NONSOLVABLE FINITE GROUPS ALL OF WHOSE LOCAL SUBGROUPS ARE SOLVABLE, II

John G. THOMPSON

In this second paper, the bulk of the work is devoted to characterizing $E_2(3)$ and $S_4(3)$. These two groups are "almost" N-groups and it is relevant to treat them separately. The actual characterizations (Theorems 8.1 and 9.1) are very technical but the hypotheses deal with the structure and embedding in a simple group of certain $\{2, 3\}$ -subgroups.

This paper is a continuation of an earlier paper. The bibliographical references are to I.

7. Groups in which 1 is the only p-signalizer.

DEFINITION 7.1. $\mathscr{U}^*(p) = \{\mathfrak{B} \mid (i) \ \mathfrak{B} \text{ is a subgroup of } \mathfrak{G} \text{ of type } (p, p). (ii) N(\mathfrak{B}) \text{ contains a } S_p\text{-subgroup of } \mathfrak{G}.\}.$

HYPOTHESIS 7.1. (i) p is a prime and if $\mathfrak{B} \in \mathcal{U}^*(p)$, then no S_p -subgroup of $C(\mathfrak{B})$ normalizes any nonidentity p'-subgroup of \mathfrak{G} .

(ii) The centralizer of every nonidentity p-subgroup of $\mathfrak G$ is p-solvable.

Lemmas 7.1, 7.2, 7.3 are proved under Hypothesis 7.1.

LEMMA 7.1. (i) $\mathcal{U}(p) \subseteq \mathcal{E}(p)$. (See Definitions 2.8 and 2.10 of I).

- (ii) If $p \geq 5$, then $\mathcal{U}^*(p) \subseteq \mathcal{E}(p)$.
- (iii) If p = 3 and if no element of $\mathcal{U}(3)$ centralizes a quaternion subgroup of \mathfrak{G} , then $\mathcal{U}^*(3) \subseteq \mathcal{E}(3)$.

Proof. If p is odd, choose $\mathfrak{B} \in \mathcal{U}^*(p)$, while if p=2, choose $\mathfrak{B} \in \mathcal{U}(2)$. We must show that either \mathfrak{B} centralizes every element of $\mathsf{M}(\mathfrak{B}; p')$ or p=3, $\mathfrak{B} \in \mathcal{U}^*(3) - \mathcal{U}(3)$ and some element of $\mathcal{U}(3)$ centralizes a quaternion subgroup of \mathfrak{B} .

Let \mathfrak{P} be a S_p -subgroup of $N(\mathfrak{B})$, so that \mathfrak{P} is a S_p -subgroup of \mathfrak{G} . Proceeding by way of contradiction, let \mathfrak{Q} be an element of $\mathsf{M}(\mathfrak{B};\,p')$ minimal subject to $[\mathfrak{Q},\,\mathfrak{B}] \neq 1$. Then \mathfrak{Q} is a q-group for some prime $q \neq p,\, \mathfrak{Q} = [\mathfrak{Q},\,\mathfrak{B}]$, and $\mathfrak{B}_0 = C_{\mathfrak{P}}(\mathfrak{Q})$ has order p. Let $\mathfrak{C} = C(\mathfrak{B}_0),\, \mathfrak{C}_1 = C_{\mathfrak{P}}(\mathfrak{B}_0)$, and let \mathfrak{P}^* be a S_p -subgroup of \mathfrak{C} containing \mathfrak{C}_1 . Hypothesis 7.1 implies that $O_p(\mathfrak{C}) = 1$. Let $\mathfrak{P}_0 = O_p(\mathfrak{C})$. If $[\mathfrak{P}_0,\,\mathfrak{B}] \subseteq \mathfrak{B}$, then

¹ Non-solvable finite groups all of whose local subgroups are solvable, I, Bull. Amer. Math. Soc. **74** (1968), 383-437, which will be referred to as I.

Lemma 5.16 is violated. Hence, we have $|\mathfrak{P}^*: \mathfrak{C}_1| = |\mathfrak{P}_0: \mathfrak{P}_0 \cap \mathfrak{C}_1| = p$ and $[\mathfrak{P}_0, \mathfrak{B}] \nsubseteq \mathfrak{B}$.

Suppose $\mathfrak{B} \subseteq \mathfrak{P}_0$. Then $\mathfrak{Q} = [\mathfrak{Q}, \mathfrak{B}] \subseteq \mathfrak{P}_0$, so $\mathfrak{Q} = 1$. This is not the case, so $\mathfrak{B} \not\subseteq \mathfrak{P}_0$. By Lemma 6.1, it follows that $\mathfrak{B} \notin \mathcal{U}(p)$. Hence, by construction, p is odd. Since $\mathfrak{B} \not\subseteq \mathfrak{A}_0$, (\mathfrak{B}) implies that $p \subseteq 3$. Thus, p = 3 and $\mathfrak{B} \in \mathcal{U}^*(3) - \mathcal{U}(3)$. By definition of $\mathcal{U}(3)$ and $\mathcal{U}^*(3)$, it follows that $\mathbf{Z}(\mathfrak{P})$ is non cyclic and \mathfrak{B} is not contained in the center of any S_3 -subgroup of \mathfrak{G} .

Since $[\mathfrak{P}_0, \mathfrak{B}, \mathfrak{B}] = 1$ and since $\mathfrak{B} \nsubseteq \mathfrak{P}_0$, it follows that $\mathfrak{B} \nsubseteq O_3(\mathfrak{C}_{2,3})$, where $\mathfrak{C}_{2,3}$ is a $S_{2,3}$ -subgroup of \mathfrak{C} containing \mathfrak{P}^* .

Since $\mathfrak{B}_0 \nsubseteq \mathbf{Z}(\mathfrak{P})$, we have $\mathfrak{B} = \mathfrak{B}_0 \times \mathfrak{B}_1$, where $\mathfrak{B}_1 \subseteq \mathbf{Z}(\mathfrak{P})$. Since $\mathfrak{B}_0 \subseteq \mathbf{Z}(\mathfrak{C})$, we have $\mathfrak{B}_0 \subseteq \mathbf{O}_3(\mathfrak{C}_{2,3})$, and so $\mathfrak{B}_1 \nsubseteq \mathbf{O}_3(\mathfrak{C}_{2,3})$.

Let \mathfrak{F} be a subgroup of $\mathfrak{C}_{2,3}$ such that

- (a) $\mathfrak{P}^* \subseteq \mathfrak{D}$.
- (b) $\mathfrak{B}_1 \not\subseteq O_3(\mathfrak{H})$.
- (c) \mathfrak{F} is minimal subject to (a) and (b).

Let $\mathfrak{F}_1 = O_3(\mathfrak{F})$. Since the fixed point subspace of \mathfrak{B}_1 on $\mathfrak{F}_1/D(\mathfrak{F}_1)$ is of codimension 1, Lemma 5.30 implies that $\mathfrak{F} = \mathfrak{P}^*\mathfrak{D}^*$, where \mathfrak{D}^* is a quaternion group and $|\mathfrak{P}^*:\mathfrak{F}_1|=3$, so that $\mathfrak{F}_1\mathfrak{B}_1=\mathfrak{P}^*$. Since \mathfrak{B}_1 centralizes $D(\mathfrak{F}_1)$, so does \mathfrak{D}^* . Let $C_{\mathfrak{F}_1}(\mathfrak{D}^*)=\mathfrak{F}_1^*$. Thus, \mathfrak{F}_1 is a normal subgroup of \mathfrak{F} and $|\mathfrak{F}_1:\mathfrak{F}_1^*|=9$.

Let $\mathfrak{P}_{2}^{*} = [\mathfrak{F}_{1}, \mathfrak{D}^{*}]$. Then \mathfrak{P}_{2}^{*} is generated by 2 elements and $\mathfrak{P}_{2}^{*} \cap \mathfrak{P}_{1}^{*}$ is of index 9 in \mathfrak{P}_{2}^{*} . Hence, \mathfrak{P}_{2}^{*} is either elementary of order 9 or is a nonabelian group of exponent 3 and order 27. Furthermore, $\mathfrak{F}_{1} = \mathfrak{P}_{1}^{*}\mathfrak{P}_{2}^{*}$, $\mathfrak{P}_{1}^{*} \cap \mathfrak{P}_{2}^{*} = \boldsymbol{D}(\mathfrak{P}_{2}^{*})$, and $[\mathfrak{P}_{1}^{*}, \mathfrak{P}_{2}^{*}] = 1$.

Since $\mathfrak{B}_1 \nsubseteq \mathfrak{F}_1$, it follows that $\mathfrak{C}_1 = \mathfrak{B}_1 \times (\mathfrak{C}_1 \cap \mathfrak{F}_1)$. Hence, $\boldsymbol{D}(\mathfrak{C}_1) = \boldsymbol{D}(\mathfrak{C}_1 \cap \mathfrak{F}_1) \subseteq \mathfrak{P}_1^*$. We will show that $\boldsymbol{D}(\mathfrak{C}_1) = 1$. Suppose false. Let $\mathfrak{C}^* = \boldsymbol{C}(\boldsymbol{D}(\mathfrak{C}_1))$, so that \mathfrak{C}^* is 3-solvable. Since $\mathfrak{C}^* \triangleleft \boldsymbol{N}(\boldsymbol{D}(\mathfrak{C}_1))$, it follows that $\mathfrak{C}^*\mathfrak{P}$ is 3-solvable. Since $\mathfrak{B}_1 \subseteq \boldsymbol{Z}(\mathfrak{P})$, we have $\mathfrak{B}_1 \subseteq \boldsymbol{O}_3(\mathfrak{C}^*\mathfrak{P})$. Since \mathfrak{Q}^* centralizes $\boldsymbol{D}(\mathfrak{F}_1)$, it follows that $\langle \mathfrak{B}_1, \mathfrak{Q}^* \rangle \subseteq \mathfrak{C}^*$. Thus, $\langle \mathfrak{B}_1, \mathfrak{Q}^* \rangle$ is 3-closed. This is impossible, since $\langle \mathfrak{B}_1, \mathfrak{Q}^* \rangle$ covers $\mathfrak{F}/\mathfrak{F}_1$.

If \mathfrak{P}_2^* is nonabelian, then \mathfrak{Q}^* centralizes $\mathbf{Z}(\mathfrak{P}^*)$. Since \mathfrak{Q}^* is a quaternion group, we are done in this case.

We may now assume that \mathfrak{P}_2^* is abelian, so elementary of order 9. Thus, $\mathfrak{F}_1 = \mathfrak{P}_1^* \times \mathfrak{P}_2^*$, \mathfrak{P}_1^* and \mathfrak{C}_1 are elementary and $\mathbf{Z}(\mathfrak{P}^*) = \mathfrak{P}_1^* \times \mathfrak{B}$, where $\mathfrak{V} = \mathfrak{P}_2^* \cap \mathbf{Z}(\mathfrak{P}^*)$. Notice that $\mathfrak{V}_0 \subseteq \mathfrak{P}_1^*$. If $\mathfrak{P}_1^* \supset \mathfrak{V}_0$, then since every subgroup of \mathfrak{P}_1^* of type (3,3) is in $\mathscr{U}(3)$ and since the quaternion group \mathfrak{D}^* centralizes \mathfrak{P}_1^* , we are done. We may therefore assume that $\mathfrak{P}_1^* = \mathfrak{V}_0$. Hence, $\mathbf{Z}(\mathfrak{P})$ has order 9, $|\mathfrak{P}^*| = 3^4$, $|\mathfrak{C}_1| = 3^3$. Also, $\mathbf{Z}(\mathfrak{P}^*) = \mathfrak{V}_0 \times \mathfrak{V}$. Let B be a generator for \mathfrak{V}_0 and let I be the involution of \mathfrak{D}^* . Then I inverts \mathfrak{V} and centralizes B.

Let $\mathfrak{R} = \langle \mathfrak{P}, \mathfrak{P}^* \rangle \subseteq N(\mathfrak{C}_1)$. Since SL(3,3) is a minimal simple group, it follows that $N(\mathfrak{C}_1)$ is solvable. As $O_{\mathfrak{F}}(\mathfrak{R}) = 1$, we have $\mathfrak{C}_1 = C(\mathfrak{C}_1)$. Since $[\mathfrak{C}_1, \mathfrak{P}^*, \mathfrak{P}^*] = 1$, it follows that \mathfrak{R} contains a normal subgroup

 \mathfrak{B}^* of order 3 and that S_2 -subgroups of \mathfrak{N} are quaternion. Now $\mathfrak{B}^* \not\subseteq \mathfrak{B}$, since \mathfrak{P} does not normalize \mathfrak{B}_0 and \mathfrak{P}^* centralizes no subgroup of \mathfrak{B} other than 1 and \mathfrak{B}_0 . Suppose $\mathfrak{B}^* = \mathfrak{B}$. Since $\mathfrak{V} = \mathfrak{P}^{*'}$, it follows that S_3 -subgroups of $\mathfrak{N}/\mathfrak{B}^*$ are abelian. Thus \mathfrak{N} is 3-closed. But this is impossible since $\mathfrak{P} \neq \mathfrak{P}^*$. Hence, \mathfrak{B}^* is a subgroup of $Z(\mathfrak{P}^*)$ of order 3 which is different from \mathfrak{V} and from \mathfrak{B}_0 . Since $Z(\mathfrak{P}^*) = \mathfrak{B}_0 \times \mathfrak{V}$, there is a generator for \mathfrak{B}^* of the shape BV, where V is a generator for \mathfrak{B} .

Let J be any involution of \mathfrak{R} . Then $JVJ=V^{-1}$ and JBVJ=BV. Now I and J both normalize \mathfrak{P}^* and $\mathfrak{P}^{*'}=\mathfrak{B}$. Hence, $\langle I,J\rangle$ maps onto an abelian subgroup of $A_{\mathfrak{G}}(Z(\mathfrak{P}^*))$, which implies that J normalizes $Z(\mathfrak{P}^*)\cap C(I)=\mathfrak{B}_0$. Hence, $JBJ=B^f$ for some integer f, and the previous equations yield $V^2=1$, which is not the case. The proof is complete.

HYPOTHESIS 7.2. (i) If $\mathfrak{A} \in \mathscr{S}_{n_3}(p)$, then $\mathsf{M}(\mathfrak{A})$ contains only 1. (ii) If \mathfrak{A} is of order p and is in the center of some S_p -subgroup of \mathfrak{G} , then $O_p(\mathfrak{M})$ is of symplectic type and width w, where $\mathfrak{M} = N(\mathfrak{A})$.

LEMMA 7.2. Suppose Hypothesis 7.2 is satisfied and that if p = 2, then $w \ge 3$, while if p = 3, then $w \ge 2$. Let \mathfrak{B} be a subgroup of $O_p(\mathfrak{M})$ of type (p, p) which contains \mathfrak{F} . Then $\mathfrak{B} \in \mathscr{E}(p)$.

Proof. Let \mathscr{V} be the set of subgroups of $O_p(\mathfrak{M})$ which violate the lemma. Let \mathscr{V}_0 be the subset of those \mathfrak{V} in \mathscr{V} which centralize at least one element \mathfrak{V} of $\mathscr{U}(p)$ which $\mathfrak{Z} \subset \mathfrak{V} \subset O_p(\mathfrak{M})$. If $\mathscr{V}_0 \neq \emptyset$, choose $\mathfrak{V} \in \mathscr{V}_0$, while if $\mathscr{V}_0 = \emptyset$, choose \mathfrak{V} in \mathscr{V} .

Let $\mathfrak{H}=O_p(\mathfrak{M}), \mathfrak{H}_0=C_{\mathfrak{H}}(\mathfrak{B}).$ We first argue that $\mathsf{M}(\mathfrak{H}_0;p')$ is trivial. Namely, \mathfrak{M} is p-solvable with $O_{p'}(\mathfrak{M})=1$, so $C_{\mathfrak{M}}(\mathfrak{H})=\mathfrak{H}(\mathfrak{H}_0)$. This implies that $C_{\mathfrak{M}}(\mathfrak{H}_0)$ is a p-group. Hence, $\mathsf{M}_{\mathfrak{M}}(\mathfrak{H}_0;p')$ is trivial. Suppose $\mathfrak{H}\in \mathsf{M}(\mathfrak{H}_0;p')$. It suffices to show that $\mathfrak{H}\subseteq \mathfrak{M}.$ If \mathfrak{H}_0 contains an element \mathfrak{B} of $\mathscr{U}(p)$ with $\mathfrak{H}\subseteq \mathfrak{B},$ then by Lemma 7.1 we get that \mathfrak{B} centralizes $\mathfrak{H}.$ Hence, $\mathfrak{H}\subseteq C(\mathfrak{H})\subseteq \mathfrak{M}.$ If no such elements of $\mathscr{U}(p)$ are available, then by construction, $\mathscr{V}_0=\varnothing$. But $\mathfrak{H}_0=\mathfrak{H}_0$, so if \mathfrak{H} is a S_p -subgroup of $\mathfrak{M},$ then \mathfrak{H}_0 contains an element \mathfrak{H}_0 of $\mathscr{U}(\mathfrak{H}).$ Let $\mathfrak{H}_0=C_{\mathfrak{H}}(\mathfrak{H})$ so that $|\mathfrak{H}:\mathfrak{H}_0:\mathfrak{H}_0|=p$. If $\mathfrak{H}_0\cap \mathfrak{H}_0$ contains more than one subgroup of order p, then there is a subgroup \mathfrak{H}^* of $\mathfrak{H}_0\cap \mathfrak{H}_0$ of type (p,p) which contains \mathfrak{H}_0 . Since $\mathscr{V}_0=\varnothing, \mathscr{V}^*\in\mathscr{E}(p)$, so $\mathfrak{H}\subseteq C(\mathfrak{H}^*)\subseteq C(\mathfrak{H})\subseteq C(\mathfrak{H})\subseteq \mathfrak{M}.$ Suppose $\mathfrak{H}_0\cap \mathfrak{H}_0$ contains only one subgroup of order p. Then by hypothesis, we have $p\geq 5$, and so \mathfrak{H} is of width 1 and is a S_p -subgroup of \mathfrak{H} . Hypothesis 7.1 guarantees in this case that $\mathsf{M}(\mathfrak{H}_0;p')$ is trivial.

Choose $\mathfrak Q$ in $\mathsf M(\mathfrak B;\,p')$ minimal subject to $[\mathfrak B,\,\mathfrak Q]\neq 1$. Then $\mathfrak Q=[\mathfrak B,\,\mathfrak Q]$ and $\mathfrak B_0=C_{\mathfrak B}(\mathfrak Q)$ is of order p. Clearly, $\mathfrak B_0\neq \mathfrak Z$. Let $\mathfrak M_1=N(\mathfrak B_0)$

so that \mathfrak{M}_1 is p-solvable. By the preceding argument, $O_{p'}(\mathfrak{M}_1) = 1$. Hence, $\mathfrak{Z} \not\subseteq O_p(\mathfrak{M}_1)$, so that \mathfrak{S}_0 contains an extra special subgroup \mathfrak{S}^* of width w-1 with $\mathfrak{F}^* \cap O_p(\mathfrak{M}_1) = 1$.

Let $\mathfrak{X}=R_p(\mathfrak{M}_1)$ (see Definition 2.2), $\mathfrak{Y}=C_{\mathfrak{M}_1}(\mathfrak{X})$. Suppose $\mathfrak{Z}\subseteq \mathfrak{Y}$. Since $\mathfrak{Q}=[\mathfrak{Q},\mathfrak{Z}]$ and $\mathfrak{Y}\subset \mathfrak{M}_1$, we have $\mathfrak{Q}\subseteq \mathfrak{Y}$. Let \mathfrak{X}_p be a S_p -subgroup of \mathfrak{M}_1 which contains \mathfrak{Z}^* . Then \mathfrak{Z}^* centralizes $Z(\mathfrak{X}_p)$, so \mathfrak{Y}^* centralizes $Z(\mathfrak{X}_p)$, so \mathfrak{Y}^* is contained in a conjugate $\widetilde{\mathfrak{M}}$ of \mathfrak{M} , $\widetilde{\mathfrak{M}}=N(\mathfrak{Q}_1(Z(\widetilde{\mathfrak{Y}})))$. Furthermore, since $\mathfrak{Z}\mathfrak{Q}\subseteq \mathfrak{Y}\subseteq \widetilde{\mathfrak{M}}$, \mathfrak{Z}^* is faithfully represented on $\mathfrak{Q}^1_p(\widetilde{\mathfrak{M}})$. Let $\widetilde{\mathfrak{Z}}=O_p(\widetilde{\mathfrak{M}})$, and let $\widetilde{\mathfrak{Z}}=\widetilde{\mathfrak{Z}}_0\supset \widetilde{\mathfrak{Z}}_1\supset\cdots\supset \widetilde{\mathfrak{Z}}_k=1$ be part of a chief series for $\widetilde{\mathfrak{M}}$. Then since $\mathfrak{Z}\not\subseteq O_p(\widetilde{\mathfrak{M}})$, it follows that \mathfrak{Z} does not centralize $\widetilde{\mathfrak{Z}}_n/\widetilde{\mathfrak{Z}}_{n+1}$ for at least one value of $n,0\leq n< k$. Hence, $|\widetilde{\mathfrak{Z}}_n:\widetilde{\mathfrak{Z}}_{n+1}|=p^{a_n}$ where $a_n\geq r_p(\mathfrak{Z};\widetilde{\mathfrak{M}})$. Then by Lemma 5.4, $r_n(\mathfrak{Z};\widetilde{\mathfrak{M}})\geq r_n(\mathfrak{Z};\widetilde{\mathfrak{Z}})$. Clearly,

$$r_{\mathcal{L}}(\mathfrak{Z}; \mathfrak{F}) \geq r_{\mathcal{L}}(\mathfrak{Z}; \mathfrak{F}^*) = p^{w-1}$$
.

