factoring out —1 from
each of the first # columns of V and also factoring out |E; .., |™"
from the <th row of V for 4 =1, ..., » 4+ 1, we readily obtain

nC(S,) = (—1* [ Adi B|[T1 | By
(3.13) a
= (=1 B[ | B

where |Adj E| is the adjoint determinant of | E'|. In order to avoid
the ambiguity of sign in C(S,) we consider (»!C(S,))* instead and from
(3.9) and (3.12) we obtain

n+1
@CES) = | BT Bl
n+1 2n [n-+1
= <§{ o:p; | M;; IUZ) ];[l | M |
n+1 2n [n+1
= (S ol Ral™) " [TI 1 Bl -
i=1 i=1
Our problem of minimization is equivalent to minimizing
n+1 2 In+1
il (S0 B ) [T 1R ]
=1 i=1
with respect to r;;, 7,5 =1, .-+, » + 1, subject to the restriction that
ry=p7541=1,---,m+1and |R| =0 over the class of symmetric
matrices R.

Let N, ¢, +++, tt,, be Lagrange multipliers and we seek the ex-
treme value of

n+1 2 1 n+1
L= (%0 Ral™) = L Siin| R = MR + 3 puris — p7)
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r;; must satisfy:

oL L& O|R,,| o, 15 1 0R,| o|R|
= - = — A 0
or; o ori; |R,[" n 2 R,, or or;;
7:¢.7s%.7=19' yn+1
and
aL — —ln-H g, aiRw| —Ln . 1 aiRw| kaiRI _0
or; o "Z=1 | R, |'? 0ry n ”z=:|‘ R, or; ory; +

where o is as defined in (3.9).
These equations reduce to

¥ gf = gj(p“loul Ro |7 — 07 Roy [)] By | — M By | = 0
, for e #47;%,5=1,--,n+1
and
oL

n+1
a = Z ((o—lo-u] Rw |_1l2 - n_ll Rw I—l)l Rwlii| - )\’i Rul + # = 0
Tie 2y
where | R,,;;;| is the co-factor of 7;; in |R,,]|.
Hence the minimizing values of =, r¥, say, must satisfy the
equations in 7;;:

Ty = P’

and

w1 oL oL
3.14 i i— = 0
(3.14) 1E=;T’281'H+T oy

JF*1
and

s 1 oL oL
3.1 o e ——=0.
(3.15) 12:41 Tkj 2 ore; + "”k:a "

After obvious simplification (3.14) yields

n+1
3L (070 By [T — 07 Ry [P Ry | + prpst = 0,
-

or

(3.16) L = pip~'oR;;

From (8.15) we obtain for & = 1,
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n+1n+1
(3.17) ,ghz::f (0| B 707 — n7| Ry, |7)7si] Roiis | + paris = 0

v£iy g

After some calculations we obtain

(3.18) Tee = U7 (On| B [7P07 — 07| By |7)| Ria |

It is easily seen from (3.11) that | R, | = pip.| M;, | and
My = |Eipii || By |

and hence from (3.8),
| Bi| = 0ul By [ Ry [

so that substituting for g; from (3.16) in (3.18) we obtain

(8.19) Diris = 1 — 07100 Ry |72 .

In obtaining (3.18) from (3.17), we illustrate the case for ¢ =1,
n+1=4 and k = 2, for the expression, for example:

4 4
JZ;;! S, O R, [Ty Ry |

y=1
v#1,J

= 75(0s] Rugjos || Boo [7* + 03] Rigyy || B |7 + 04| Rygpuy || Bua [777)
+ 72(03] Ragjuo || Bag [ + 0] Rigpoa || Bag |717)
+ 735(0s] Ragiss || Boo [* + 0] By || B |7)
+ 72(0s] Rogyos || Bo [ + 03] Ry || B [712)

= G| Roy || B |7

The last expression is obtained from the coefficients of | R, |~/
the coefficients of | R, |~** or | R, |~"* are easily seen to vanish identic-
ally, since they represent expansion by alien co-factors.