On the other hand, $\widetilde{\mathfrak{G}}_n$ is a subgroup of $\widetilde{\mathfrak{G}}$, so $2w \geq a_n$. Hence $2w \geq p^{w-1}$. If $p \geq 5$, then w = 1 is forced, so every p-solvable subgroup of \mathfrak{G} has p-length at most 1. This is absurd, so $p \leq 3$. If p = 3, then w = 2, since $w \geq 2$ by hypothesis. It is clear that this is impossible since \mathfrak{G}^* is faithfully represented on $Q_3^1(\widetilde{\mathfrak{M}})$. If p = 2, then w = 3 or w = 4, since by hypothesis $w \geq 3$. This is also impossible by Lemma 5.13. We have shown that $\mathfrak{A} \subseteq \mathfrak{P}$.

Since $\mathfrak X$ is a p-group, $\mathfrak X \subseteq \mathfrak M^{e}$ for some G in $\mathfrak S$. Then $\mathfrak X \cap \mathfrak S^{e}$ is an abelian subgroup of $\mathfrak S^{e}$, so $m(\mathfrak X \cap \mathfrak S^{e}) \leq w+1+e$, where e=0 if p is odd and e=1 if p=2.

If p is odd, then $\mathfrak{X}/\mathfrak{X} \cap \mathfrak{F}^{c}$ is faithfully represented on the Frattini quotient group of $\Omega_{1}(\mathfrak{F}^{c})$, and this latter group is generated by 2w elements. If p=2, write $O_{2,2'}(\mathfrak{M}^{c})=\mathfrak{F}^{c}\cdot\mathfrak{R}$ where $|\mathfrak{R}|$ is odd. Then $[\mathfrak{R},\mathfrak{G}^{c}]$ is generated by 2w elements and $\mathfrak{X}/\mathfrak{X} \cap \mathfrak{F}^{c}$ is faithfully represented on the Frattini quotient group of $[\mathfrak{R},\mathfrak{F}^{c}]$. Thus, by a result of Schur [32], we have $m(\mathfrak{X}/\mathfrak{X} \cap \mathfrak{M}^{c}) \leq w^{2}$, that is,

$$m(\mathfrak{X}) \le w^2 + w + 1 + e.$$

If w=1, then $p\geq 5$ implies that $O_p(\mathfrak{M})$ is a S_p -subgroup of \mathfrak{S} . So every p-solvable subgroup of \mathfrak{S} has p-length at most 1, a contradiction. Hence, $w\geq 2$.

There is an elementary subgroup \mathfrak{X}_1 of \mathfrak{X} such that $A_{\mathfrak{V}}(\mathfrak{X}_1)$ contains a subgroup $\tilde{\mathfrak{V}}^*\tilde{\mathfrak{Q}}$, where $\tilde{\mathfrak{Q}} \triangleleft \tilde{\mathfrak{V}}^*\tilde{\mathfrak{Q}}$ is special and $\tilde{\mathfrak{V}}^* \cong \mathfrak{V}^*$ operates faithfully and irreducibly on $\tilde{\mathfrak{Q}}/D(\tilde{\mathfrak{Q}})$. Also, $\tilde{\mathfrak{V}}^*\tilde{\mathfrak{Q}}$ acts irreducibly on \mathfrak{X}_1 .

Assume that p is odd.

Since $\tilde{\mathfrak{F}}^*$ is extra special of width w-1, it follows that $m(\tilde{\mathfrak{Q}}) \geq p^{w-1}a$, where $a = |F_q(\zeta): F_q|$. Here, $\tilde{\mathfrak{Q}}$ is a q-group and ζ is a primitive

 p^{th} root of 1 in an extension field of the prime field F_q . By Lemma 5.3, $m(\mathfrak{X}) \geq m(\mathfrak{\tilde{Q}})b$, where b = 2/3 if q = 2 and $b = |F_p(\tau): F_p|$ if q is odd. Here τ is a primitive q^{th} root of 1 in an extension field of the prime field F_p . Together with (7.1), we get $abp^{w-1} \leq w^2 + w + 1$. Clearly, ab > 1. Suppose $w \ge 4$. Then $3^{w-1} \le p^{w-1} < w^2 + w + 1$, a contradiction. Suppose w=3. If $p \ge 5$, then $5^2=5^{w-1} \le p^{w-1} < 3^2+1$ 3+1, a contradiction. Thus, p=3 and q=2. Since p=3, w=3, it follows that $\mathfrak{M}^{g}/\mathfrak{H}^{g}$ is isomorphic to a 3-solvable subgroup of the 6 by 6 symplectic group over F_3 . It follows readily that $\mathfrak{M}^G/\mathfrak{F}^G$ has no elementary subgroup of order 34. Thus, in this case, $m(\mathfrak{X}) \leq 4 +$ $+m(\mathfrak{X}\cap\mathfrak{H}^c)\leq 8$, against $(4/3)\cdot 3^2=12=abp^{w-1}\leq m(\mathfrak{X})$. Hence w=2. We now get $abp^{w-1} < 7$, so $p \le 5$. Suppose p = 5 and q is odd. Then $ab \ge 2$, so that 10 < 7. Suppose p = 5 and q = 2. Then a = 4, so ab = 8/3. We get $(8/3) \cdot 5 < 7$. Hence, p = 3. Suppose q is odd. Since a is characterized as the smallest positive integer n with $3^n \equiv$ $1 \pmod{q}$, it follows that $a \geq 3$, so $ab \geq 3$. This gives $9 \leq abp^{w-1} < 7$. Hence, q=2. Since $p=3,\,w=2$, it follows that $\mathfrak{M}^{\sigma}/\mathfrak{F}^{\sigma}$ has no elementary subgroup of order 27. Hence, $m(\mathfrak{X}) \leq 3 + 2 = 5$. In particular, $m(\mathfrak{X}_1) \leq 5$. Suppose first that $\tilde{\mathfrak{Q}}$ is abelian. Since $\mathbf{Z}(\tilde{\mathfrak{F}}^*) = \tilde{\mathfrak{F}}$ acts without fixed points on $\widetilde{\mathfrak{Q}}$, it follows that $C_{\widetilde{\mathfrak{Z}}^*}(\lambda) \cap \widetilde{\mathfrak{Z}} = 1$ for every non trivial character λ of $\tilde{\mathfrak{Q}}$. So $|\tilde{\mathfrak{Z}}^*: C_{\mathfrak{H}^*}(\lambda)| \geq 9$ for all $\lambda \neq 1$. Hence, $m(\mathfrak{X}_1) \geq 9$, a contradiction. Suppose $\tilde{\mathfrak{Q}}$ is nonabelian. Let \mathfrak{X}_2 be a subgroup of \mathfrak{X}_1 on which $\tilde{\mathfrak{Q}}$ acts irreducibly. Thus $m(\mathfrak{X}_2) \geq 2$, since \mathfrak{Q}' does not centralize \mathfrak{X}_2 . Since $m(\mathfrak{X}_1) \leq 5$, and p=3, it follows that $\mathfrak{X}_2=\mathfrak{X}_1$ is an irreducible $ilde{\mathfrak{Q}}$ -group. Thus, $ilde{\mathfrak{Q}}$ is extra special. $m(\tilde{\mathbb{Q}})=6$, since q=2 and $|\tilde{\mathfrak{Z}}^*|=27$. This yields $m(\mathfrak{X}_1)\geq 2^3$. possibilities have led to contradictions. So p=2.

Since $\widetilde{\mathfrak{F}}^*$ is extra special of width w-1, we get that $m(\widetilde{\mathfrak{D}}) \geq 2^{w-1}$. Now Lemma 5.3(a) applied with $\widetilde{\mathfrak{D}}$ in the role of \mathfrak{P} , \mathfrak{X}_1 in the role of V, yields $m(\mathfrak{X}_1) \geq 2^w$. On the other hand, \mathfrak{V}_0 is a normal subgroup of \mathfrak{M}_1 of order 2, so $m(\mathfrak{X}) \geq 1 + 2^w$.

Let \mathfrak{E} be an elementary subgroup of \mathfrak{X} with $m(\mathfrak{E})=2^w+1$, let $\mathfrak{E}_0=\mathfrak{E}\cap\mathfrak{F}^G$, and let \mathfrak{E}_1 be a complement to \mathfrak{E}_0 in \mathfrak{E} . Since $m(E_0)\leq w+2$, we get $m(\mathfrak{E}_1)=a\geq 2^w-1-w$. Since \mathfrak{E}_1 acts faithfully on $O_{2,2'}(\mathfrak{M}^G)/\mathfrak{F}^G$, Lemma 5.34 implies that $O_{2,2'}(\mathfrak{M}^G)/\mathfrak{F}^G$ has a subgroup $\widehat{\mathfrak{D}}/\mathfrak{F}^G$ which admits \mathfrak{E}_1 and such that $\mathfrak{E}_1\widehat{\mathfrak{D}}/\mathfrak{F}^G$ is the direct product of a dihedral groups of order twice an odd prime. Let \mathfrak{R} be a S_2 -subgroup of $\widehat{\mathfrak{D}}$. By Lemma 5.12, $[\mathfrak{F}^G,\mathfrak{R}]=\mathfrak{R}$ is extra special of width $w_1\leq w$. Since \mathfrak{F}^G is the central product of \mathfrak{R} and $C_{\mathfrak{F}^G}(\mathfrak{R})$, and since $\mathfrak{E}_1\widehat{\mathfrak{D}}=\mathfrak{R}\cdot N_{\mathfrak{E}_1\widehat{\mathfrak{D}}}(\mathfrak{R})$, it follows that if $M=\mathfrak{R}/D(\mathfrak{R})$, then $A_{\mathfrak{E}_1\widehat{\mathfrak{D}}}(M)$ has a subgroup which is the direct product of a dihedral groups of order twice an odd prime. Let m(M)=m. Then $m=2w_1\leq 2w$. Since $w\geq 3$ by hypothesis, we get $w<2^w-1-w\leq a$, and so 2w<2a, whence m<2a.

This violates Lemma 5.8, and completes the proof.

Hypothesis 7.3. (i) p is odd.

(ii) \mathfrak{B} is a S_p -subgroup of \mathfrak{B} , \mathfrak{A} is a normal elementary subgroup of \mathfrak{B} with $m(\mathfrak{A}) \geq 3$, $\mathbf{Z}(\mathfrak{B})$ is cyclic, and $\mathbf{A}_{\mathfrak{B}}(\mathscr{C}) = \mathbf{A}(\mathscr{C})$, where \mathscr{C} : $\mathfrak{A} \subset \mathfrak{B} \cap \mathbf{Z}(\mathfrak{B}) \supset 1$. Also, $\mathfrak{A} \subset N(\mathbf{Z}(\mathfrak{B}) \cap \mathfrak{A})$.

LEMMA 7.3. Suppose Hypothesis 7.3 is satisfied. Let $\mathfrak{Z} = \mathbf{Z}(\mathfrak{P}) \cap \mathfrak{A}$. Then each subgroup of \mathfrak{A} of type (p, p) which contains \mathfrak{Z} is in $\mathscr{E}(p)$.

Proof. The lemma is an immediate consequence of Lemma 5.5, together with Hypothesis 7.1 (i).

HYPOTHESIS 7.4. (i) S is simple.

- (ii) $\{2, 3\} \subseteq \pi_4(\S)$.
- (iii) The centralizer of every involution of S is solvable.
- (iv) The normalizer of every nonidentity 3-sugroup of \(\mathbb{G} \) is solvable.
- (v) If $\mathfrak{A} \in \mathcal{S}_{cn_3}(2) \cup \mathcal{S}_{cn_3}(3)$, then $\mathcal{U}(\mathfrak{A})$ contains only 1.

All remaining lemmas in this section are proved under Hypothesis 7.4.

DEFINITION 7.2.

 $\mathcal{N} = \{(\mathfrak{A}, \mathfrak{B}) \mid 1. \quad \mathfrak{A} \text{ is a 2-subgroup of } \mathfrak{G}.$

- 2. B is a 3-subgroup of S.
- 3. $\langle \mathfrak{A}, \mathfrak{B} \rangle$ is not solvable.

We remark that in the following lemmas, Lemma 7.1 may be invoked, since Hypothesis 7.4 implies that Hypothesis 7.1 is satisfied for p=2 and for p=3.

LEMMA 7.4. If $\mathfrak A$ is a four-subgroup of $\mathfrak G$ which centralizes every element of $\mathsf M(\mathfrak A;\mathfrak A)$ and $\mathfrak B$ is a subgroup of $\mathfrak G$ of type $(\mathfrak A,\mathfrak A)$ which centralizes every element of $\mathsf M(\mathfrak B;\mathfrak A)$, then $(\mathfrak A,\mathfrak B)\in\mathscr N$.

Proof. Notice that if $G, H \in \mathbb{S}$, then the pair $(\mathfrak{A}^G, \mathfrak{B}^H)$ satisfies the hypothesis of the lemma.

Suppose the lemma is false and \mathfrak{A} , \mathfrak{B} are chosen so that $\langle \mathfrak{A}, \mathfrak{B} \rangle$ is minimal. It follows as in Lemma 0.10.2 that $\langle \mathfrak{A}, \mathfrak{B} \rangle = \mathfrak{A} \times \mathfrak{B}$. We may then choose A in \mathfrak{A}^* such that E(A) contains an element \mathfrak{A}_1 of $\mathscr{U}(2)$. Hence, $\langle \mathfrak{A}_1, \mathfrak{B} \rangle$ is solvable. Thus, we may assume that $\mathfrak{A} \in \mathscr{U}(2)$. Let $\mathfrak{A} = N(\mathfrak{A})$. Since $2 \in \pi_4$, we have $O_{2'}(\mathfrak{A}) = 1$. This is absurd since

 \mathfrak{B} centralizes $O_2(\mathfrak{N})$ and \mathfrak{N} is solvable. The proof is complete.

We set

 $\mathfrak{G}_1 = \{G \mid G \in \mathfrak{G}, C(G) \text{ is solvable.}\}$

 $\mathfrak{G}_p = \{G \mid G \in \mathfrak{G}, C(G) \text{ contains an elementary subgroup } \mathfrak{F} \text{ order } p^2 \text{ which centralizes every element of } \mathsf{M}(\mathfrak{F};q)\},$ $p = 2, 3, q = 2, 3, p \neq q.$

We conclude from Lemma 7.4 that

There are some subtle consequence of (7.2).

Definition 7.3.

- $\mathcal{D} = \{\mathfrak{B} \mid 1. \ \mathfrak{B} \text{ is a noncyclic elementary 3-subgroup of } \mathfrak{G}.$
 - 2. Every element of \mathfrak{B} centralizes an element of $\mathscr{U}(3)$.
 - 3. B centralizes every abelian subgroup in $\mathsf{M}(\mathfrak{B};2)$.

LEMMA 7.5. Suppose $\mathfrak{A} \in \mathcal{U}(2)$, $\mathfrak{B} \in \mathcal{D}$ and \mathfrak{T} is a 2, 3-subgroup of \mathfrak{B} which contains $\langle \mathfrak{A}, \mathfrak{B} \rangle$. Let \mathfrak{T}_2 be a S_2 -subgroup of \mathfrak{T} . Then $\mathscr{MS}(\mathfrak{G})$ (see Definition 2.7) contains an element \mathfrak{M} such that

- (a) $O_{2'}(\mathfrak{M}) = 1$.
- (b) $O_2(\mathfrak{M})$ is the central product of $[O_2(\mathfrak{M}), \mathfrak{B}]$, which is extra special of width w=2,3 or 4, and of $C_{O_2(\mathfrak{M})}(\mathfrak{B})$, which is either cyclic or of maximal class ≥ 3 .
- (c) $[O_2(\mathfrak{M}), \mathfrak{B}]$ is the central product of w \mathfrak{B} -invariant quaternion groups $\mathfrak{Q}_1, \dots, \mathfrak{Q}_w$ whose centralizers in \mathfrak{B} are w distinct subgroups of order 3. In particular, no element of \mathfrak{B}^* centralizes any foursubgroup of $[O_2(\mathfrak{M}), \mathfrak{B}]$. If w > 2, then $C_{O_2(\mathfrak{M})}(\mathfrak{B}) = [O_2(\mathfrak{M}), \mathfrak{B}]'$ is the center of $O_2(\mathfrak{M})$.
 - (d) $\mathfrak{T}_2 \subset \mathfrak{M}$.
- (e) $\mathfrak{B} \subset \mathfrak{M}$, and if \mathfrak{Q} is a quaternion subgroup of \mathfrak{T}_2 which is normalized by \mathfrak{B} but is not centralized by \mathfrak{B} , then $\mathfrak{Q} \subset O_2(\mathfrak{M})$.
- (f) If J is an involution of $\mathfrak{M} \cap C(\mathfrak{B})$, then $J \in O_2(\mathfrak{M})$. If \mathfrak{M} contains a S_2 -subgroup of C(J) (e.g., if $C(J) = \mathfrak{T}$), then $C(J) \subseteq \mathfrak{M}$.
 - (g) \mathfrak{M} contains a S_2 -subgroup of \mathfrak{G} .

Proof. Let $\mathscr S$ be the set of 2, 3-subgroups of $\mathfrak S$ which contain $\langle \mathfrak B, \mathfrak X_2 \rangle$. Choose $\mathfrak S$ in $\mathscr S$ so that $|\mathfrak S|_2$ is maximal. Let $\mathfrak S_p$ be a S_p -subgroup of $\mathfrak S$, p=2, 3, chosen so that $\mathfrak X_2 \subseteq \mathfrak S_2$, $\mathfrak B \subseteq \mathfrak S_3$. Let $\mathfrak A_1, \cdots$, $\mathfrak A_m$ be all the elements of $\mathscr U(2)$ in $\mathfrak S_2$. By Lemma 7.1, each $\mathfrak A_i$ centralizes $O_3(\mathfrak S)$, so by Lemma 7.4, $|O_3(\mathfrak S)| \leq 3$. In particular, $\mathfrak B$ is not contained in $O_2(\mathfrak S)$ and $\mathfrak B$ centralizes $O_3(\mathfrak S)$. Since $\mathfrak B \not\subseteq F(\mathfrak S)$, $\mathfrak B$

does not centralize $O_2(\mathfrak{S})$. Hence, $O_2(\mathfrak{S})$ is nonabelian since $\mathfrak{B} \in \mathscr{D}$. Let $\mathfrak{R} = O_2(\mathfrak{S})' \cap \mathfrak{Z}(O_2(\mathfrak{S}))$, so that $\mathfrak{R} \neq 1$. Let $\mathfrak{R} = N(\mathfrak{R})$, $\mathfrak{S} = C(\mathfrak{R})$, and observe that $\mathfrak{B} \subseteq \mathfrak{S}$. Since the centralizer of every involution is solvable, \mathfrak{S} is solvable. Let \mathfrak{S}^* be a S_2 -subgroup of \mathfrak{R} which contains \mathfrak{S}_2 . Then \mathfrak{S}_2 is solvable. By $O_{2,3}$ in \mathfrak{S}_2 and maximality of $|\mathfrak{S}|_2$, it follows that $\mathfrak{S}_2^* = \mathfrak{S}_2$. Hence, if \mathfrak{S}_2^{**} is a S_2 -subgroup of \mathfrak{S} containing \mathfrak{S}_2 , then \mathfrak{S}_2 contains every element of $\mathfrak{M}(\mathfrak{S}_2^{**})$. We may therefore assume that $\mathfrak{A}_1 \in \mathfrak{M}(\mathfrak{S}_2^{**})$.

Since \mathfrak{A}_1 centralizes $O_3(\mathfrak{S})$, it follows that $\mathfrak{A}_1 \cap Z(\mathfrak{S}_2^{**}) \subseteq Z(O_2(\mathfrak{S}))$. Since \mathfrak{B} centralizes $Z(O_2(\mathfrak{S}))$, maximality of $|\mathfrak{S}|_2$ guarantees that $\mathfrak{S}_2 = \mathfrak{S}_2^{**}$ is a S_2 -subgroup of \mathfrak{S} .

Let $\mathfrak{S} \subseteq \mathfrak{M} \in \mathscr{MS}(\mathfrak{S})$. Thus, (g) holds, as does (d). Since \mathfrak{M} contains a S_2 -subgroup of \mathfrak{S} , and since 1 is the only 2-signalizer of \mathfrak{S} , it follows that $O_2(\mathfrak{M}) = 1$, and (a) holds. Let $\mathfrak{F} = O_2(\mathfrak{M})$. Suppose \mathfrak{F} contains a noncyclic characteristic abelian subgroup \mathfrak{F}_0 . Then \mathfrak{B} centralizes $\mathfrak{F}_0 \mathbf{Z}(\mathfrak{F})$ and $\mathfrak{F}_0 \mathbf{Z}(\mathfrak{F})$ contains an element of $\mathfrak{U}(\mathfrak{S}_2)$. This violates Lemma 7.4.

Clearly, \mathfrak{F} is noncyclic, since $\mathfrak{F} = F(\mathfrak{M})$ and \mathfrak{M} is solvable. Thus, \mathfrak{F} is of symplectic type. The width w of \mathfrak{F} is at least 2, since \mathfrak{B} is faithfully represented on \mathfrak{F} .

Suppose $w \geq 3$ and $B \in \mathfrak{B}^*$ centralizes a four-subgroup \mathfrak{V} of \mathfrak{H} with $\Omega_1(\mathbf{Z}(\mathfrak{H})) \subset \mathfrak{V}$. By Lemma 7.2, \mathfrak{V} centralizes every element of $\mathbf{M}(\mathfrak{V}; 2')$. Since C(B) contains an element of $\mathcal{U}(3)$, (7.2) is violated. Thus, if $w \geq 3$, then no element of \mathfrak{V}^* centralizes any four-subgroup of \mathfrak{H} . This immediately implies that \mathfrak{H} is extra special and $w \leq 4$. Now (b) and (c) follow from Lemma 5.12.

We next prove the first assertion of (f). Let J be an involution of $\mathfrak{M} \cap C(\mathfrak{B})$. If w=2, then \mathfrak{B} is a $S_{2'}$ -subgroup of \mathfrak{M} and (f) is clear. Suppose $w \geq 3$. In this case, \mathfrak{F} is extra special, so $\mathfrak{F} \cap C(\mathfrak{B}) = \mathfrak{F}'$ is of order 2. Let \mathfrak{B}_0 be any subgroup of \mathfrak{B} of order 3. Since J centralizes \mathfrak{B}_0 , it follows that J normalizes $C_{\mathfrak{F}}(\mathfrak{B}_0)$. We will show that J centralizes $C_{\mathfrak{F}}(\mathfrak{B}_0)$. This is clear if $C_{\mathfrak{F}}(\mathfrak{B}_0) = \mathfrak{F}'$, so suppose $C_{\mathfrak{F}}(\mathfrak{B}_0) \supset \mathfrak{F}'$. Since \mathfrak{F} is extra special, so is $C_{\mathfrak{F}}(\mathfrak{B}_0)$, so $C_{\mathfrak{F}}(\mathfrak{B}_0)$ is a quaternion group on which $\mathfrak{B}/\mathfrak{B}_0$ is faithfully represented. Since a quaternion group has no automorphism of order 6, J necessarily centralizes $C_{\mathfrak{F}}(\mathfrak{B}_0)$. Hence, J centralizes $\langle C_{\mathfrak{F}}(\mathfrak{B}_0) \mid \mathfrak{B}_0 \subset \mathfrak{B}, \mid \mathfrak{B}_0 \mid = 3 \rangle = \mathfrak{F}$, so $J \in \mathfrak{F}$. This proves the first assertion of (f).

Now for the second assertion of (f). If w>2, then $\langle J\rangle=\mathfrak{F}'$, by what we have just shown, together with (c). So suppose w=2 and $\langle J\rangle \not \subset \mathfrak{M}$. Let $\mathfrak{F}_0=[\mathfrak{F},\mathfrak{B}], \, \mathfrak{F}_1=C_{\mathfrak{F}}(\mathfrak{B})$. Thus, $J\in \mathfrak{F}_1, \, J\neq Z$, where Z is central involution of \mathfrak{F}_1 . Since w=2, \mathfrak{B} is a S_2 -subgroup of \mathfrak{M} . Let \mathfrak{T}_0 be a S_2 -subgroup of C(J) which is contained in \mathfrak{M} . Thus, $C(J)\supseteq \mathfrak{T}_0\mathfrak{B}, \, \mathfrak{T}_0\supseteq \mathfrak{F}_0 \times \langle J\rangle$, and \mathfrak{F}_0 is the central product of 2 quaternion groups.

Since C(J) contains an element of $\mathscr{U}(2)$, it follows that $O_{2'}(C(J)) = 1$. Since Z centralizes \mathfrak{T}_0 , a S_2 -subgroup of C(J), it follows that $Z \in O_2(C(J))$, and so $Z \in Z(O_2(C(J)))$. Since $\mathfrak{B} \subseteq C(J)$, it follows that $O_2(C(J)) \in \mathsf{M}_{\mathfrak{M}}(\mathfrak{B}; 2)$. Hence, $O_2(C(J)) \subseteq O_2(\mathfrak{M}) = \mathfrak{S}$, since \mathfrak{B} is a $S_{2'}$ -subgroup of \mathfrak{M} . Hence, $O_2(C(J)) \subseteq \mathfrak{S} \cap \mathfrak{T}_0 = \mathfrak{S}_0 \times \langle J \rangle$. If $O_2(C(J))$ is not elementary, then $\langle Z \rangle$ char $O_2(C(J))$, and so $C(J) \subseteq \mathfrak{M}$. Suppose $O_2(C(J))$ is elementary. Since \mathfrak{B} is faithfully represented on $O_2(C(J))$, it follows that $|O_2(C(J))| \geq 2^4$. However, $O_2(\mathfrak{M})$ contains no elementary subgroup of order 2^4 on which \mathfrak{B} is faithfully represented. This completes the proof of the second assertion of (f).

We turn to the proof of (e). Let $\mathfrak D$ be a quaternion subgroup of $\mathfrak M$ normalized but not centralized by $\mathfrak B$. Let $\mathfrak B_0=\mathfrak B\cap C(\mathfrak D)$, so that $\mathfrak B\mathfrak D=\mathfrak B_0\times\mathfrak B_1\mathfrak D$, where $|\mathfrak B_i|=3$ and $\mathfrak B_1$ is faithfully represented on $\mathfrak D$. Let $\mathfrak D_0=\mathfrak D\cap\mathfrak G$. By (f), $\mathfrak D_0\supseteq\mathfrak D'$. Since $\mathfrak D/\mathfrak D'$ is an irreducible $\mathfrak B$ -group, we may assume by way of contradiction that $\mathfrak D_0=\mathfrak D'$.

Let \Re be a $\Re \mathfrak{D}$ -invariant subgroup of $\mathbf{Q}_{2}(\mathfrak{M})$ minimal subject to $[\Re, \mathfrak{D}] \neq 1$. Thus, \Re may be viewed as a $\Re \mathfrak{D}/\mathfrak{D}'$ -group; as such $\Re_{1}\mathfrak{D}/\mathfrak{D}'$ acts faithfully. Since $w \leq 4$, it follows that \Re is elementary of order 3^{3} and is centralized by \Re_{0} . Thus, w = 4 and S_{3} -subgroups of \Re are of order 3^{5} . Also, \Re is incident with an elementary subgroup \Re_{0} of \Re such that $\langle \Re_{0}, \Re_{0} \rangle$ is elementary of order 3^{4} .

Let \mathfrak{P} be a S_3 -subgroup of \mathfrak{S} containing $\langle \mathfrak{B}_0, \mathfrak{R}_0 \rangle$ and choose \mathfrak{U} in $\mathscr{U}(\mathfrak{P})$. Then $\langle \mathfrak{B}_0, \mathfrak{R}_0 \rangle$ contains an elementary subgroup \mathfrak{E} of order 3^3 which centralizes \mathfrak{U} . Since $\mathfrak{E} \subseteq \mathfrak{M}$, there is an element E of \mathfrak{E}^* such that $\mathfrak{S} \cap C(E)$ contains a four-group. But then $E \in \mathfrak{S}_1 \cap \mathfrak{S}_2 \cap \mathfrak{S}_3$, against (7.2). This contradiction completes the proof of (e) and the lemma.

Throughout the remainder of this section, $\mathfrak P$ denotes a S_3 -subgroup of $\mathfrak G$.

LEMMA 7.6. Suppose $|\mathfrak{P}| > 3^4$.

- (a) If \mathfrak{P}_0 is a subgroup of \mathfrak{P} of index at most 9 and \mathfrak{P}_0 contains an element of $\mathscr{U}^*(\mathfrak{P})$, then $\mathsf{M}(\mathfrak{P}_0; 2)$ contains only 1.
- (b) If $\mathfrak A$ is a subgroup of $\mathfrak B$ of type (3,3) and $|\mathfrak B:C_{\mathfrak B}(\mathfrak A)|\leq 3$, then $\mathfrak A$ centralizes every element of $\mathsf M(\mathfrak A;2)$.
- (c) If $\mathfrak A$ is a subgroup of $\mathfrak B$ of type (3,3), if $|\mathfrak B:C_{\mathfrak B}(\mathfrak A)|\leq 9$, and if $C_{\mathfrak B}(\mathfrak A)$ contains an element of $\mathscr U^*(\mathfrak B)$, then $\mathfrak A\in\mathscr D$.
- (d) If $\mathfrak E$ is a normal elementary subgroup of $\mathfrak P$ of order 27 and $|\mathfrak P: \mathcal C_{\mathfrak R}(\mathfrak E)| = 3$, then $\mathfrak A \in \mathcal E(3)$ for each subgroup $\mathfrak A$ of index 3 in $\mathfrak E$.

Proof. (a) Let \mathfrak{B} be an element of $\mathscr{U}^*(\mathfrak{P})$ with $\mathfrak{B} \subseteq \mathfrak{P}_0$. We will show that $\mathsf{M}(\mathfrak{B};2)$ contains only 1. To do this, we first show that if $\mathfrak{X} \in \mathscr{U}(3)$, then $|C(\mathfrak{X})|$ is odd. Suppose J is an involution of of $C(\mathfrak{X})$. By Lemma 5.38, C(J) contains an element \mathfrak{P} of $\mathscr{U}(2)$. Hence,

by Lemmas 7.1 and 7.4, $\langle \mathfrak{X}, \mathfrak{Y} \rangle$ is nonsolvable, against $\langle \mathfrak{X}, \mathfrak{Y} \rangle \subseteq C(J)$. In particular, \mathfrak{X} does not centralize any quaternion subgroup of \mathfrak{G} . By Lemma 7.1(iii), it follows that \mathfrak{B} centralizes every element of $\mathsf{M}(\mathfrak{B};2)$. Suppose K is an involution of $C(\mathfrak{B})$. Then by Lemma 5.38, $C(\mathfrak{R})$ contains an element \mathfrak{Z} of $\mathscr{U}(2)$, so by Lemmas 7.1 and 7.4, $\langle \mathfrak{B}, \mathfrak{Z} \rangle$ is nonsolvable, against $\langle \mathfrak{B}, \mathfrak{Z} \rangle \subseteq C(K)$. We conclude that $|C(\mathfrak{B})|$ is odd, and so $\mathsf{M}(\mathfrak{B};2)$ contains only 1. Since $\mathsf{M}(\mathfrak{P};2) \subseteq \mathsf{M}(\mathfrak{B};2)$, (a) follows.

Suppose (b) is false. Let $\mathfrak Q$ be a 2-group normalized by $\mathfrak A$ and minimal subject to $[\mathfrak Q, \mathfrak A] \neq 1$. Then $\mathfrak Q = [\mathfrak Q, \mathfrak A]$ is either a quaternion group or a four-group, and $\mathfrak A = \mathfrak A_0 \times \mathfrak A_1$ where $|\mathfrak A_i| = 3$ and $\mathfrak A_0 = C_{\mathfrak N}(\mathfrak Q)$.

Let $\mathfrak{C}=C(\mathfrak{A}_0) \supseteq \langle C_{\mathfrak{P}}(\mathfrak{A}), \mathfrak{Q} \rangle$. Since $C_{\mathfrak{P}}(\mathfrak{A})$ is of index at most 3 in \mathfrak{P} , it follows that $C_{\mathfrak{P}}(\mathfrak{A})$ contains an element \mathfrak{U} of $\mathscr{U}(\mathfrak{P})$. We argue that $C_{\mathfrak{P}}(\mathfrak{A})$ contains an element of $\mathscr{S}_{erg}(\mathfrak{P})$. Namely, let

$$\mathfrak{Z} = \Omega_1(\mathbf{Z}(\mathbf{C}_{\mathfrak{B}}(\mathfrak{A})))$$
.

If $m(\mathfrak{Z}) \geq 3$, let \mathfrak{B} be an element of $\mathscr{S}_{ens}(\mathfrak{P})$ which contains \mathfrak{Z} . Since $\mathfrak{A} \subseteq \mathfrak{B}$, we get $\mathfrak{B} \subseteq C_{\mathfrak{P}}(\mathfrak{A})$. Suppose $m(\mathfrak{Z}) \leq 2$. Then $\mathfrak{Z} = \mathfrak{A} \subset \mathfrak{P}$, so by Lemma 0.8.9, \mathfrak{A} is contained in some element of $\mathscr{S}_{ens}(\mathfrak{P})$. So $C_{\mathfrak{P}}(\mathfrak{A})$ contains an element of $\mathscr{S}_{ens}(\mathfrak{P})$. By Hypothesis 7.4(v), $O_{\mathfrak{P}}(\mathfrak{C}) = 1$.

Let \mathfrak{P}^* be a S_3 -subgroup of C which contains $C_{\mathfrak{P}}(\mathfrak{A})$. Since \mathfrak{A}_1 does not centralize $O_3(\mathbb{C})=\mathfrak{S}$, it follows that $\mathfrak{P}^*=\mathfrak{S}C_{\mathfrak{P}}(\mathfrak{A})$ is a S_3 -subgroup of \mathfrak{S} . Also, since $\mathfrak{A}_1\mathfrak{S}/\mathfrak{S}\subseteq Z(\mathfrak{P}^*/\mathfrak{S})$, it follows that $\mathfrak{A}_1\subseteq O_{3,3',3}(\mathbb{C})$. Hence, $\mathfrak{D}\subseteq O_{3,3'}(\mathbb{C})$. Since $C_{\mathfrak{S}}(\mathfrak{A}_1)$ is of index 3 in \mathfrak{S} , it follows that $[Q_3^1(\mathbb{C}),\mathfrak{A}_1]$ is a quaternion group. Hence, $\mathfrak{C}=\mathfrak{D}\mathfrak{P}^*$ is a group. Let $\mathfrak{F}=O_3(\mathfrak{C})$. Thus, $\mathfrak{P}^*=\mathfrak{F}\mathfrak{A}_1$ and $\mathfrak{F}\cap C(\mathfrak{D})$ is of index 9 in \mathfrak{F} , while $\mathfrak{F}\cap C(\mathfrak{D}) \lhd \mathfrak{P}^*$. Since \mathfrak{D}' centralizes no element of $\mathfrak{Z}^*(\mathfrak{P}^*)$, it follows that $\mathfrak{F}\cap C(\mathfrak{D})$ is cyclic. Since $|\mathfrak{P}|>3^4$, so also $|\mathfrak{P}^*|>3^4$, so \mathfrak{A}_0 is a proper subgroup of $\mathfrak{F}\cap C(\mathfrak{D})=\mathfrak{A}_0$.

Let $\tilde{\mathfrak{F}}_0 = [\mathfrak{Q}, \, \tilde{\mathfrak{F}}]$. By the three subgroups lemma, $\tilde{\mathfrak{F}}_0$ and $\tilde{\mathfrak{U}}_0$ commute elementwise. Furthermore, either $\tilde{\mathfrak{F}}_0$ is elementary of order 9 and $\tilde{\mathfrak{F}} = \tilde{\mathfrak{F}}_0 \times \tilde{\mathfrak{U}}_0$ or $\tilde{\mathfrak{F}}_0$ is a non abelian group of order 27 and exponent 3 and $\tilde{\mathfrak{F}}$ is the central product of $\tilde{\mathfrak{F}}_0$ and $\tilde{\mathfrak{U}}_0$.

Since $C(\mathfrak{A}_1) \cap \widetilde{\mathfrak{F}}$ is of index 3 in $\widetilde{\mathfrak{F}}$, it follows that \mathfrak{A}_1 centralizes $\widetilde{\mathfrak{A}}_0$. Set $\mathfrak{B} = \langle \mathfrak{A}_1, \widetilde{\mathfrak{A}}_0 \rangle = \mathfrak{A}_1 \times \widetilde{\mathfrak{A}}_0$, and let I be the involution of \mathfrak{D} . Thus, $\mathfrak{B} \subseteq C(I)$ and C(I) contains an element of $\mathscr{U}(2)$. Thus, C(I) contains no element of $\mathscr{U}^*(3)$. Since \mathfrak{B} is of index 9 in \mathfrak{P}^* , it follows that \mathfrak{B} is a S_3 -subgroup of C(I). Let \mathfrak{L} be a $S_{2,3}$ -subgroup of C(I) which contains $\mathfrak{B}\mathfrak{D}$. Then $O_3(\mathfrak{L}) = 1$, so \mathfrak{B} is faithfully represented on $O_2(\mathfrak{L})$. We can thus choose a subgroup \mathfrak{B}_0 of order 3 in \mathfrak{B} such that $\widetilde{\mathfrak{A}}_0$ is faithfully represented on $O_2(\mathfrak{L}) \cap C(\mathfrak{B}_0)$. Let $\mathfrak{X} = C(\mathfrak{B}_0)$. Then $O_3(\mathfrak{X})$ is of odd order by (a). Thus, $O_{3',3}(\mathfrak{X}) \cap \widetilde{\mathfrak{A}}_0 = 1$, so that $|O_{3',3}(\mathfrak{X})|_3 \le 27$. But $\widetilde{\mathfrak{A}}_0$ is faithfully represented on the Frattini quotient group \mathfrak{B} of $O_{3',3}(\mathfrak{X})/O_{3'}(\mathfrak{X})$. Since $|\mathfrak{V}| \le 27$ and $\widetilde{\mathfrak{A}}_0$ is cyclic of order ≥ 9 , we have a contradiction. The proof of (b) is complete.

Suppose (c) is false. Let $\mathfrak B$ be a four group in $\mathcal M(\mathfrak A)$ which is not centralized by $\mathfrak A$. Then $\mathfrak A=\mathfrak A_0\times\mathfrak A_1$ where $|\mathfrak A_i|=3$ and $\mathfrak A_0=C_{\mathfrak N}(\mathfrak B)$.

Set $\mathfrak{C}=C(\mathfrak{A}_0)$ and let \mathfrak{P}^* be a S_3 -subgroup of \mathfrak{C} which contains $C_{\mathfrak{P}}(\mathfrak{A})$. By (a), $O_{\mathfrak{F}'}(\mathfrak{C})$ is of odd order, so $\mathfrak{A}_1\mathfrak{B}$ is faithfully represented on $O_{\mathfrak{F}',\mathfrak{F}}(\mathfrak{C})/O_{\mathfrak{F}'}(\mathfrak{C})$. Set $\mathfrak{F}=\mathfrak{P}^*\cap O_{\mathfrak{F}',\mathfrak{F}}(\mathfrak{C})$. By (B), $|\mathfrak{P}:C_{\mathfrak{F}}(\mathfrak{A}_1)|\geq 9$. Thus, $\mathfrak{P}^*=\mathfrak{F}C_{\mathfrak{F}}(\mathfrak{A})$ is a S_3 -subgroup of \mathfrak{G} , so that $O_{\mathfrak{F}'}(\mathfrak{C})=1$.

We may now apply Lemma 5.42 with \mathbb{C}/\mathfrak{S} in the role of \mathfrak{S} , $\mathfrak{S}/D(\mathfrak{S})$ in the role of \mathfrak{S} , and \mathfrak{A}_1 in the role of \mathfrak{Z} . Let \mathfrak{C}_1 be the inverse image in \mathfrak{C} of $[Q_3^1(\mathbb{C}), \mathfrak{A}_1]$. Thus, $\mathfrak{C}_1 = \mathfrak{S}\mathfrak{D}$ where \mathfrak{D} is either a four-group or is the central product of 2 quaternion groups. Since $C_{\mathfrak{P}}(\mathfrak{A}_1)$ covers $\mathfrak{P}^*/\mathfrak{S}$, it follows that \mathfrak{C}_1 is a minimal subgroup of the group $\mathfrak{R} = \mathfrak{B}_1\mathfrak{P}^*$. Let $\mathfrak{L} = O_3(\mathfrak{R})$, so that $\mathfrak{P}^*/\mathfrak{L}$ is elementary of order 3 or 9. Since $\mathfrak{B} \subset \mathfrak{C}_1$, we assume without loss of generality that $\mathfrak{B} \subseteq \mathfrak{D}$.

Since \mathfrak{A}_1 centralizes $D(\mathfrak{A})$, so does \mathfrak{Q} . Thus, $C(\mathfrak{Q}) \cap \mathfrak{A} \triangleleft \mathfrak{A}$. Since $N(\mathfrak{Q}) \cap \mathfrak{A}$ normalizes $C(\mathfrak{Q}) \cap \mathfrak{A}$, it follows that $C(\mathfrak{Q}) \cap \mathfrak{A} \triangleleft \mathfrak{A}^*$. Since \mathfrak{Q} centralizes no element of $\mathscr{U}^*(\mathfrak{A})$, it follows that $C(\mathfrak{Q}) \cap \mathfrak{A}$ is cyclic. Naturally, $\mathfrak{A}_0 \subseteq C(\mathfrak{Q}) \cap \mathfrak{A}$.