In the summation appearing in (3.17) only the term with v =£%

survives;
n+1

ng. Pril Riria; |

J#k
is the expansion of the determinant obtained by replacing the elements
of the i-th row of | R| by those of the k-th row of | R| with the k-th
row and k-th column deleted. Transferring the elements r,; appearing
in the 4-th row to the k-th row, there results the minor of 7;; in | R|.
Hence multiplying by (—1)"* and (—1)"** we obtain | R;;|. It is thus
seen that

n+1
g} Vil Biwiog | = | Rii| = | Ri | ©

Ik
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From (3.19) it is easily checked that we have
(8.20) DiDiTi = DIPIT i

for all 4,5 =1,+-+,n + 1, with ¢ = k,j + k.
Since the matrix

(p¥ri;p%) = D’RD* = D)D~"MD~'D* = DMD = (p;m;;p;)

is symmetric, and (3.20) implies that nondiagonal elements of each
row or column of this matrix are equal we conclude, (in a manner
analogous to (2.5)) that »§ =p;%,¢=1, ..., 7 + 1 and

virip; = pipmi = v,
say, for 1 #j5;4,7 =1, ---,n + 1 so that

‘mi =1 forio=1,.--,n+1

3.21 L
( ) mf; = v.forz;ﬁg;z,j=1,---,n+l.

pipa

We obtain values of v by equating |7};| = 0 or equivalently by sett-
ing | DMD| = | (p;pym¥) | = 0, where p;p;m¥; = v, 1 # j and pimf = pi,
and it is seen from (2.7) that v must satisfy

Dn-i—l(v; p?) ) p%b+1) =0.
and hence

(3.22) <1 + vg(pi — v)‘l) jlj:(p% —v)=0.

We also note from (3.13), (3.8), (3.9) and (3.12) that

(nIC(S,)) = 0TI (| R [ 7)
(3.23)
= ol By~ 1T (0] R |7 -

But from (3.19) we have
00| Ry |71 = n(1 — piris)

so that oo, R; |~ = n(p} — v)/p;, from (3.21). Also from (3.21), since
r¥ = v/(pip:) and ri = p;* it is easily seen that

n+1
| R, | gp% = D,(v; D}, +++, Dhtr)
n+1 n+1
= (1+ o3 0t - o) Lt -

= vt — o~ opt — o) +
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+ 1+ 030t - o) e - v

= —owt — o= T @ — ) from (3.22).
Substituting in (3.23) we readily find that
(3.24) mIC(S,))* = v-ln%ﬁ (0t — v) .

Thus (1.6) is proved.

In order that S, is nondegenerate v = p%, ¢ =1, ---, n + 1. Hence
from (3.22) v must satisfy

(3.25) 1+03 (-0 =0.

Thus we have exactly the same equation as (2.12) with d; replaced
by »; and u replaced by v. By exactly the same argument that follows
(2.12) we conclude that, when p,, ---, »,,, are distinct, if the roots of
(3.25) are so labelled that the unique negative root of (3.25) is v, and
the smallest positive root for » is v, and if the p, are labelled so that
P, is the smallest and p, the second smallest p;,, 2 =1, ---, n + 1, we
have the two eligible roots of (3.26) as », and v, satisfying

(3.26) v, <0< P < v, <P

It remains to prove that v, corresponds to the case when A is
inside S, while v, corresponds to the case when A is outside S,.

We will prove that, for the extremal simplexes obtained above,
the vertex B; and the fixed point A lie on the same side of x; if

p:—v>0

while A and B; lie on opposite sides if p: — v < 0.
Let

L@, <+, 2,) = €@ + +++ + €,,0, — €041 +
Then Lw(oy cc 0) = —€in+1 = — Dy and

Li(xiu ct xm)

= — S e Bisll| Bl (by virtue of (3.5)

= —|E|/| Eipul

= —p:0/0 B |'? (from (3.8) and (3.12))
= —np(1l — piri) (from (3.19))

= —np(l — v/p) (from (3.21))
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Hence L0, ---,0)-Ly(x;,;, ++-, %;,,) = n(p? — v). Now the equation of
7w, is Ly(x, +--,2,) = 0. Hence p? — v > 0 implies that A and B; lie
on the same side of m; while p2 — v < 0 implies that 4 and B; lie on
opposite sides of 7;. Since p: — v, is positive for 1 =1, .-+, n + 1 we
conclude from (3.26) that corresponding to v,, A is inside S,. Also
from (3.26) we find p? — v, is negative so that corresponding to v, the
point A lies outside S,. Hence it is readily checked that we have
proved (1.5), (1.6), (1.7) and (1.8).

Finally, using an argument analogous to that used to obtain (2.15)
we find that

n+1 ntl
—vrlg (p; — v) > — v;* 11 (P: — v2)

so that from (3.24) we conclude that the content of S, corresponding
to v, is greater than the content of S, corresponding to v,.

Obvious modifications in the foregoing proofs are easily made.
when some or all the p, ---, p,,, are equal.

When p, = p, = -+- = p,.,, (3.25) has a unique negative solution
for v and in this case A must lie inside the extremal simplex.

The author expresses his thanks to Professor H. S. M. Coxeter
for his valuable association which led to this problem and for his
keen interest in this work.
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