Case 1. $\mathfrak{P}^* = \mathfrak{L}\mathfrak{A}_1$.

Since \mathfrak{A}_1 normalizes \mathfrak{B} , it follows that $\mathfrak{A}_1 = \mathfrak{P}^*\mathfrak{B}$ is a group and that $\mathfrak{L} = O_3(\mathfrak{R}_1)$. Let $\mathfrak{L}_1 = C_{\mathfrak{L}}(\mathfrak{B}) \supseteq D(\mathfrak{L})$. Thus, $\mathfrak{L}_1 \triangleleft \mathfrak{R}_1$ and $\mathfrak{L}/\mathfrak{L}_1$ is elementary of order 27. Also, \mathfrak{L}_1 is cyclic, since no element of $\mathscr{U}^*(\mathfrak{Z})$ is centralized by \mathfrak{B} . Since $\mathfrak{L}/\mathfrak{L}_1$ is a chief factor of \mathfrak{R}_1 or order 27, it follows that $\mathfrak{L} = \mathfrak{L}_1 \times \mathfrak{L}_2$, where $\mathfrak{L}_2 = [\mathfrak{L}, \mathfrak{B}]$ is elementary of order 27, $\mathfrak{L}_2 \triangleleft \mathfrak{R}_1$. Let V be an involution of \mathfrak{B} . Thus, $\mathfrak{B} = \langle C(V) \cap \mathfrak{L}_2, \mathfrak{A}_0 \rangle$ is elementary of order 9 and $|\mathfrak{P}^*: C_{\mathfrak{B}^*}(\mathfrak{B})| = 3$.

By (b), \mathfrak{B} centralizes every element of $\mathcal{M}(\mathfrak{B}; 2)$. Since $\mathcal{C}(V)$ contains an element of $\mathcal{U}(2)$, (7.2) is violated.

Case 2. $\mathfrak{P}^* \supset \mathfrak{L}\mathfrak{A}_1$.

In this case, $\mathfrak{P}^*/\mathfrak{D}$ is elementary of order 9, so \mathfrak{Q} is the central product of 2 quaternion groups.

Suppose $\mathfrak L$ is abelian. Then $\mathfrak L=\mathfrak L_1\times\mathfrak L_2$ where $\mathfrak L_1=[\mathfrak L,\mathfrak L]$ is elementary of order $\mathfrak L_1$ and $\mathfrak L_2=C_{\mathfrak L}(\mathfrak L)$ is cyclic. Notice that $\mathfrak U_0\subseteq\mathfrak L_2$. Since $C_{\mathfrak L}(\mathfrak L)$ is of index 27 in $\mathfrak L$ by (B), it follows that $\mathfrak L\cap C(\mathfrak U_1)\cap C(\mathfrak L)$ contains a subgroup $\mathfrak B$ of type $(\mathfrak L,\mathfrak L)$. But then $|\mathfrak P^*\colon C_{\mathfrak P^*}(\mathfrak B)|\leq \mathfrak L$, so by $(\mathfrak L)$, $\mathfrak L$ centralizes every element of $\mathsf M(\mathfrak L;\mathfrak L)$. Hence, $\mathfrak L \subseteq \mathfrak L_1\cap \mathfrak L_2\cap \mathfrak L_3$, against $(\mathfrak L,\mathfrak L)$. We conclude that $\mathfrak L$ is non abelian.

Since \mathfrak{A}_1 centralizes $D(\mathfrak{A})$, so does \mathfrak{D} , so $\mathfrak{L}_2 = C_{\mathfrak{A}}(\mathfrak{D}) \triangleleft \mathfrak{L}$. Hence $\mathfrak{L}_2 \triangleleft \mathfrak{P}^*$, and \mathfrak{L}_2 is cyclic. Let $\mathfrak{L}_1 = [\mathfrak{L}, \mathfrak{D}]$. Then $\mathfrak{L}_1/D(\mathfrak{L}_1)$ is elementary of order \mathfrak{Z}^4 , $\mathfrak{L}_1' = D(\mathfrak{L}_1)$ and $\mathfrak{L}_1/D(\mathfrak{L}_1)$ is a chief factor of K. Being a chief factor, $\mathfrak{L}_1/D(\mathfrak{L}_1)$ is centralized by \mathfrak{L} . Hence, $[\mathfrak{L}_2, \mathfrak{L}_1] \subseteq D(\mathfrak{L}_1) \subseteq \mathfrak{L}_2$, so $[\mathfrak{L}_2, \mathfrak{L}_1, \mathfrak{D}] = 1$. Since $[\mathfrak{D}, \mathfrak{L}_2] = 1$, so also $[\mathfrak{D}, \mathfrak{L}_2, \mathfrak{L}_1] = 1$. By the three subgroups lemma, $[\mathfrak{L}_1, \mathfrak{D}, \mathfrak{L}_2] = 1$, that is, $[\mathfrak{L}_1, \mathfrak{L}_2] = 1$. Hence,

 $D(\mathfrak{L}_1) \subseteq Z(\mathfrak{L}_1)$. Since \mathfrak{L} is nonabelian, so is \mathfrak{L}_1 . Since $\mathfrak{L}_1/D(\mathfrak{L}_1)$ is a chief factor of \mathfrak{R} , $D(\mathfrak{L}_1) = Z(\mathfrak{L}_1) = \mathfrak{L}_1' \subseteq \mathfrak{L}_2$, so \mathfrak{L}_1 is extra special of order 3^5 .

Now $\mathfrak{A}_1\mathfrak{B}$ is faithfully represented on \mathfrak{A}_1 . Also, $|\mathfrak{A}:\mathfrak{A}\cap C(\mathfrak{B})|=|\mathfrak{A}_1:\mathfrak{A}_1\cap C(\mathfrak{B})|=3^3$, by (B). Hence, $\mathfrak{A}_1\cap C(\mathfrak{B})=3^2$. This is not the case, since $\mathfrak{A}_1\cap C(\mathfrak{B})$ is either extra special or is \mathfrak{A}'_1 . The proof of (c) is complete.

Suppose (d) is false. Let $\mathfrak D$ be an element of $\mathcal M(\mathfrak A; 3')$ minimal subject to $[\mathfrak A, \mathfrak D] \neq 1$. Then $\mathfrak D$ is a q-group for some prime $q, \mathfrak D = [\mathfrak D, \mathfrak A]$, and $\mathfrak A = \mathfrak A_0 \times \mathfrak A_1$, where $|\mathfrak A_i| = 3$ and $\mathfrak A_0 = C_{\mathfrak A}(\mathfrak D)$. By (b), $q \neq 2$. Let $\mathfrak C = C(\mathfrak A_0)$. Since $C_{\mathfrak P}(\mathfrak A)$ contains an element of $\mathscr{SCN}_3(\mathfrak P)$, it follows from Hypothesis 7.4(v) that $O_{\mathfrak P}(\mathfrak C) = 1$. Let $\mathfrak P^*$ be a S_3 -subgroup of $\mathfrak C$ which contains $C_{\mathfrak P}(\mathfrak A_0)$. Since $|\mathfrak P: C_{\mathfrak P}(\mathfrak A)| \leq 3$, so also $|\mathfrak P^*: C_{\mathfrak B}(\mathfrak A_0)| \leq 3$, and so $[\mathfrak P^*, \mathfrak A, \mathfrak A] = 1$.

Let \mathfrak{F} be a $S_{3,q}$ -subgroup of \mathfrak{F} which contains \mathfrak{F}^* . Since q is odd, (B) implies that $\mathfrak{A} \subseteq O_3(\mathfrak{F})$. Let \mathfrak{F}^* be a $S_{3,q}$ -subgroup of \mathfrak{F} which contains $\mathfrak{A} \mathfrak{D}$. By Lemma 0.7.5, we get $\mathfrak{A} \subseteq O_3(\mathfrak{F}^*)$, so $\mathfrak{D} = [\mathfrak{D}, \mathfrak{A}] \subseteq O_3(\mathfrak{F}^*)$. This contradiction completes the proof of (d) and the lemma.

LEMMA 7.7. Assume the following:

- (a) \mathfrak{W} is a normal elementary subgroup of \mathfrak{P} , $\mathfrak{A} = A_{\mathfrak{P}}(\mathfrak{W})$.
- (b) $\overline{\mathbb{R}}$ is the image of \mathbb{R} in \mathbb{A} and $\overline{\mathbb{R}}$ is faithfully represented on \mathbb{Q} , \mathbb{Q} being a non abelian special 2-subgroup of \mathbb{A} .
- (c) $\bar{\mathbb{R}}$ contains a subgroup $\bar{\mathbb{R}}_0$ of order 3 which centralizes a hyperplane of \mathfrak{B} .

Then $\bar{\mathfrak{P}}$ centralizes \mathfrak{Q}' .

Proof. Let $\mathfrak{D}_0 = [\overline{\mathfrak{P}}_0, \mathfrak{D}]$. Thus, \mathfrak{D}_0 is a quaternion group, and $\mathfrak{W} = \mathfrak{W}_0 \times \mathfrak{W}_1$, where $\mathfrak{W}_0 = [\mathfrak{D}_0, \mathfrak{W}]$ is of order 9 and $\mathfrak{W}_1 = C_{\mathfrak{W}}(\mathfrak{D}_0)$. Since $|C(\mathfrak{W})|$ is odd, some involution I of $N(\mathfrak{W})$ maps to the involution of \mathfrak{D}_0 . Let $\overline{\mathfrak{P}}_1$ be the normal closure of $\overline{\mathfrak{P}}_0$ in $\overline{\mathfrak{P}}$. Thus, $\overline{\mathfrak{P}}_1$ centralizes \mathfrak{D}' . Let $\mathfrak{W}_2 = C_{\mathfrak{W}}(\overline{\mathfrak{P}}_1)$ so that \mathfrak{D}' is faithfully represented on \mathfrak{W}_2 . Suppose $\overline{\mathfrak{P}}$ does not centralize \mathfrak{D}' . Then by Lemma 4.4 of [17], there is an elementary subgroup \mathfrak{W}^* of \mathfrak{W}_2 which is of order 27, normal in \mathfrak{P} and with $|\mathfrak{P}: C_{\mathfrak{P}}(\mathfrak{W}^*)| = 3$. Since $\overline{\mathfrak{P}}_0$ centralizes \mathfrak{W}^* , it follows that $\mathfrak{W}^* \cap \mathfrak{W}_1$ is noncyclic. Let \mathfrak{B} be a subgroup of $\mathfrak{W}^* \cap \mathfrak{W}_1$ of order 9. With \mathfrak{W}^* in the role of \mathfrak{F} in Lemma 7.6(d), we conclude that $\mathfrak{B} \in \mathscr{E}(3)$. But now C(I) contains an element of $\mathscr{U}(2)$ and also contains \mathfrak{B} , against Lemma 7.4. The proof is complete.

LEMMA 7.8. Suppose that \mathfrak{P} is of exponent 3, order 81 and that $|\mathbf{Z}(\mathfrak{P})| = 9$. Then $\mathbf{N}(\mathfrak{P})$ is the unique element of $\mathscr{MS}(\mathfrak{G})$ which contains \mathfrak{P} .

Proof. Suppose false. Let \mathfrak{S} be a solvable subgroup of \mathfrak{S} which

contains \mathfrak{P} and is minimal subject to $\mathfrak{P} \triangleleft \mathfrak{S}$. Let $\mathfrak{P}_0 = O_3(\mathfrak{S})$. Since $\mathbf{Z}(\mathfrak{P}) \subset \mathfrak{P}_0 \subset \mathfrak{P}$, it follows that \mathfrak{P}_0 is abelian of order 27. Since \mathfrak{S} is not 3-closed, it follows that $\mathfrak{S} = \mathfrak{P}\mathfrak{D}$ where \mathfrak{D} is a quaternion group.

Let $\mathfrak{P}_0=\mathfrak{P}_1\times\mathfrak{P}_2$ where $\mathfrak{P}_1=C_{\mathfrak{P}_0}(\mathfrak{Q}),\,\mathfrak{P}_2=[\mathfrak{P}_0,\,\mathfrak{Q}].$ Thus, $|\mathfrak{P}_i|=3^i,\,i=1,\,2.$ Let $\tilde{\mathfrak{P}}_1=\mathfrak{P}_2\cap Z(\mathfrak{P}).$ Thus, $Z(\mathfrak{P})=\mathfrak{P}_1\times\tilde{\mathfrak{P}}_1$ and $\mathfrak{P}'=\tilde{\mathfrak{P}}_1.$ Let $\mathfrak{Q}'=\langle I\rangle\subseteq N(\mathfrak{P}).$ Write $N(\mathfrak{P})=\mathfrak{PR}$ where \mathfrak{R} is a complement to \mathfrak{P} in $N(\mathfrak{P})$ which contains I. Since \mathfrak{R} normalizes $\tilde{\mathfrak{P}}_1$, it follows that $A_{\mathfrak{P}}(Z(\mathfrak{P}))$ is abelian. Hence, $Z(\mathfrak{P})\cap C(I) \triangleleft N(\mathfrak{P}).$ Since $Z(\mathfrak{P})\cap C(I)=\mathfrak{P}_1$, we get that $N(\mathfrak{P})\subseteq N(\mathfrak{P}_1).$ Since $I\in N(\mathfrak{P})$, it follows that \mathfrak{P}_1 may be characterized as the only subgroup of $Z(\mathfrak{P})$ of order 3 which is normal in $N(\mathfrak{P})$ and is not contained in $\mathfrak{P}'.$

Let \Re be any solvable subgroup of \Im which contains \Re . We will show that $\Re \subseteq N(\Re_1)$. We may assume that $\Re \triangleleft \Re$. Let $\widetilde{\Re}_0 = O_3(\Re) \supset \mathbb{Z}(\Re)$. Thus, $\widetilde{\Re}_0$ is abelian of order 27. By our characterization of \Re_1 , it follows that $\Re_1 \triangleleft \Re$, that is, $\Re \subseteq N(\Re_1)$.

Set $\mathfrak{M}=N(\mathfrak{P}_1)$, so that \mathfrak{M} is the unique element of $\mathscr{MS}(\mathfrak{S})$ which contains \mathfrak{P} . Let \mathfrak{A} be any elementary subgroup of \mathfrak{P} of order 27. Then $\mathfrak{P}\subseteq N(\mathfrak{A})$, so $N(\mathfrak{A})\subseteq \mathfrak{M}$. Now let A be any element of \mathfrak{P}^* . We will show that $C(A)\subseteq \mathfrak{M}$. This is clear if $A\in Z(\mathfrak{P})$. Suppose $A\notin Z(\mathfrak{P})$. Then $C_{\mathfrak{P}}(A)=\mathfrak{A}$ is of order 27 and is abelian. Hence, $N(\mathfrak{A})\subseteq \mathfrak{M}$. This implies that some S_3 -subgroup of C(A) is contained in \mathfrak{M} . If C(A) contains a S_3 -subgroup of S, then $C(A)\subseteq \mathfrak{M}$, by uniqueness of S. So suppose that S is a S_3 -subgroup of S. Then since S is trivial, we get that S0 or in any case, S1 or in any case, S2.

Let $\mathfrak E$ be any non identity subgroup of $\mathfrak P$. We will show that $N(\mathfrak E) \subseteq \mathfrak M$. If $|\mathfrak E'| = 3$, it suffices to show that $N(\mathfrak E') \subseteq \mathfrak M$. If $|\mathfrak E'| \neq 3$, then $\mathfrak E$ is abelian, since $|\mathfrak P'| = 3$. This, we may assume that $\mathfrak E$ is abelian. By the preceding paragraph, $C(\mathfrak E) \subseteq \mathfrak M$. Let $\mathfrak E^*$ be a S_3 -subgroup of $C(\mathfrak E)$. Then $N(\mathfrak E) = C(\mathfrak E) \cdot (N(\mathfrak E) \cap N(\mathfrak E^*))$, so it suffices to show that $N(\mathfrak E^*) \subseteq \mathfrak M$. But $|\mathfrak E^*| \geq 27$, so $N(\mathfrak E^*) \subseteq \mathfrak M$.

It is a consequence of the preceding results, that if \mathfrak{F} is a solvable subgroup of \mathfrak{F} such that $\mathfrak{F} \cap \mathfrak{F}$ is noncyclic, then $\mathfrak{F} \subseteq \mathfrak{M}$.

Let $\mathfrak{B}=\mathfrak{P}\cap N(\mathfrak{Q}')$ so that \mathfrak{B} is noncyclic. Hence, $N(\mathfrak{Q}')\subseteq \mathfrak{M}$. This is not the case since $N(\mathfrak{Q}')$ contains an element of $\mathscr{U}(2)$, while \mathfrak{M} contains an element of $\mathscr{U}(3)$.

8. A characterization of $E_2(3)$.

THEOREM 8.1. $E_2(3)$ is the only simple group @ with the following properties:

- (i) 1 is the only 3-signalizer of S.
- (ii) The center of a S_3 -subgroup of \mathfrak{G} is noncyclic.
- (iii) The normalizer of every nonidenty 3-subgroup of $\ \ \ \,$ is solvable.

- (iv) The centralizer of every involution of S is solvable.
- (v) S_z -subgroup of \mathfrak{G} contain normal elementary subgroups of order 8.
- (vi) If $\mathfrak T$ is a S_2 -subgroup of $\mathfrak G$ and $\mathfrak A \in \mathscr{S}_{eng}(\mathfrak T)$, then $\mathsf{M}(\mathfrak A)$ is trivial.
 - (vii) $2 \sim 3$.

The proof of Theorem 8.1 is elaborate. I am indebted to J. Tits for helpful discussion.

We first derive some properties of $E_2(q)$. We use the notation and calculations of Ree [30]. In addition, we let $\mathfrak{B}=\mathfrak{U}\mathfrak{G},\,\mathfrak{R}=\langle\mathfrak{G},\,\omega_a,\,\omega_b\rangle$. F_q is the field of $q=p^n$ elements, and if $x\in F_q$, then $tr(x)=tr_{F_q/F_p}(x)=\Sigma x^\sigma,\,\sigma$ ranging over all the automorphisms of F_q . If $r\in \Sigma$, then $\mathfrak{X}_r=\langle x_r(t)\mid t\in F_q\rangle$.

We need the usual sort of omnibus lemma.

LEMMA 8.1. Let \mathfrak{U} , \mathfrak{B} , \mathfrak{F} , \mathfrak{A} denote the subgroups of $E_2(q)$ given above.

- (i) $\mathfrak{B}_0 = \langle \omega_b^2 \omega_a, \omega_a^2 \omega_b \rangle$ is a dihedral group of order 12 and is a complement to \mathfrak{F} in \mathfrak{R} .
- (ii) § is the direct product of two cyclic groups of order q-1, with generators $H_1=h(\chi_{a,z}),\,H_2=h(\chi_{b,z}).$ Here z is a generator for F_a^* . If $W_1=\omega_b^2\omega_a,\,W_2=\omega_a^2\omega_b,\,$ then

$$egin{aligned} W_1^{-1}H_1W_1&=H_1^{-1}\ , & W_1^{-1}H_2W_1&=H_1H_2\ , \ W_2^{-2}H_1W_2&=H_1H_2^3\ , & W_2^{-1}H_2W_2&=H_2^{-1}\ , \end{aligned}$$

(iii) If q is a power of 3 and ν is a nonsquare in F_a , then

$$\{x_{3a+2b}(1),\ x_{2a+b}(1),\ x_{3a+2b}(1)x_{2a+b}(1),\ x_{a+b}(1)x_{3a+b}(1),\ x_{a+b}(1)x_{3a+b}(\nu)\}$$

is a set of representatives for the conjugacy classes of $E_2(q)$ of order 3. If $c \in F_q$ satisfies tr(c) = 1, then $\{x_a(1)x_b(1)x_{3a+b}(ec), e = 0, 1, -1\}$ is a set of representatives for the conjugacy classes of elements of $E_2(q)$ of order 9. It is of exponent 9.

- (iv) Assume that q is odd.
- (a) Let $\widetilde{\mathfrak{B}} = C_{\mathfrak{B}}(\omega_a^2)$, $\widetilde{\mathfrak{A}} = C_{\mathfrak{R}}(\omega_a^2)$. Let $\mathfrak{C} = C_{E_2(q)}(\omega_a^2)$. Then $\mathfrak{C} = \widetilde{\mathfrak{B}}\mathfrak{N}\widetilde{\mathfrak{B}}$. \mathfrak{C} contains a subgroup $\mathfrak{C}_0 = \mathfrak{C}_1\mathfrak{C}_2$, where $\mathfrak{C}_i \cong SL(2,q)$, $i = 1, 2, \mathfrak{C}_1 \cap \mathfrak{C}_2 = \mathbf{Z}(\mathfrak{C}_i) = \langle \omega_a^2 \rangle$, \mathfrak{C}_1 and \mathfrak{C}_2 commute elementwise and $|\mathfrak{C}:\mathfrak{C}_0| = 2$. Furthermore, $\mathfrak{C}_i \triangleleft \mathfrak{C}$, i = 1, 2.
- (b) For i=1,2, let α_i be the isomorphism from \mathbb{G}_i to SL(2,q) induced by $x_{r_i}(t) \rightarrow \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, z_{-r_i}(t) \rightarrow \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$, where $r_1=a, r_2=3a+2b$. Each element X in $\mathbb{G}-\mathbb{G}_0$ induces an automorphism $\varphi_X^{(i)}$ of \mathbb{G}_i such that $\alpha_i \varphi_X^{(i)} \alpha_i^{-1}$ coincides with the automorphism of SL(2,q)

induced by an element of GL(2,q) whose determinant is a nonsquare. (c) There are involutions in $\mathbb{C} - \mathbb{C}_0$. If X is an involution in $\mathbb{C} - \mathbb{C}_0$, and $q \equiv \varepsilon \pmod{4}$, $\varepsilon = \pm 1$, then $C(X) \cap \mathbb{C}_0$ has order $2(q + \varepsilon)^2$ and

$$egin{aligned} C(X) \cap \mathfrak{C}_0 &\cong gp \!\! ig< \!\! w, \, x, \, y, \, z \mid x^{(q+arepsilon)/2} \ &= y^{(q+arepsilon)/2} = w, \, w^2 = 1, \, xy = yx, \, z^{-1}xz \ &= x^{-1}, \, z^{-1}yz = y^{-1}, \, z^2 = 1 ig> \, . \end{aligned}$$

(v) If q is odd, then $i(E_2(q)) = 1$.

Proof. The Weyl group of G_2 is dihedral of order 12, so $w_a w_b$ is of order 6. By (1.8) of [30], $(\omega_a \omega_b)^6 = h(\chi)$, for some $\chi \in X$. We show that $\chi = 1$. It suffices to show that $\chi(a) = \chi(b) = 1$, that is, $\eta_a = \eta_b = 1$. This follows readily from table (3.4) of [30]. Since $\omega_a^{-1}\omega_b^2\omega_a = \omega_b^2\omega_a^2$, and $\omega_b^{-1}\omega_a^2\omega_b = \omega_a^2\omega_b^2$, the elements $\omega_b^2\omega_a$ and $\omega_a^2\omega_b$ are involutions. We have $(\omega_b^2\omega_a)(\omega_a^2\omega_b) = \omega_b^2\omega_a^{-1}\omega_b \sim \omega_b^{-1}\omega_a^{-1} = (\omega_a\omega_b)^{-1}$, proving (i).

It is convenient for calculations to use the following character table:

!	a	b
$\chi_{a,z}$	z^{2}	z^{-3}
$\chi_{b,z}$	z^{-1}	z^2

To determine this character table, we need to compute the values u(r), u, $r \in \Sigma$ (see [30], p. 433). The relevant values of u(r) are given as follows:

u r	a	b	
$egin{array}{c} a \ b \end{array}$	$\begin{array}{c} 2 \\ -3 \end{array}$	-1 2	,

Using this table, we compute the values $w_r(s)$, as follows:

r	a	b
$a \\ b$	$egin{array}{c} -a \ a+b \end{array}$	$3a+b \ -b$

(Using the geometric interpretation of w_r , we can read these results directly from Figure 1 of [30].)

We next compute $w_r(\chi)$ for r=a, b and $\chi=\chi_{a,z}, \chi_{b,z}$. For example,

 $[w_a(\chi_{a,z})](a) = \chi_{a,z}(w_a(a)) = \chi_{a,z}(-a) = \chi_{a,z}(a)^{-1} = z^{-2}$. Continuing in this fashion, we get the following table of values:

Referring back to the character table, we have

$$w_a(\chi_{a,z}) = \chi_{a,z}^{-1}, \ w_a(\chi_{b,z}) = \chi_{a,z}\chi_{b,z}$$
 , $w_b(\chi_{a,z}) = \chi_{a,z}\chi_{b,z}^3, \ w_b(\chi_{b,z}) = \chi_{b,z}^{-1}$.

The map from X to \mathfrak{F} induced by $\chi_{r,z} \to h(\chi_{r,z})$ is an isomorphism, since X and \mathfrak{F} have order $(q-1)^2$. The previous information, together with (1.7) of [30] implies that (ii) holds.

Let $\mathfrak{U}_1 = \mathfrak{U} \cap \mathfrak{U}^{\omega_a}$, $\mathfrak{U}_2 = \mathfrak{U} \cap \mathfrak{U}^{\omega_b}$. By using (3.10) of [30] it is straightforward to verify that $\mathfrak{U}_1 \cup \mathfrak{U}_2$ is the set of elements of \mathfrak{U} of order 1 or 3. This then implies easily that every element of $E_2(q)$ of order 3 is conjugate to an element of $\mathfrak{U}_1 \cap \mathfrak{U}_2 = \langle \mathfrak{X}_{a+b}, \mathfrak{X}_{2a+b}, \mathfrak{X}_{3a+b}, \mathfrak{X}_{3a+2b} \rangle$. Since $\mathfrak{B} = N(\mathfrak{U})$, it follows from Lemma 14.3.1 of [21] that elements of $Z(\mathfrak{U})$ are conjugate in $E_2(q)$ only if they are conjugate in \mathfrak{B} . Since the action of \mathfrak{F} on $\mathbf{Z}(\mathfrak{U}) = \langle \mathfrak{X}_{2a+b}, \mathfrak{X}_{3a+2b} \rangle$ is determined by (1.5) of [30] and our character table, it follows that any element of $E_{i}(q)^{\sharp}$ which is conjugate to an element of $Z(\mathfrak{U})$ is conjugate to exactly one of $x_{2a+b}(1)$, $x_{3a+2b}(1), x_{2a+b}(1)x_{3a+2b}(1)$. Furthermore, since the Weyl group permutes transitively the roots of a given length, and since 2a + b and 3a + 2bhave different lengths, it follows that every element of the shape $x_r(t), r \in \Sigma$, is conjugate to an element of $Z(\mathfrak{U})$. Suppose $x \in \mathfrak{U}_1 \cap \mathfrak{U}_2$, $x = x_{a+b}(t_1)x_{2a+b}(t_2)x_{3a+b}(t_3)x_{3a+2b}(t_4)$, and that x is conjugate to no element of $Z(\mathfrak{U})$. Hence, either $t_1 \neq 0$ or $t_3 \neq 0$. Suppose $t_3 = 0$. Conjugation by $x_a(-t_1^{-1}t_2/2)$ enables us to assume that $t_2=0$. Conjugation by ω_a then yields that x is conjugate to an element of $Z(\mathfrak{U})$. Hence, $t_3 \neq 0$. Suppose $t_1 = 0$. Conjugation by $x_b(t_3^{-1}t_4)$ enables us to assume that $t_4 = 0$. Conjugation by ω_b yields that x is conjugate to an element of $Z(\mathfrak{U})$. Hence, $t_1t_3 \neq 0$. Conjugation by $x_a(-t_1^{-1}t_2/2)x_b(t_3^{-1}t_4)$ enables us to assume that $t_2 = t_4 = 0$. Since $h(\chi_{a,z})x_{a+b}(t_1)h(\chi_{a,z})^{-1} = x_{a+b}(z^{-1}t_1)$, we may assume that $t_1 = 1$. Since $h(\chi_{a,z}\chi_{b,z})$ centralizes $x_{a+b}(1)$ and since $h(\chi_{a,z}\chi_{b,z})x_{3a+b}(t_3)h(\chi_{a,z}\chi_{b,z})^{-1} = x_{3a+b}(t_3z^2)$, we may assume that $t_3 =$ 1 or ν . A direct calculation shows that the centralizer of $x_{a+b}(1)x_{3a+b}(u)$ does not contain a S_3 -subgroup of $E_2(q)$ for any u in F_q^* , and a further calculation shows that $x_{a+b}(1)x_{3a+b}(1)$ is not conjugate to $x_{a+b}(1)x_{3a+b}(\nu)$,

completing the proof of the first part of (iii).

If $tu \neq 0$, it is easy to verify that $x_a(t)x_b(u)x$ has order 9 for all x in $\mathfrak{U}_1 \cap \mathfrak{U}_2$ and that $(x_a(t)x_b(u))^3 = (x_a(t)x_b(u)x)^3$. A calculation shows that \mathfrak{F}_2 permutes transitively the elements $x_a(t)x_b(u)$, $tu \in F_q^*$, so every element of $E_2(q)$ of order 9 is conjugate to an element of the shape $x_a(1)x_b(1)x$, with x in $\mathfrak{U}_1 \cap \mathfrak{U}_2$. Let $x = x_{a+b}(t_1)x_{2a+b}(t_2)x_{3a+b}(t_3)x_{3a+2b}(t_4)$. Conjugation by $x_a(u)$ enables us to assume that $t_3 = 0$. A further conjugation by $x_{a+b}(u_1)x_{3a+b}(u_2)$ enables us to assume that $t_2 = t_4 = 0$. Thus, it suffices to show that

$$x_a(1)x_b(1)x_{a+b}(u)$$
 is conjugate to $x_a(1)x_b(1)x_{a+b}(v)$

if and only if tr(u) = tr(v). If g conjugates the first element into the second then g centralizes $(x_a(1)x_b(1))^3$. A calculation shows that the centralizer of $(x_a(1)x_b(1))^3$ is \mathfrak{U} , and a further calculation completes the proof of (iii).

By a direct calculation, $\mathfrak{B} = \langle \mathfrak{X}_a, \mathfrak{X}_{3a+2b}, \mathfrak{D} \rangle$, $\mathfrak{M} = \langle \mathfrak{D}, \omega_a, (\omega_a \omega_b)^s \rangle$. Suppose ω_a^s centralizes $xh\omega x'$, $x \in \mathfrak{U}$, $h \in \mathfrak{D}$, $\omega \in \mathfrak{W}_0$, $x' \in \mathfrak{U}_w$, w being the image of ω in the Weyl group. Then the normal form implies that x, x', $h, \omega \in C(\omega_a^s)$, so the first assertion of (iv) is proved.

Let $\mathfrak{C}_1 = \langle \mathfrak{X}_a, \mathfrak{X}_{-a} \rangle$, $\mathfrak{C}_2 = \langle \mathfrak{X}_{3a+2b}, \mathfrak{X}_{-(3a+2b)} \rangle$, so that $\mathfrak{C}_1 \cong \mathfrak{C}_2 \cong SL(2, q)$. Clearly, \mathfrak{C}_1 and \mathfrak{C}_2 commute elementwise. Since $\chi_{3a+2b,-1} = \chi_{a,-1}$, it follows that $\mathfrak{C}_1 \cap \mathfrak{C}_2 = \langle \omega_a^2 \rangle$, so that $\mathfrak{C}_0 = \mathfrak{C}_1 \mathfrak{C}_2$ is the central product of \mathfrak{C}_1 and \mathfrak{C}_2 . Setting $\widetilde{\mathfrak{U}} = \mathfrak{U} \cap \widetilde{\mathfrak{B}}$, we have

$$|\,\widetilde{\mathfrak{U}}\cap\widetilde{\mathfrak{U}}^{\scriptscriptstyle\omega_a}|=|\,\widetilde{\mathfrak{U}}\cap\widetilde{\mathfrak{U}}^{\scriptscriptstyle\omega_a(\omega_a\omega_b)^3}|=q$$
 ,

and $\widetilde{\mathfrak{U}}\cap\widetilde{\mathfrak{U}}^{(\omega_a\omega_b)^3}=1$, it follows that $|\mathfrak{C}|=q^2(q-1)^2(1+2q+q^2)$. Hence,

$$|\,\mathfrak{C}\colon\mathfrak{C}_{\scriptscriptstyle 0}\,|=|\,\mathfrak{H}\colon\mathfrak{H}\cap\mathfrak{C}_{\scriptscriptstyle 0}\,|=2\;.$$

Since \mathfrak{F} normalizes \mathfrak{X}_r for all r in Σ , (iv) (a) is proved.

We observe that by (1.5) of [30],

$$h(\chi_{b,z})x_a(t)h(\chi_{b,z})^{-1}=x_a(z^{-1}t)$$
 , $h(\chi_{b,z})x_{-a}(t)h(\chi_{b,z})^{-1}=x_{-a}(zt)$.

Hence, if $\eta = \varphi_{h(\chi_{b,z})}^{(1)}$ denotes the automorphism of \mathfrak{C}_1 induced by $h(\chi_{b,z})^{-1}$, then $\alpha_1 \eta \alpha_1^{-1}$ is the automorphism of SL(2,q) induced by the map

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & z^{-1}t \\ 0 & 1 \end{pmatrix} , \qquad \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ zt & 1 \end{pmatrix} .$$

This automorphism therefore coincides with the automorphism induced by $\begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix}$. A similar argument applies to \mathfrak{C}_2 . Since $\mathfrak{C} - \mathfrak{C}_0$ coincides with the coset $\mathfrak{C}_0 h(\chi_{b,z})$ whenever z is not a square of F_q^* , the proof of (iv)(b) is complete.

Let $K = (W_1W_2)^3$. By (i), K is an involution, and by (ii), K inverts \mathfrak{G} . Thus, $\mathfrak{G}K$ is a set of involutions in \mathfrak{C} . If $\mathfrak{G}K \subseteq \mathfrak{C}_0$, we get $\mathfrak{G} \subseteq \langle \mathfrak{G}K \rangle \subseteq C_0$, against (*). So $\mathfrak{C} - \mathfrak{C}_0$ contains an involution.

We will use (iv)(b) in the proof of (iv)(c). First, suppose $\varepsilon=-1$. In this case, -1 is not a square in F_q . Since \mathfrak{C}_1 and \mathfrak{C}_2 commute elementwise, we assume without loss of generality that for i=1,2, $\alpha_i \varphi_X^{(i)} \alpha_i^{-1}$ is the automorphism of SL(2,q) induced by $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. Hence, $\mathfrak{C}_i \cap C(X)$ is cyclic of order q-1. Since the commutator of $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is -I, and since $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ inverts $\begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix}$ for all $x \in F_q^*$, (iv)(c) follows in this case.

Now suppose $\varepsilon=1$. In this case, -1 is a square in F_q . Choose $a,b\in F_q$ such that $a^2+b^2=c$ is a nonsquare. We may assume that for i=1,2, $\alpha_i\varphi_x^{(i)}\alpha_i^{-1}$ is the automorphism of SL(2,q) induced by $\begin{pmatrix} a & b \\ b & -a \end{pmatrix}$. A short calculation shows that (iv)(c) holds.

Since $|C(\omega_a^2)| = (q(q^2-1))^2$, it follows that $C(\omega_a^2)$ contains a S_2 -subgroup of $E_2(q)$. Thus, to prove (v), it suffices to show that each involution X of \mathbb{C} is conjugate to ω_a^2 in $E_2(q)$. Since $E_2(q)$ is simple, Lemma 5.38 (a)(i) implies that X is conjugate in $E_2(q)$ to an element of \mathbb{C}_0 .

Thus, it suffices to show that all involutions of \mathfrak{C}_0 are conjugate in $E_2(q)$. Since \mathfrak{C}_i has just involution for i=1,2, it follows that every involution of \mathfrak{C}_0 different from ω_a^2 is of the shape I_1I_2 where $I_i \in \mathfrak{C}_i$ and $I_i^2 = \omega_a^2$. Since \mathfrak{C}_i has just 1 conjugacy class of elements of order 4, it follows that \mathfrak{C}_0 has two conjugacy classes of involutions.

Case 1. Every involution of \mathfrak{F} is in \mathfrak{C}_0 .

By (ii), all involutions of \mathfrak{F} are fused in \mathfrak{R} . By the preceding paragraph, (v) follows.

Case 2. J is an involution of $(\mathfrak{C} - \mathfrak{C}_0) \cap \mathfrak{F}$.

Set $I = \omega_a^2$, $K = (W_1 W_2)^3$, so that K inverts \mathfrak{F} and so centralizes I and J. Let $\mathfrak{A} = \langle I, J, K \rangle$. By (ii), the involutions of \mathfrak{A} are fused in \mathfrak{R} as follows:

$$I \sim J \sim IJ$$
. $IK \sim JK \sim IJK$.

It is clear that in $\mathfrak C$ all the involutions of $\mathfrak C-\mathfrak C_0$ are conjugate. Let $\mathfrak A_0=\mathfrak A\cap\mathfrak C_0$. Thus, $\mathfrak A_0$ is one of $\langle I,K\rangle,\langle I,JK\rangle$. Suppose $\mathfrak A_0=\langle I,K\rangle$. Then, J,JI,JK,JIK are the involutions of $\mathfrak A-\mathfrak A_0$, so are all conjugate in $\mathfrak C$. Since $K\in\mathfrak C_0$, K and KI are conjugate in $\mathfrak C_0$. Thus, all involutions of $\mathfrak A$ are conjugate in $E_2(q)$, so (v) follows. Suppose $\mathfrak A_0=\langle I,JK\rangle$. Then, J,JI,K,KI are the involutions of $\mathfrak A-\mathfrak A_0$, so are all conjugate in $\mathfrak C$. Again all involutions of $\mathfrak A$ are conjugate in $E_2(q)$. The proof of (v) is complete.

N-GROUPS II

LEMMA 8.2. (a) Suppose \mathfrak{G} is a finite group and \mathfrak{B} is a four-subgroup of \mathfrak{G} . Suppose also that whenever I and J are distinct involutions of \mathfrak{B} , I and IJ are conjugate in C(J). Then $A(\mathfrak{B}) = \operatorname{Aut}(\mathfrak{B})$.

(b) $A_{E_2(3)}(\mathfrak{B}) = \text{Aut}(\mathfrak{B})$ for every four-subgroup \mathfrak{B} of $E_2(3)$.

Proof. Choose X in C(J) such that $X^{-1}IX = IJ$. Thus

$$X \in N(V) \cap C(J)$$
.

Replacing the pair I, J by the pair J, I we choose Y in C(I) with $Y^{-1}JY = IJ$. Then $\mathfrak{A} = \langle XY \rangle$ permutes I, J, IJ cyclically. Thus, $\langle X, Y \rangle$ maps onto Aut (\mathfrak{B}) , proving (a).

Let $\mathfrak B$ be a four-subgroup of $E_2(3)$ and let I,J be distinct involutions of $\mathfrak B$. We will produce X in C(J) such that $X^{-1}IX=IJ$. We may assume that $J=\omega_a^2$, since $i(E_2(3))=1$. Since $O_2(C(\omega_a^2))$ is extra special, we are done in case $I\in O_2(C(\omega_a^2))$. If $I\notin O_2(C(\omega_a^2))$, then I induces an outer automorphism of both quaternion subgroups of $O_2(C(\omega_a^2))$, so again X is available. Now (b) follows from (a).

We omit the proof that $\mathfrak{C} = C_{E_2(3)}(\omega_a^2)$ has exactly 19+72 involutions; namely, $O_2(\mathfrak{C})$ has exactly 19 involutions, while all involutions of $\mathfrak{C} - O_2(\mathfrak{C})$ are conjugate in \mathfrak{C} . Furthermore, it is straightforward to verify that \mathfrak{C} has exactly 3 conjugacy classes of elementary subgroups of order 8. Representatives \mathfrak{C}_1 , \mathfrak{C}_2 , \mathfrak{C}_3 for these classes may be chosen so that if \mathfrak{T} denotes a fixed S_2 -subgroup of \mathfrak{C} , then $\mathfrak{C}_i \subset \mathfrak{T}$, and $\mathfrak{C}_i \subseteq O_2(\mathfrak{C})$, i=1,2.

We argue that \mathfrak{C}_1 and \mathfrak{C}_2 are not conjugate in $E_2(3)$. Suppose $\mathfrak{C}_1^G = \mathfrak{C}_2$. Then \mathfrak{T}^G normalizes \mathfrak{C}_2 , as does \mathfrak{T} . Then $\mathfrak{T}^G = \mathfrak{T}^N$ for some N in $N(\mathfrak{C}_2)$. Hence, $GN^{-1} \in N(\mathfrak{T}) = \mathfrak{T}$, so $G \in \mathfrak{T}N \subseteq N(\mathfrak{C}_2)$. Since $\mathfrak{C}_1^G = \mathfrak{C}_2$, we get $\mathfrak{C}_1 = \mathfrak{C}_2$, a contradiction.

Set $\mathfrak{B} = \mathfrak{E}_1 \cap \mathfrak{E}_2$ so that \mathfrak{B} is a four-subgroup of \mathfrak{T} and $O_2(\mathfrak{T}) \cap C(\mathfrak{B}) = \mathfrak{E}_1\mathfrak{E}_2$ is the direct product of a group of order 2 and a dihehral group of order 8. Let $\mathfrak{D} = C_{\mathbb{E}_2(3)}(\mathfrak{B}) = C_{\mathfrak{T}}(\mathfrak{B})$, a group of order 32. We omit the proof that \mathfrak{D} has exactly 4 elementary subgroups of order 8, among which are \mathfrak{E}_1 and \mathfrak{E}_2 . By Lemma 8.2 (b), $N(\mathfrak{B})$ has an element A of order 3 which permutes transitively the involutions of \mathfrak{B} . If A normalizes both \mathfrak{E}_1 and \mathfrak{E}_2 , then A normalizes the derived group of $\mathfrak{E}_1\mathfrak{E}_2$, that is, A normalizes $\langle \omega_a^2 \rangle$. Since this is not the case, we can choose i in $\{1, 2\}$ so that the orbit of \mathfrak{E}_i under $\langle A \rangle$ has 3 elements. Since \mathfrak{E}_1 and \mathfrak{E}_2 are in different orbits under $\langle A \rangle$, it follows that A normalizes \mathfrak{E}_j , where $\{i, j\} = \{1, 2\}$.

We omit the proof that $N(\mathfrak{E}_j) \cap \mathfrak{E}$ permutes transitively the involutions of $\mathfrak{E}_j - \langle \omega_a^2 \rangle$. Since A does not centralize ω_a^2 , it follows that $N(\mathfrak{E}_j)$ permutes transitively the involutions of \mathfrak{E}_j . Thus, $|N(\mathfrak{E}_j)| = 7 \cdot |N(\mathfrak{E}_j) \cap \mathfrak{E}| = 8 \cdot 24 \cdot 8$. Hence,

$$\mathfrak{A}_{E_{2}(3)}(\mathfrak{E}_{j}) = \operatorname{Aut}(\mathfrak{E}_{j})$$
.

We have proved (a) of the next lemma.

LEMMA 8.3. (a) $E_{2}(3)$ is not an N-group.

(b) $E_2(3)$ satisfies the hypotheses of Theorem 8.1.

Proof. It suffices to verify (b).

By Lemma 8.1 (iv), hypothesis (iv) of Theorem 8.1 is satisfied. By definition of \sim , so is hypothesis (vii), $C_{E_2(3)}(\omega_a^2)$ being the relevant solvable group. Hypothesis (ii) is clearly satisfied, since

$$Z(\mathfrak{U}) = \langle \mathfrak{X}_{2a+b}, \mathfrak{X}_{3a+2b} \rangle$$
.

Clearly, 1 is the only 2-signalizer of $C(\omega_a^2)$, so if \mathfrak{T} is a S_2 -subgroup of $C(\omega_a^2)$ and \mathfrak{L} is a nonidentity 2'-subgroup of $E_2(3)$ normalized by \mathfrak{T} , then ω_a^2 inverts \mathfrak{L} , so \mathfrak{L} is abelian. Furthermore, \mathfrak{L} is a 3-group, as every $\{2, 3\}'$ -subgroup of $E_2(3)$ is cyclic. Since \mathfrak{L} is a faithful \mathfrak{L} -module, $|\mathfrak{L}| \geq 3^4$. Since \mathfrak{L} has no abelian subgroup of order 3^5 , it follows that is elementary of order 3^4 . It is straightforward to verify that every elementary subgroup of \mathfrak{L} of order 3^4 is conjugate to

$$\langle \mathfrak{X}_{2a+b}, \mathfrak{X}_{3a+b}, \mathfrak{X}_{a+b}, \mathfrak{X}_{3a+2b} \rangle$$
;

the normalizer of this last group is \mathfrak{B} , so does not contain a S_2 -subgroup of $E_2(3)$. Thus, 1 is the only 2-signalizer of $E_2(3)$. It is trivial to verify that 1 is the only 3-signalizer of $E_2(3)$, so hypothesis (i) is verified.

Since $E_2(3)$ is of order $2^6.3^6.7.13$, and since the centralizer of every nonidentity 3-element of $E_2(3)$ is a 2, 3-group, it is easy to check that hypothesis (iii) is satisfied. Since S_2 -subgroups of $E_2(3)$ are of order 64, and since (**) holds, hypothesis (v) is satisfied.

Suppose that $\mathfrak{A} \in \mathscr{SCN}_3(\mathfrak{P})$ for a S_2 -subgroup \mathfrak{P} of $E_2(3)$, and \mathfrak{B} is minimal nontrivial element of $\mathsf{M}(\mathfrak{A})$. Then \mathfrak{AB} is contained in the centralizer of an involution; say $\mathfrak{AB} \subseteq \mathfrak{C} = C(\omega_a^2)$. But, by Lemma 8.1 (iv), \mathfrak{C} contains no nontrivial 2'-subgroup \mathfrak{B} for which $N_{\mathfrak{C}}(\mathfrak{B})$ contains an elementary subgroup of order 2^3 . This contradiction proves that $\mathsf{M}(\mathfrak{A}) = \{1\}$, which is hypothesis (vi). The proof is complete.

The remaining results in this section are proved under the hypothesis that S satisfies the hypothesis of Theorem 8.1.

LEMMA 8.4. (i) Satisfies Hypothesis 7.4.

(ii) Satisfies Hypothesis 7.1 for p = 2 and for p = 3.

Proof. We first show that $\mathscr{SCN}_3(3) \neq \emptyset$. Suppose false. Let \mathfrak{P} be a S_3 -subgroup of \mathfrak{G} . Since $\mathscr{SCN}_3(\mathfrak{P}) = \emptyset$, it follows that

 $\Omega_1(\mathfrak{P})=\Omega_1(\mathbf{Z}(\mathfrak{P}))$ is of type (3,3). This implies that every 3-solvable subgroup of \mathfrak{G} has 3-length at most 1. Since 1 is the only 3-signalizer of \mathfrak{G} , it follows that $\mathfrak{P}=C(\Omega_1(\mathbf{Z}(\mathfrak{P})))$. Hence, 1 is the only element in $\mathsf{M}(\Omega_1(\mathbf{Z}(\mathfrak{P})))$; 3'). Thus, if \mathfrak{R} is a 3-solvable subgroup of \mathfrak{G} and S_3 -subgroups of \mathfrak{R} are noncyclic, then \mathfrak{R} is 3-closed. This implies by definition of \sim that $A_{\mathfrak{G}}(\Omega_1(\mathbf{Z}(\mathfrak{P})))$ contains an abelian subgroup of type (4,2) or an elementary subgroup of order 8. Neither of these possibilities holds in $\mathsf{Aut}(\Omega_1(\mathbf{Z}(\mathfrak{P})))$. Hence, $\mathscr{S}_{en_3}(3) \neq \emptyset$. We have shown that (i), (ii), (iii), (iv) of Hypothesis 7.4 hold. If $\mathfrak{A} \in \mathscr{S}_{en_3}(2)$, then $\mathsf{M}(\mathfrak{A})$ contains only 1 by Hypothesis (vi) of Theorem 8.1. Suppose $\mathfrak{A} \in \mathscr{S}_{en_3}(3)$, and $\mathfrak{D} \in \mathsf{M}(\mathfrak{A})$, $\mathfrak{D} \neq 1$, \mathfrak{D} minimal with these properties. Let \mathfrak{P} be a S_3 -subgroup of $\mathsf{N}(\mathfrak{A})$. Since $\mathsf{Z}(\mathfrak{P})$ is noncyclic, we may choose Z in $\mathsf{C}(\mathfrak{D}) \cap \mathsf{Z}(\mathfrak{P})^\sharp$. It follows that $\mathfrak{D} \subseteq \mathsf{O}_{\mathfrak{P}}(\mathsf{C}(\mathsf{Z}))$ against Hypothesis (i) of Theorem 8.1. (i) is proved.

Hypothesis 7.1 follows from Hypothesis 7.4 since if p = 2 or 3 and $\mathfrak{B} \in \mathcal{U}^*(p)$, then $C(\mathfrak{B})$ contains an element of $\mathscr{S}_{en_3}(p)$.

In the remainder of this section, \mathfrak{P} denotes a S_3 -subgroup of \mathfrak{G} , and $\mathfrak{B} \in \mathcal{U}(\mathfrak{P})$.

Let \mathfrak{B}_i , $1 \leq i \leq 4$, be the subgroups of \mathfrak{B} of order 3. Let $\mathfrak{N}_i = N(\mathfrak{B}_i)$, let $\mathfrak{D}_i = \mathfrak{B}^{\mathfrak{N}_i}$ and let $\mathfrak{C}_i = C_{\mathfrak{N}_i}(\mathfrak{D}_i)$. Since $3 \in \pi_i$ and $\mathfrak{P} \subseteq \mathfrak{N}_i$, we have $O_{\mathfrak{P}}(\mathfrak{N}_i) = 1$. Hence, by Lemma 5.10, \mathfrak{D}_i is 3-reducible in \mathfrak{N}_i . Finally, let $\mathfrak{L}_i = \mathfrak{N}_i/\mathfrak{C}_i$. Thus, \mathfrak{L}_i may be identified with a subgroup of Aut (\mathfrak{D}_i) , $\mathfrak{L}_i \cong A_{\mathfrak{N}_i}(\mathfrak{D}_i)$, and as such \mathfrak{L}_i is a 3-solvable group with no nontrivial normal 3-subgroups. We let $\mathfrak{R}_i = O^{\mathfrak{P}}(\mathfrak{L}_i)$, so that \mathfrak{R}_i is that subgroup of \mathfrak{L}_i generated by the 3-elements of \mathfrak{L}_i .

The following lemma is important.

LEMMA 8.5. Suppose for some $i, 1 \leq i \leq 4$, \Re_i contains an element of order 3 which centralizes a subgroup of \mathfrak{D}_i of index 3. Then

- (a) $|\mathfrak{D}_i| = 27$.
- (b) $\Re_i \cong SL(2,3)$.
- (c) $\mathfrak{D}_i = \mathfrak{B}_i \times \mathfrak{E}_i$, where $\mathfrak{E}_i \triangleleft \mathfrak{R}_i$.
- (d) \Re_i is faithfully and irreducibly represented on \mathfrak{E}_i .

Proof. Let $\mathfrak U$ be the set of 3-elements of $\mathfrak N_i$ which centralize some subgroup of index 3 in $\mathfrak D_i$. Since $\mathfrak D_i \triangleleft \mathfrak N_i$, $\mathfrak U$ is an invariant subset of $\mathfrak N_i$. By hypothesis, $\mathfrak U - \mathfrak C_i \neq \emptyset$.

Let $\mathfrak{U}^* = \mathfrak{U} \cap \mathfrak{P}$, and let $\mathfrak{U}_i = \langle U | U \in \mathfrak{U}^* \rangle$. For any subset \mathfrak{P} of \mathfrak{N}_i , let $\bar{\mathfrak{P}} = \mathfrak{P}\mathfrak{E}_i/\mathfrak{E}_i$. Since \mathfrak{L}_i is 3-reduced, so is \mathfrak{R}_i . Furthermore, if $U \in \mathfrak{U} - \mathfrak{E}_i$, then \bar{U} is an exceptional element in the sense of Hall-Higman [26, p. 10], or as we might say, an exceptional element, being the identity on a hyperplane of \mathfrak{D}_i . (In a perhaps more frequently used terminology, \bar{U} is a transvection.)

Let $\mathfrak{F} = O_{3'}(\mathfrak{N}_i \mod \mathfrak{E}_i)$, so that $\overline{\mathfrak{U}}_1$ is faithfully represented on $\overline{\mathfrak{F}}$.

By (B), $\overline{\mathbb{I}}_1$ centralizes some S_2 -subgroup of $\overline{\otimes}$. Let $\overline{\mathbb{R}} = [\overline{\otimes}, \overline{\mathbb{I}}_1]$. Since $\overline{\mathbb{R}}$ is solvable, it follows that $\overline{\mathbb{R}}$ is a $\overline{\mathbb{Q}}$ -invariant 2-group on which \mathbb{I}_1 is faithfully represented, and that $\overline{\mathbb{R}} = [\overline{\mathbb{R}}, \overline{\mathbb{I}}_1]$. By Lemma 5.17, $\overline{\mathbb{R}}$ is special, since by (B), $\overline{\mathbb{I}}_1$ centralizes every abelian $\overline{\mathbb{I}}_1$ -invariant subgroup of $\overline{\mathbb{R}}$.

It may now be verified that if $U \in \mathfrak{U}^* - \mathfrak{C}_i$ and $\mathfrak{B} = \langle U \rangle$, then $[\overline{\mathfrak{R}}, \overline{\mathfrak{B}}]$ is a quaternion group and $[\overline{\mathfrak{R}}, \mathfrak{B}]$ centralizes a subgroup \mathfrak{F} of index 9 in \mathfrak{G}_i . Furthermore, $\mathfrak{D}_i = \mathfrak{C}_i \times \mathfrak{F}$, where $\mathfrak{C}_i = [\mathfrak{R}, \mathfrak{B}, \mathfrak{D}_i]$ is of order 9, and $\mathfrak{C}_{i0} = [\mathfrak{C}_i, \mathfrak{B}]$ is of order 3. Since \mathfrak{C}_i and \mathfrak{F} are \mathfrak{U} -invariant, and since U centralizes some hyperplane of \mathfrak{D}_i , it follows that $C_{\mathfrak{D}_i}(U) = \mathfrak{C}_{i0} \times \mathfrak{F}$.

Let $\overline{\mathbb{F}}_1 = \overline{\mathbb{F}} \cap C(\overline{\mathbb{F}})$ and let $\overline{\mathbb{E}} = \overline{\mathbb{F}}\overline{\mathbb{F}}$. Since $\overline{\mathbb{E}}$ is faithfully represented on \mathfrak{D}_i , so is its subgroup $\overline{\mathbb{F}}_1\overline{\mathbb{F}} = \overline{\mathbb{F}}_1 \times \overline{\mathbb{F}}$. Hence, by Lemma 3.7 of [20], $\overline{\mathbb{F}}$ is faithfully represented on $\widetilde{\mathfrak{D}}_i = C_{\mathfrak{D}_i}(\mathfrak{P}_1)$. Since $\overline{\mathbb{F}}/\overline{\mathbb{F}}_1$ is faithfully represented on $\overline{\mathbb{F}}$, it follows that $\overline{\mathbb{F}}/\overline{\mathbb{F}}_1$ is faithfully represented on $\widetilde{\mathfrak{D}}_i$. By Lemma 7.7, $\overline{\mathbb{F}}/\overline{\mathbb{F}}_1$ centralizes $\overline{\mathbb{F}}'\overline{\mathbb{F}}_1/\overline{\mathbb{F}}_1$. Since $\overline{\mathbb{F}}\overline{\mathbb{F}}_1 = \overline{\mathbb{F}} \times \overline{\mathbb{F}}_1$, it follows that $\overline{\mathbb{F}}$ centralizes $\overline{\mathbb{F}}'$.

Since $\overline{\mathfrak{U}}_1$ is faithfully represented on $\overline{\mathfrak{R}}/\overline{\mathfrak{R}}'$, and since each element $\overline{\mathfrak{U}}^*$ centralizes a subgroup of $\overline{\mathfrak{R}}/\overline{\mathfrak{R}}'$ of index 4, it is straightforward to verify that $\overline{\mathfrak{U}}_1$ is elementary. It then follows that every element of $\overline{\mathfrak{U}}_1^*$ is exceptional (though we don't contend that every element of $\overline{\mathfrak{U}}_1$ centralizes a hyperplane of \mathfrak{D}_i).

The preceding paragraph, together with $[\bar{\Re}', \bar{\Re}] = 1$ and Corollary 2 of § 2.6 of [24] imply that $\bar{\Pi}_1 \subseteq \mathbf{Z}(\bar{\Re})$. Returning to \mathfrak{B} , we see that $[\bar{\Re}, \bar{\mathfrak{B}}]$ is $\bar{\mathfrak{B}}$ -invariant. This in turn implies that \mathfrak{F} is \mathfrak{B} -invariant. If $|\mathfrak{F}| \geq 9$, then \mathfrak{F} contains an element of $\mathscr{U}^*(3)$ and Lemma 7.4 is violated. Hence, $|\mathfrak{F}| < 9$. Since $\mathfrak{B}_i \subseteq \mathfrak{F}$, we see that (a) and (c) hold. By construction, (b) and (d) follow. The proof is complete.

J denotes the subset of $\{1, 2, 3, 4\}$ whose elements satisfy the hypothesis of Lemma 8.5.

LEMMA 8.6. Let $i \in J$ and let $\mathfrak A$ be a subgroup of $\mathfrak E_i$ of order 3. Let $\mathfrak R = \mathbf N(\mathfrak A)$, let $\tilde{\mathfrak R}$ be the normal closure of $\mathfrak B_i$ in $\mathfrak R$ and $\tilde{\mathfrak R}_i$ be the normal closure of $\mathfrak D_i$ in $\mathfrak R$. Then

- (a) $[\tilde{\mathfrak{N}}, \tilde{\mathfrak{N}}_1] = 1$.
- (b) $[\tilde{\mathfrak{N}}_1, \tilde{\mathfrak{N}}_1] \subseteq \mathfrak{A}$.

Proof. Let $\mathfrak{A}^*=\mathfrak{A}\times\mathfrak{B}_i$. Since the subgroups of \mathfrak{S}_i of order 3 are permuted transitively in \mathfrak{A}_i , it follows that $C_{\mathfrak{A}_i}(\mathfrak{A}^*)$ contains a S_3 -subgroup \mathfrak{B}^* of \mathfrak{S} . Thus, \mathfrak{B}_i is contained in the center of a S_3 -subgroup of \mathfrak{A} , namely \mathfrak{A}^* . By Lemma 5.10, $\widetilde{\mathfrak{A}}$ is 3-reducible in \mathfrak{A} . Since $\mathfrak{B}^*\subseteq C_{\mathfrak{S}}(\mathfrak{A})$ and $3\in\pi_4$, we have $O_3\cdot(C_{\mathfrak{S}}(\mathfrak{A}))=1$, which implies that $O_3\cdot(C_{\mathfrak{S}}(\mathfrak{A})/\mathfrak{A})=1$. Since $\mathfrak{D}_i/\mathfrak{A}\subseteq Z(\mathfrak{B}^*/\mathfrak{A})$, we conclude that

$$\mathfrak{D}_i/\mathfrak{A} \subseteq O_3(C_{\mathfrak{A}}(\mathfrak{A})/\mathfrak{A}) \subseteq O_3(\mathfrak{R}/\mathfrak{A})$$
 ,

and so $\mathfrak{D}_i \subseteq C_{\mathfrak{N}}(\widetilde{\mathfrak{N}})$, by 3-reducibility of $\widetilde{\mathfrak{N}}$ in \mathfrak{N} . Since $C_{\mathfrak{N}}(\widetilde{\mathfrak{N}}) \subset \mathfrak{N}$, we have $[\widetilde{\mathfrak{N}}, \widetilde{\mathfrak{N}}_1] = 1$. Since $\mathfrak{D}_i/\mathfrak{A} \subseteq \mathbf{Z}(O_3(\mathfrak{N}/A))$, we also have $[\widetilde{\mathfrak{N}}_i, \widetilde{\mathfrak{N}}_1] \subseteq \mathfrak{A}$.

We now set $\mathfrak{D} = \langle \mathfrak{D}_1, \mathfrak{D}_2, \mathfrak{D}_3, \mathfrak{D}_4 \rangle$. Since $\mathfrak{B} \subseteq \mathbf{Z}(\mathfrak{P})$, it is clear that $\mathfrak{B} \subseteq \mathbf{Z}(\mathfrak{D})$ and that $\mathfrak{D} \triangleleft \mathfrak{P}$.

Hypothesis 8.1. (i)

$$\mathfrak{P} \subseteq \mathfrak{M} \in \mathscr{MS}(\mathfrak{G}), \, \mathfrak{B} = \Omega_{\scriptscriptstyle 1}(\boldsymbol{Z}(\mathfrak{P}))^{\mathfrak{M}} \; , \ \mathfrak{C} = \boldsymbol{C}_{\scriptscriptstyle \mathfrak{M}}(\mathfrak{B}), \, \mathfrak{B}^* = \mathit{V}(\mathit{ccl}_{\scriptscriptstyle \mathfrak{R}}(\mathfrak{D}); \, \mathfrak{P}) \; .$$

(ii) \(\mathfrak{P}^* \notin \mathfrak{C}.\)

The long argument to follow is carried out under Hypothesis 8.1. Choose G in \mathfrak{G} so that $\mathfrak{D}^{g} \subseteq \mathfrak{P}$ but $\mathfrak{D}^{g} \not\subseteq \mathfrak{C}$. The element G plays a passive but important role. If \mathfrak{G} is any subset of \mathfrak{G} , we set $\mathfrak{F} = \mathfrak{F}^{g}$, while if \mathfrak{F} is any subset of \mathfrak{M} , we set $\bar{\mathfrak{G}} = \mathfrak{F}^{\mathfrak{C}}/\mathfrak{C}$.

Let \Re be any subgroup of $O_{\mathfrak{F}'}(\overline{\mathfrak{M}})$ which admits \mathfrak{D}^* and is minimal subject to $[\overline{\mathfrak{D}}^*,\mathfrak{R}]\neq 1$. (Notice that \mathfrak{R} is available.) Let $N=N(\mathfrak{R})=\{i\mid 1\leq i\leq 4,\,\overline{\mathfrak{D}}_i \text{ does not centralize } C_{\mathfrak{R}}(\overline{\mathfrak{B}}_i^*)\}$. We argue that $N\neq\varnothing$. This is clear if $\overline{\mathfrak{B}}^*$ centralizes \mathfrak{R} , so we may assume that $[\overline{\mathfrak{B}}^*,\mathfrak{R}]\neq 1$. Since \mathfrak{B}^* is noncyclic, it follows that $\mathfrak{R}=\langle\mathfrak{R}\cap C(\mathfrak{B}_i^*)\mid 1\leq i\leq 4\rangle$, so we can choose i such that $\overline{\mathfrak{D}}^*$ does not centralize $C_{\mathfrak{R}}(\overline{\mathfrak{B}}_i^*)$. Minimality of \mathfrak{R} guarantees that $\mathfrak{R}=C_{\mathfrak{R}}(\overline{\mathfrak{B}}_i^*)$. Thus, \mathfrak{B}_* does not centralize $C_{\mathfrak{R}}(\overline{\mathfrak{B}}_i^*)$. Since $\mathfrak{B}^*\subseteq\mathfrak{D}_i^*$, we have $i\in N(\mathfrak{R})$. In the following discussion, \mathfrak{R} is a fixed subgroup of $O_{\mathfrak{F}'}(\overline{\mathfrak{M}})$ which admits \mathfrak{D}^* and is minimal subject to $[\overline{\mathfrak{D}}^*,\mathfrak{R}]\neq 1$, and j is a fixed element of $N(\mathfrak{R})$. As already observed, $\overline{\mathfrak{B}}_i^*$ centralizes \mathfrak{R}_* .

Let $\tilde{\mathfrak{D}}$ be a \mathfrak{D}_{j} -subgroup of \mathfrak{R} minimal subject to $[\bar{\mathfrak{D}}_{j}, \tilde{\mathfrak{D}}] \neq 1$. Let $\mathfrak{D}_{0}^{*} = \ker (\mathfrak{D}_{j} \to \operatorname{Aut}(\tilde{\mathfrak{D}}))$, so that $|\mathfrak{D}_{j} \colon \mathfrak{D}_{0}| = 3$ and $\mathfrak{B}_{j} \subseteq \mathfrak{D}_{0}$.

Since $\tilde{\mathbb{Q}}$ is faithfully represented on \mathfrak{B} , Lemma 3.7 of [18] implies that $\tilde{\mathbb{Q}}$ faithfully represented on $C_{\mathfrak{B}}(\mathfrak{D}_{0}^{*})$. Since \mathfrak{D}_{j}^{*} does not centralize $C_{\mathfrak{B}}(\mathfrak{D}_{0}^{*})$, we may choose V in $\mathfrak{D}_{\mathfrak{B}}(\mathfrak{D}_{0}^{*}) - C(\mathfrak{D}_{j}^{*})$. Then

$$V \in C(\mathfrak{B}_i^*) \subseteq N(\mathfrak{B}_i^*) = \mathfrak{R}_i^*$$
.

Thus, GVG^{-1} is a 3-element of $\mathfrak{N}_j-\mathfrak{C}_j$ which centralizes a subgroup of \mathfrak{D}_j of index 3. By Lemma 8.5,

$$(8.1) j \in J, |\mathfrak{D}_j| = 27, \cdots.$$

This implies that $|C_{\mathfrak{B}}(\mathfrak{D}_{\delta}^{*}): C_{\mathfrak{B}}(\mathfrak{D}_{\delta}^{*})| = 3$, which in turn implies that $\tilde{\mathfrak{Q}}$ is a quaternion group.

Since $\tilde{\Omega}$ is a quaternion group, the following assertions hold:

- (a) \mathfrak{D}^{\bullet} centralizes a $S_{2'}$ -subgroup of $O_{3'}(\overline{\mathfrak{M}})$.
- (b) \mathfrak{D}^{\bullet} centralizes every abelian subgroup of $O_{\mathfrak{F}}(\overline{\mathfrak{M}})$ which \mathfrak{D}^{\bullet} normalizes.
- (c) If \mathfrak{F} is the normal closure in \mathfrak{P} of \mathfrak{D} , then $[\overline{\mathfrak{F}}, O_3 \cdot (\mathfrak{M})] = \overline{\mathfrak{F}}$ is a special 2-group whose derived group is centralized by $\overline{\mathfrak{F}}$. Namely, if either (a) or (b) were false, we could find \mathfrak{R} such that \mathfrak{R} contains no quaternion group. Since this is not the case, (a) and (b) hold. Now (c) follows from Lemma 5.17, together with the solvability of $O_3 \cdot (\overline{\mathfrak{M}})$. We retain the previous notation and continue the argument.

Let $\mathfrak{A}^{\cdot} = [C_{\mathfrak{B}}(\mathfrak{D}_{0}^{\cdot}), \mathfrak{D}_{j}^{\cdot}]$. Thus, \mathfrak{A}^{\cdot} is a subgroup of \mathfrak{E}_{j}^{\cdot} of order 3. Let $\mathfrak{B} = \mathfrak{B}_{0} \times \mathfrak{B}_{1}$, where $\mathfrak{B}_{0} = C_{\mathfrak{B}}(\tilde{\mathfrak{Q}})$, $\mathfrak{B}_{1} = [\mathfrak{B}, \tilde{\mathfrak{Q}}]$. Since $\mathfrak{A}^{\cdot} \subseteq \mathfrak{B}_{j}^{\cdot}$ we have $\mathfrak{B} \subseteq N(\mathfrak{A}^{\cdot}) = \mathfrak{R}^{\cdot}$, so that $[\mathfrak{B}, \mathfrak{B}_{j}^{\cdot}] \subseteq \mathfrak{B}_{j}^{\cdot} \mathfrak{R}^{\cdot}$. By Lemma 8.6, $[\mathfrak{B}, \mathfrak{B}_{i}^{\cdot}, \mathfrak{D}_{i}^{\cdot}] = 1$. This implies that $\tilde{\mathfrak{Q}}$ centralizes $[\mathfrak{B}, \mathfrak{B}_{j}^{\cdot}]$, which in turn implies that $[\mathfrak{B}, \mathfrak{B}_{j}^{\cdot}] \subseteq \mathfrak{B}_{0}$. Hence, \mathfrak{B}_{j}^{\cdot} centralizes $[\mathfrak{B}_{1}, \mathfrak{D}_{0}^{\cdot}]$. As $\tilde{\mathfrak{Q}}$ normalizes $[\mathfrak{B}_{1}, \mathfrak{D}_{0}^{\cdot}]$, it follows that $\tilde{\mathfrak{Q}}$ centralizes $[\mathfrak{B}_{1}, \mathfrak{D}_{0}^{\cdot}]$. By definition of \mathfrak{B}_{1} , we get $[\mathfrak{B}_{1}, \mathfrak{D}_{0}^{\cdot}] = 1$. Hence, $[\mathfrak{B}_{1}, \mathfrak{D}_{j}^{\cdot}] = \mathfrak{A}^{\cdot}$ and $[\mathfrak{B}_{1}] = 9$.

Suppose $\overline{\mathfrak{P}}$ centralizes $\overline{\mathfrak{E}}'$. Since $\widetilde{\mathfrak{Q}} \subseteq \overline{\mathfrak{E}}$, it follows that $\overline{\mathfrak{P}}$ centralizes $\widetilde{\mathfrak{Q}}'$, a group of order 2. Hence, $\overline{\mathfrak{P}}$ normalizes $\mathfrak{V}_0 = C_{\mathfrak{P}}(\widetilde{\mathfrak{Q}}')$. Since the inverse image of $\widetilde{\mathfrak{Q}}'$ in \mathfrak{M} contains an involution, it follows that \mathfrak{V}_0 contains no element of $\mathscr{U}^*(3)$. But $\mathfrak{V}_0 \triangleleft \mathfrak{P}$, so the only possibility is that \mathfrak{V}_0 is cyclic. Since $Z(\mathfrak{P})$ is non cyclic, we get $|\mathfrak{V}_0| = 3$.

Suppose $\overline{\mathbb{R}}$ does not centralize $\overline{\mathbb{E}}'$. Let $\overline{\mathbb{E}}_1 = [\overline{\mathbb{E}}', \overline{\mathbb{R}}]$, and let \mathfrak{B} be a subgroup of \mathfrak{B} which admits $\overline{\mathbb{R}}\overline{\mathbb{E}}'$ and is minimal subject to $[\overline{\mathbb{E}}_1, \mathfrak{B}] \neq 1$. Since $\overline{\mathfrak{F}}$ centralizes $\overline{\mathbb{E}}'$, it follows that $\overline{\mathfrak{F}}$ centralizes \mathfrak{B} ; so \mathfrak{D} · centralizes \mathfrak{B} . Hence, $\mathfrak{B} \subseteq \mathfrak{B}_0 \times \mathfrak{A}$. By Lemma 4.4 of [19], \mathfrak{B} contains a subgroup \mathfrak{B}_0 of order 27 such that $\mathfrak{B}_0 \triangleleft \mathfrak{P}$, $|\mathfrak{P}: C_{\mathfrak{P}}(\mathfrak{B}_0)| = 3$. Since $|\mathfrak{A}'| = 3$, it follows that $\mathfrak{B}_0 \cap \mathfrak{B}_0$ is noncyclic. Let \mathfrak{B}_1 be a subgroup of $\mathfrak{B}_0 \cap \mathfrak{B}_0$ of order 9. Since $|\mathfrak{P}|$ is clearly larger than \mathfrak{A}^4 , we conclude from Lemma 7.6 (d) that $\mathfrak{B}_1 \in \mathscr{C}(3)$. Let I be an involution in the inverse image of $\tilde{\mathfrak{D}}$ in \mathfrak{M} ; then I centralizes \mathfrak{B}_0 , so centralizes \mathfrak{B}_1 . Hence, by Lemma 7.4, C(I) is nonsolvable. This contradiction shows that $[\overline{\mathfrak{P}}, \overline{\mathbb{E}}'] = 1$. Hence, $|\mathfrak{B}_0| = 3$, an important equality.

Since $\mathfrak{M}\in\mathscr{MS}(G)$, it follows that $\mathfrak{M}=N(\mathfrak{V}_0)$, so that $\mathfrak{M}=\mathfrak{N}_i$ for some $i,1\leq i\leq 4$. Thus, $i\in J,\,\mathfrak{V}_0=\mathfrak{V}_i,\,\mathfrak{V}_1=\mathfrak{E}_i,\,\mathfrak{V}=\mathfrak{D}_i,\,\mathfrak{C}=\mathfrak{C}_i$.

Let $\mathfrak{P}_0 = \mathfrak{P} \cap \mathfrak{C}_i$, $\mathfrak{N}_0 = N_{\mathfrak{N}_i}(\mathfrak{P}_0)$, so that $\mathfrak{N}_0\mathfrak{C}_i = \mathfrak{N}_i$. Let \mathfrak{Q}_0 be a S_2 -subgroup of \mathfrak{N}_0 permutable with \mathfrak{P} . Let $\mathfrak{S} = \mathfrak{P}\mathfrak{Q}_0 \cap C(\mathfrak{B}_i)$, and set $\mathfrak{Q} = \mathfrak{S} \cap \mathfrak{Q}_0$. Then $\mathfrak{S} = \mathfrak{P}\mathfrak{Q}$.

Since $i \in J$, Lemma 8.5 implies that a $S_{2,3}$ -subgroup of $\mathfrak{R}_i/\mathfrak{C}_i$ is not 3-closed. Since \mathfrak{PD}_0 is not 3-closed, neither is \mathfrak{S} , since $|\mathfrak{PD}_0:\mathfrak{S}| \leq 2$. Let I be an involution of \mathfrak{D} . Suppose $\mathfrak{D}_i \cap C(I) \supset \mathfrak{B}_i$. Then $\mathfrak{D}_i \cap C(I)$ contains a subgroup $\widetilde{\mathfrak{D}}$ of order 9 with $\widetilde{\mathfrak{D}} \supset \mathfrak{B}_i$. Since \mathfrak{S} permutes transitively the subgroups of \mathfrak{C}_i of order 3, it follows that $\widetilde{\mathfrak{D}}$ is central

in some S_3 -subgroup of \mathfrak{S} , that is, I centralizes an element of $\mathcal{U}(3)$. This is not the case, since C(I) contains an element of $\mathcal{U}(2)$. This contradiction forces $\mathfrak{D}_i \cap C(I) = \mathfrak{B}_i$ for all involutions I of \mathfrak{D} . Since $\mathfrak{P} \not = \mathfrak{S}$, \mathfrak{D} is not cyclic. Thus, \mathfrak{D} is a quaternion group. Also, $\mathfrak{P}_0 = O_3(\mathfrak{S}) = \mathfrak{S} \cap \mathfrak{S}_i$ and $\mathfrak{S}/\mathfrak{P}_0 \cong SL(2,3)$. In particular, $\mathfrak{B}_i \subseteq \mathfrak{P}_0$, while $\mathfrak{D}_i \not \subseteq \mathfrak{P}_0$.

Since $j \in J$, it follows that $[C_{\mathfrak{P}}(\mathfrak{B}_{j}^{*}), \mathfrak{D}_{j}^{*}] \subseteq \mathfrak{C}_{j}^{*}$. Since $\mathfrak{B}_{j}^{*} \subseteq \mathfrak{P}_{0}$ and $\mathfrak{D}_{j}^{*} \not\subseteq \mathfrak{P}_{0}$, it follows that $\mathfrak{C}_{j}^{*} \not\subseteq \mathfrak{P}_{0}$. Hence, $\mathfrak{C}_{j}^{*} \cap \mathfrak{P}_{0} = \mathfrak{A}^{*}$. This implies that

$$[C_{\mathfrak{B}_0}(\mathfrak{B}_i),\,\mathfrak{D}_i]=\mathfrak{A}\cdot.$$

For any subset \mathfrak{T} of \mathfrak{S} , let $\overline{\mathfrak{T}} = \mathfrak{T}\mathfrak{E}_i/\mathfrak{E}_i$. It is important to show that

$$(8.3) C_{\overline{\mathfrak{B}}_0}(\overline{\mathfrak{B}}_i^{\bullet}) = C_{\mathfrak{B}_0}(\mathfrak{B}_i^{\bullet})/\mathfrak{E}_i.$$

Namely, suppose P in \mathfrak{P}_0 satisfies $[\mathfrak{B}_j,P]\subseteq \mathfrak{E}_i$. Now $\mathfrak{E}_i=\mathfrak{A}^{\cdot}\times\mathfrak{A}^{*}$, where \mathfrak{A}^{\cdot} and \mathfrak{A}^{*} are of order 3 and $\mathfrak{A}^{\cdot}\subseteq \mathfrak{E}_j$. We may apply Lemma 8.6 to \mathfrak{A}^{\cdot} . Since $P\in \mathfrak{A}^{\cdot}$, we get $[\mathfrak{B}_j,P,\mathfrak{D}_j]=1$. Hence, $[\mathfrak{B}_j,P]\subseteq \mathfrak{E}_i\cap C(\mathfrak{D}_j)=\mathfrak{A}^{\cdot}$. Consider the group $\mathfrak{B}_j\times\mathfrak{A}^{\cdot}$, which is normalized by the 3-element P. Since \mathfrak{A}_j permutes transitively the subgroups of \mathfrak{E}_j of order 3, it follows that $\mathfrak{B}_j^{\cdot}\times\mathfrak{A}^{\cdot}$ is in the center of some S_3 -subgroup of \mathfrak{B} . Hence, $A_{\mathfrak{B}}(\mathfrak{B}_j\times\mathfrak{A}^{\cdot})$ is a 3'-group, so P centralizes $\mathfrak{B}_j^{\cdot}\times\mathfrak{A}^{\cdot}$. We have proved (8.3).

Since $\mathfrak{A} \subseteq \mathfrak{G}_i$, so also $\mathfrak{P}_0 \subseteq \mathfrak{R}$. Hence

$$[\mathfrak{P}_0, \mathfrak{D}_i^*, \mathfrak{D}_i^*] \subseteq \mathfrak{A}^*,$$

by Lemma 8.6 (b) applied to \mathfrak{R} . We will use this fact several times. We next show that

$$(8.5) C_{\mathfrak{P}_0}(\mathfrak{Q}') = C_{\mathfrak{P}_0}(\mathfrak{Q}).$$

Since $\mathfrak{D}_i^{\mathfrak{C}}$ is a Frobenius group, it suffices to show that $C_{\overline{\mathfrak{P}}_0}(\mathfrak{D}') = C_{\overline{\mathfrak{P}}_0}(\mathfrak{D})$. Let \mathscr{C} be part of a chief series of \mathfrak{S} from \mathfrak{P}_0 to 1, one of whose terms is \mathfrak{C}_i . If \mathfrak{F} is a chief factor of \mathscr{C} , it suffices to show that if \mathfrak{D}' centralizes \mathfrak{F} , so does \mathfrak{D} . If this were not the case, then elements of $\mathfrak{D}_j^{\boldsymbol{\cdot}} - \mathfrak{P}_0$ would have minimal polynomial $(x-1)^3$ on \mathfrak{F} , against (8.4). Thus, (8.5) holds.

Suppose \mathfrak{D}' centralizes $\overline{\mathfrak{P}}_0$. Let $\mathfrak{P}_1 = C_{\mathfrak{P}_0}(\mathfrak{D}')$. We get $\mathfrak{P}_0 = \mathfrak{P}_1\mathfrak{E}_i$, $\mathfrak{P}_1 \cap \mathfrak{E}_i = 1$. Since \mathfrak{E}_i is an irreducible \mathfrak{D} -module, we have $\mathfrak{P}_0 = \mathfrak{P}_1 \times \mathfrak{E}_i$. If \mathfrak{P}_1 is not cyclic, then \mathfrak{D}' centralizes an element of $\mathscr{U}^*(3)$, which is not the case, since \mathfrak{D}' centralizes an element of $\mathscr{U}(2)$. Thus, \mathfrak{P}_1 is cyclic. Clearly, $\mathfrak{P}_1 \neq 1$, since $\mathfrak{B}_i \subseteq \mathfrak{P}_1$. If

$$|\,\mathfrak{P}_{_{1}}|>3$$
 , then $\sigma^{_{1}}(\mathfrak{P}_{_{1}})\triangleleft\langle\mathfrak{N}_{_{i}},\mathfrak{N}_{_{i}}
angle$,

while it is trivial that $\langle \mathfrak{N}_i, \mathfrak{N}_i \rangle$ is non solvable. Hence, $\mathfrak{P}_i = \mathfrak{B}_i$. But then Lemma 7.8 is violated.

Let $\mathfrak{P}_2 = [\mathfrak{P}_0, \mathfrak{Q}]$. By the preceding paragraph,

$$(8.6) \bar{\mathfrak{P}}_2 \neq 1.$$

We will show that

(8.7)
$$\overline{\mathfrak{P}}_2$$
 is of exponent 3 and class at most 2.

Let $\Re_1 = [\Re_2, \Im_j^*]$. Since $\Re_2 \subseteq \Re^*$, Lemma 8.6 (b) implies that $[\Re_1, \Re_1] \subseteq \Re^*$, so that $\overline{\Re}_1$ is abelian. Since \mathfrak{D}_j^* is elementary so is $\overline{\Re}_1$. Thus $\overline{\Re}_1$ is a normal elementary subgroup of $\overline{\Re}_2$. Let Q be an element of \mathfrak{D} of order 4, and set $\Re_2 = \Re_1^q$. We argue that $\overline{\Re}_1\overline{\Re}_2 = \overline{\Re}_2$. To see this, observe that since \mathfrak{D}' inverts $\mathfrak{P}_2/\boldsymbol{D}(\mathfrak{P}_2)$, and since the minimal polynomial of each element of \mathfrak{D}_j^* on $\overline{\Re}_2/\boldsymbol{D}(\overline{\Re}_2)$ is a divisor of $(x-1)^2$, it follows that \Re_1, \Re_2 map onto subspaces of $\overline{\Re}_2/\boldsymbol{D}(\overline{\Re}_2)$ which generate $\overline{\Re}_2/\boldsymbol{D}(\overline{\Re}_2)$, so our assertion follows. Since $\overline{\Re}_1, \overline{\Re}_2$ are normal elementary subgroups of $\overline{\Re}_2$, (8.7) holds. Since we now have $\boldsymbol{D}(\overline{\Re}_2) = [\overline{\Re}_1, \overline{\Re}_2] \subseteq \overline{\Re}_1$, and since $\overline{\mathfrak{D}}_j^*$ centralizes $\overline{\Re}_1$, it follows that

(8.8)
$$\mathfrak{Q}$$
 centralizes $\boldsymbol{D}(\overline{\mathfrak{P}}_2)$.

Since \mathbb{Q} has no fixed points on $\overline{\mathfrak{P}}_2/D(\overline{\mathfrak{P}}_2)$, it follows from (8.4) that

(8.9) \mathbb{Q} operates on $\overline{\mathbb{Q}}_2/D(\overline{\mathbb{Q}}_2)$ as a multiple d of the faithful irreducible \mathbb{Q} -representation.

In particular,

(8.10)
$$|\,ar{\mathfrak{P}}_2{:}\,m{D}(ar{\mathfrak{P}}_2)\,|\,=\,3^{2d}$$
 .

Let B a generator for \mathfrak{B}_{j}^{*} , and for any element S of \mathfrak{S} , let S] be the mapping of \mathfrak{P}_{2} into itself which sends P to [P, S]. We may view B] in more than one way. Since \mathfrak{Q} centralizes $\mathfrak{P}_{0}/\mathfrak{P}_{2}$, we have B = CU, where $C \in C_{\mathfrak{P}_{0}}(\mathfrak{Q})$ and $U \in \mathfrak{P}_{2}$. Since $U \in \mathfrak{P}_{2}$, B] and C] induce the same mapping from $\mathfrak{P}_{2}/D(\mathfrak{P}_{2})$ to itself. In particular, $[\mathfrak{P}_{2}, B]D(\mathfrak{P}_{2})$ admits \mathfrak{Q} . By Lemma 8.6 applied to \mathfrak{R}^{*} , we have $[\mathfrak{P}_{2}, B, \mathfrak{D}_{j}^{*}] = 1$. This implies that \mathfrak{Q} centralizes $[\mathfrak{P}_{2}, B]D(\mathfrak{P}_{2})/D(\mathfrak{P}_{2})$, so by construction of \mathfrak{P}_{2} , we have

$$[\mathfrak{P}_2, B] \subseteq \boldsymbol{D}(\mathfrak{P}_2).$$

Hence, $[\mathfrak{P}_2, C] \subseteq D(\mathfrak{P}_2)$. Since C centralizes \mathfrak{D} and \mathfrak{D} centralizes $D(\overline{\mathfrak{P}}_2)$, we conclude that C centralizes $\overline{\mathfrak{P}}_2$, by the three subgroups lemma. Hence, B and U induce the same automorphism of $\overline{\mathfrak{P}}_2$.

By Lemma 8.6 applied to \mathfrak{R}^{\cdot} , B centralizes the normal closure of \mathfrak{D}_{i}^{\cdot} in \mathfrak{R}^{\cdot} . Hence, $C_{\mathfrak{B}_{i}}(B) \supseteq [\mathfrak{P}_{i}, \mathfrak{D}_{i}^{\cdot}]\mathfrak{E}_{i}\mathfrak{P}_{i}^{\prime}$. We will show that

$$(8.12) C_{\mathfrak{P}_2}(B) = [\mathfrak{P}_2, \mathfrak{D}_j^*] \mathfrak{G}_i \mathfrak{P}_2',$$

$$|\overline{\boldsymbol{C}_{\mathfrak{P}_{2}}(B)};\boldsymbol{D}(\overline{\mathfrak{P}}_{2})|=3^{d}.$$

Let \mathfrak{V}_1 be the set of fixed points of \mathfrak{D}_i on $\overline{\mathfrak{P}}_2/D(\overline{\mathfrak{P}}_2)$, let

$$\mathfrak{W}_{\scriptscriptstyle 2} = [\overline{\mathfrak{D}_{\scriptscriptstyle j}^{\scriptscriptstyle *},\,\mathfrak{P}_{\scriptscriptstyle 2}}] D(\overline{\mathfrak{P}}_{\scriptscriptstyle 2})/D(\overline{\mathfrak{P}}_{\scriptscriptstyle 2})$$
 , and let $W_{\scriptscriptstyle 3} = \overline{C_{\mathfrak{P}_{\scriptscriptstyle 2}}(B)}/D(\overline{\mathfrak{P}}_{\scriptscriptstyle 2})$.

From (8.2) and (8.3), we get that $\mathfrak{W}_3 \subseteq \mathfrak{W}_1$. By Lemma 8.6 (a) applied to \mathfrak{R}^* , we get $\mathfrak{W}_2 \subseteq \mathfrak{W}_3$. By (8.10) and Lemma 5.2, it follows that $|\mathfrak{W}_1| \leq 3^d$. Using (8.10) once again, we get $|\mathfrak{W}_2| \geq 3^d$. Since $\mathfrak{W}_2 \subseteq \mathfrak{W}_3 \subseteq \mathfrak{W}_1$, it follows that $\mathfrak{W}_1 = \mathfrak{W}_2 = \mathfrak{W}_3$ is of order 3^d . This yields (8.12) and (8.13).

Let $\mathfrak{B}^* = \mathfrak{B}_j^*\mathfrak{P}$. Since \mathfrak{P} centralizes \mathfrak{A}^* , we have $\mathfrak{B}^* \subseteq \mathfrak{B}_j^{\mathfrak{P}}$. By Lemma 8.6, \mathfrak{B}^* and $\mathfrak{D}_j^*\mathfrak{P}$ commute elementwise. Set $\mathfrak{P}_3 = [\mathfrak{P}_2, \mathfrak{B}^*]\mathfrak{E}_i \triangleleft \mathfrak{P}$. Since B centralizes $\overline{\mathfrak{P}}_2/D(\overline{\mathfrak{P}}_2)$, (8.8) implies that \mathfrak{D} normalizes \mathfrak{P}_3 . Thus, $\mathfrak{P}_3 \triangleleft \mathfrak{S}$. Since $\mathfrak{D}_j^*\mathfrak{P}$ and \mathfrak{B}^* commute elementwise, $[\mathfrak{P}_2, \mathfrak{D}_j^*]$ centralizes \mathfrak{P}_3 . Hence, $[\mathfrak{P}_2, \mathfrak{D}_j^*]^{\mathfrak{Q}}$ centralizes $\mathfrak{P}_3^{\mathfrak{Q}} = \mathfrak{P}_3$, Q being an element of $\mathfrak{D} - \mathfrak{D}'$. Since $\mathfrak{P}_2 = [\mathfrak{P}_2, \mathfrak{D}_j^*][\mathfrak{P}_2, \mathfrak{D}_j^*]^{\mathfrak{Q}}$, it follows that \mathfrak{P}_2 centralizes \mathfrak{P}_3 .

Let $\tilde{\mathfrak{P}}_3 = \mathfrak{P}_3 \cap C(\mathfrak{Q})$. Thus, $\mathfrak{P}_3 = \tilde{\mathfrak{P}}_3 \times \mathfrak{E}_i$. Clearly, $N_{\mathfrak{S}}(\mathfrak{Q})$ normalizes $\tilde{\mathfrak{P}}_3$; so does \mathfrak{P}_2 since \mathfrak{P}_2 centralizes \mathfrak{P}_3 . Since $\mathfrak{S} = \mathfrak{P}_2 N_{\mathfrak{S}}(\mathfrak{Q})$, we have $\tilde{\mathfrak{P}}_3 \triangleleft \mathfrak{S}$. Since \mathfrak{Q} contains an involution, no subgroup of $\tilde{\mathfrak{P}}_3$ is in $\mathscr{U}^*(\mathfrak{P})$. Hence, $\tilde{\mathfrak{P}}_3$ is cyclic. Since \mathfrak{P}_3 is isomorphic to a subgroup of $\tilde{\mathfrak{P}}_2$, it follows that $\tilde{\mathfrak{P}}_3$ is of order 1 or 3.

Suppose $[\mathfrak{P}_2, B] \subseteq \mathfrak{E}_i$. Then (8.3) forces $[\mathfrak{P}_2, B] = 1$. This violates (8.6), (8.10), (8.13). Thus, $\widetilde{\mathfrak{P}}_3$ is of order 3 and $\mathfrak{P}_3 = [\mathfrak{P}_2, B]\mathfrak{E}_i$, and $[\mathfrak{P}_2, B]$ is of order 3. Now (8.10) and (8.13) yield that d = 1.

Suppose $D(\overline{\mathbb{F}}_2) = 1$. Then by (8.11), B centralizes $\overline{\mathbb{F}}_2$. This conflicts with (8.10) and (8.13). Hence, $D(\overline{\mathbb{F}}_2) \neq 1$, so that

$$|\mathfrak{P}_{2}| = 3^{5}.$$

Since $\mathfrak{B}_i\tilde{\mathfrak{F}}_3$ is a normal subgroup of \mathfrak{S} centralized by \mathfrak{Q} , we get $\mathfrak{B}_i=\tilde{\mathfrak{F}}_3$, as \mathfrak{Q} centralizes no element of $\mathscr{U}^*(3)$. Hence,

$$\mathbf{Z}(\mathfrak{P}_2) = \mathfrak{D}_i.$$

Since \mathfrak{P}_2 is the normal closure of $[\mathfrak{P}_2, \mathfrak{D}_j]$ in \mathfrak{S} , and since $\mathfrak{D}_j^{\mathfrak{N}}$ is of exponent 3, it follows that \mathfrak{P}_2 is generated by elements of order 3. Since \mathfrak{P}_2 is of class 2, it follows that

(8.16)
$$\mathfrak{P}_2$$
 is of exponent 3.

Since $\mathfrak{B}_i \subset \mathfrak{P}_2$, the group $\mathfrak{P}_2/\mathfrak{D}_i$ is of order 3^4 and is inverted by the involution of \mathfrak{D} . Hence, $\mathfrak{P}_2' \subseteq \mathfrak{B}_i$. Since \mathfrak{P}_2 is non abelian it follows that

$$\mathfrak{P}_2'=\mathfrak{B}_i.$$

We next show that $B \in \mathfrak{P}_2$. Namely, $\mathfrak{B} = CU$, so that [C, U] = [C, CU] = [C, B]. As we have already seen, C centralizes $\overline{\mathfrak{P}}_2$, that is, $[C, U] \in \mathfrak{G}_i$. Since [C, U] = [C, B], (8.3) implies that [C, B] = 1. Since

we have also shown that $[\mathfrak{P}_2, B]$ has order $3^d = 3$, it follows that U is not in $Z(\mathfrak{P}_2)$. Since $\overline{\mathfrak{P}}_2/\overline{\mathfrak{P}}_2'$ is an irreducible \mathfrak{D} -module, it follows that C centralizes \mathfrak{P}_2 , as C centralizes an element of \mathfrak{P}_2 (namely, U) which does not map into $\overline{\mathfrak{P}}_2'$. Since C and U commute, and since B and U have order 1 or 3, it follows that C has order 1 or 3. If $C \notin \mathfrak{P}_2$, then $Q_1(C_{\mathfrak{P}_0}(\mathfrak{P}_2)) \cap C(\mathfrak{D})$ is noncyclic, so that \mathfrak{D} centralizes an element of $\mathscr{U}^*(3)$. Since this is not the case, we conclude that

$$(8.18) B \in \mathfrak{P}_2.$$

We will next show that $\mathfrak{P}_0 = \mathfrak{P}_2$.

Since $B \in \mathfrak{P}_2$, $[\mathfrak{P}_0, B]$ is a subgroup of \mathfrak{P}_2 centralized by \mathfrak{D}_j . Suppose $[\mathfrak{P}_0, B] \nsubseteq \mathfrak{P}'_2$ ($=\mathfrak{B}_i$). Let B_i be a generator for \mathfrak{B}_i , A a generator for \mathfrak{A}_i . Choose P in \mathfrak{P}_0 so that $[P, B] = B_i^a A^b$ with $b \neq 0$. Clearly, $a \neq 0$, since $A_{\mathfrak{V}}(\langle B, A \rangle)$ is a 3'-group. Since $[\mathfrak{P}_2, B] = \mathfrak{P}'_2 = \mathfrak{B}_i$, we may choose P_2 in \mathfrak{P}_2 so that $[P_2, B] = B_i^{-a}$. Then $[PP_2, B] = A^b$, which is impossible. Hence, $[\mathfrak{P}_0, B] = \mathfrak{P}'_2$. Hence, $[\mathfrak{P}_1, \mathfrak{P}_2] = 1$, by the three subgroups lemma. Here $\mathfrak{P}_1 = \mathfrak{P}_0 \cap C(\mathfrak{D})$. Hence, $\mathfrak{P}_1 \triangleleft \mathfrak{S}_i$, so \mathfrak{P}_1 is cyclic, as \mathfrak{D}_1 centralizes no element of $\mathscr{U}^*(3)$. If $|\mathfrak{P}_1| > 3$, it is easy to verify that $\mathfrak{V}^1(\mathfrak{P}_1) \triangleleft \langle \mathfrak{N}_i, \mathfrak{N}_j \rangle$ against the nonsolvability of $\langle \mathfrak{N}_i, \mathfrak{N}_j \rangle$. Hence, \mathfrak{P}_1 is of order 3, so that $\mathfrak{P}_1 = \mathfrak{P}_i$. Hence,

$$\mathfrak{P}_0 = \mathfrak{P}_2 \text{ is of order } 3^5,$$

With the preceding information at our disposal, we turn our attention to $\mathfrak{M}=\mathfrak{N}_i$ once again. Let $\widetilde{\otimes}$ be a $S_{(2,3)}$ -subgroup of \mathfrak{M} permutable with \mathfrak{P} . Then $\widetilde{\otimes}$ centralizes \mathfrak{D}_i , for otherwise $2^3 \cdot 3 \cdot 13$ divides $A_{\mathfrak{M}}(\mathfrak{D}_i)$, forcing nonsolvability of $A_{\mathfrak{M}}(D_i)$. Since $|O_2(\mathfrak{M}): \mathfrak{D}_i| \leq 9$, $\widetilde{\otimes}$ also centralizes $O_3(\mathfrak{M})/\mathfrak{D}_i$. Hence, $\widetilde{\otimes}$ centralizes $O_3(\mathfrak{M})$, or equivalently,

$$(8.21)$$
 \mathfrak{M} is a 2, 3-group.

Let \mathfrak{T} be a S_2 -subgroup of \mathfrak{N}_i containing \mathfrak{Q} . Since $\mathfrak{C}_i \in \mathcal{U}^*(\mathfrak{P})$, no element of \mathfrak{T}^* centralizes \mathfrak{C}_i . Thus,

$$\mathfrak{P}_0 = \mathbf{C}(\mathfrak{E}_i) .$$

Since $\mathfrak{B}_i \subseteq \mathfrak{B}$, it follows that $C(\mathfrak{B}) \subseteq \mathfrak{R}_i = \mathfrak{M}$. By Lemma 7.4, $|C(\mathfrak{B})|$ is odd. From (8.21) we conclude that

$$\mathfrak{P} = C(\mathfrak{B}).$$

By construction, $\mathfrak{D}_i \subseteq \mathfrak{P}_0$. Suppose j_0 is an index such that $\mathfrak{D}_{j_0} \not\subseteq \mathfrak{P}_0$. Then $[\mathfrak{D}_i, \mathfrak{D}_{j_0}] \neq 1$. In this case, two applications of Lemma 8.5 imply that $|\mathfrak{D}_i| = |\mathfrak{D}_{j_0}| = 27$ and that $[\mathfrak{P}, \mathfrak{D}_{j_0}]$ is of order 3. Hence, $[\mathfrak{P}, \mathfrak{D}_{j_0}] = 27$

 $[\mathfrak{D}_i, \mathfrak{D}_{j_0}]$ so that \mathfrak{D}_{j_0} centralizes $\mathfrak{P}_0/\mathfrak{D}_i$. This contradicts (8.6) and (8.19). Hence, no such j_0 exists, that is,

$$\mathfrak{D} \subseteq \mathfrak{P}_0.$$

Our previous information shows that $Z(\mathfrak{P}) = \mathfrak{B}$. Hence, $N(\mathfrak{P})$ normalizes \mathfrak{B} , so permutes the groups $\mathfrak{B}^{N(\mathfrak{B}_k)}$ among themselves, $1 \le k \le 4$. By definition of \mathfrak{D} , we get

$$(8.25) N(\mathfrak{P}) \subseteq N(\mathbf{D}) .$$

Suppose $\mathfrak{D}^{\bullet} \triangleleft \mathfrak{P}$. Since $\mathfrak{D} \triangleleft \mathfrak{P}$, it follows that $\mathfrak{D}^{\bullet} \triangleleft \triangleleft \mathfrak{P}$. We can choose N in $N(\mathfrak{D}^{\bullet})$ so that $\mathfrak{P}^{\bullet N} = \mathfrak{P}$. Hence, $\mathfrak{D}^{\bullet N} = \mathfrak{D}^{\bullet}$ and $\mathfrak{P}^{GN} = \mathfrak{P}$. Let H = GN. Then $\mathfrak{D}^{\bullet} = \mathfrak{D}^{H}$ and $H \in N(\mathfrak{P})$. By (8.25), we get $\mathfrak{D}^{\bullet} = \mathfrak{D}^{H} = \mathfrak{D}$. This conflicts with (8.24), since by construction $\mathfrak{D}^{\bullet} \nsubseteq \mathfrak{P}_{0}$. Thus,

$$\mathfrak{D}^{\bullet} \not \subset \mathfrak{P}.$$

Suppose \mathfrak{P}^* is a S_3 -subgroup of \mathfrak{N}_j^* and that $\mathfrak{P}^* \subseteq \mathfrak{N}_i$. Thus, $\mathbf{Z}(\mathfrak{P}^*) \subseteq \mathfrak{D}_i \cap \mathfrak{D}_j^* = \mathfrak{A}^*$. This is impossible since $|\mathfrak{A}^*| = 3$, $|\mathbf{Z}(\mathfrak{P}^*)| = 9$. We conclude that

(8.27)
$$\mathfrak{N}_i \cap \mathfrak{N}_i^*$$
 contains no S_3 -subgroup of \mathfrak{S} .

Since $\mathfrak{D} \cdot \not = \mathfrak{P}$, (8.20) implies that $|\mathfrak{D}| \leq 3^4$. Suppose $|\mathfrak{D}| \leq 3^3$. Then $\mathfrak{D} \supseteq \mathfrak{D}_i$ implies $|\mathfrak{D}| = 3^3$ and $\mathfrak{D} = \mathfrak{D}_i$. Thus, for each $k, 1 \leq k \leq 4$, we have $\mathfrak{B} \subseteq \mathfrak{D}_k \subseteq \mathfrak{D}_i$. If $\mathfrak{B} = \mathfrak{D}_k$, then \mathfrak{N}_k normalizes $C(\mathfrak{B})$. By (8.23), we have $\mathfrak{P} \triangleleft \mathfrak{N}_k$, so by (8.25), we have $\mathfrak{N}_k \subseteq N(\mathfrak{D})$. Thus, if $|\mathfrak{D}| = 3^3$, then $\langle \mathfrak{N}_1, \mathfrak{N}_2, \mathfrak{N}_3, \mathfrak{N}_4 \rangle \subseteq N(\mathfrak{D})$. Since $\mathfrak{A} \cdot \subseteq Z(\mathfrak{P})$, it follows that $\mathfrak{A} \cdot = \mathfrak{B}_k$ for some k. Hence, $N(\mathfrak{A} \cdot) \subseteq \mathfrak{N}_i$. But $\mathfrak{A} \cdot$ is a subgroup of $\mathfrak{D} \cdot$; so there is a S_3 -subgroup \mathfrak{P}^* of $\mathfrak{N} \cdot$; which contains $\mathfrak{A} \cdot$ in its center. This violates (8.27). Hence, $|\mathfrak{D}| = 3^4$. Since $\mathfrak{P}_0 \supset \mathfrak{D} \supset \mathfrak{D}_i$, we conclude that

(8.28)
$$\mathfrak{D}$$
 is elementary of order 3^4 .

Let $\mathfrak C$ be any subgroup of $\mathfrak D_j$ which is of order 3 and is not contained in $\mathfrak P_0$. Thus, $\mathfrak D_j^* = \mathfrak C \times \mathfrak B_j^* \times \mathfrak A^*$. Since $\mathfrak D^* \subseteq \mathfrak P_0$, it follows that $\mathfrak D^* \subseteq C_{\mathfrak P_0}(\mathfrak D_j^*) = \mathfrak C \cdot C_{\mathfrak P_0}(\mathfrak D_j^*)$, and as we have already shown, $C_{\mathfrak P_0}(\mathfrak B_j^*) = \mathfrak D_i \mathfrak B_j^*$ (that is, $\mathfrak B_j^* \not\subseteq Z(\mathfrak P_0)$). Since $\mathfrak D_j^*$ does not centralize $\mathfrak C_i$, it follows that $C_{\mathfrak P_0}(\mathfrak D_j^*) = \mathfrak B_j^* \times \mathfrak B_i \times \mathfrak A^*$. Since $\mathfrak D^* \not\subset \mathfrak P_0$, it follows that $N_{\mathfrak P}(\mathfrak D^*) = \mathfrak D^* \mathfrak C_i$. Choose P in $\mathfrak P_0 - N_{\mathfrak P}(\mathfrak D^*)$. Since

$$[P, \mathfrak{B}_i, \mathfrak{B}_i \mathfrak{A}^{\cdot}] \subseteq \mathfrak{B}_i \subseteq \mathfrak{D}^{\cdot},$$

it follows that $[P, C] \notin \mathfrak{D}$, where C is a generator for \mathfrak{C} . Hence, $[P, C] = DE_i$ with E_i in $\mathfrak{C}_i - \mathfrak{A}$ and D in $\mathfrak{D} \cap \mathfrak{P}_0$. Hence, $[P, C, C] = [DE_i, C] = [E_i, C]$ is a generator for \mathfrak{A} . This is a subtle and important

bit of information, since it shows that the \mathbb{C} module $\mathfrak{P}_0/\mathfrak{P}_0'$ has an indecomposable constituent of dimension 3. Thus,

(8.29) the indecomposable direct factors of $\mathfrak{P}_0/\mathfrak{P}_0'$ as \mathfrak{C} -modules are of dimensions 1 and 3.

We note

$$\mathfrak{P} = V(\operatorname{ccl}_{\mathfrak{A}}(\mathfrak{D}); \mathfrak{P}).$$

Namely, $\mathfrak Q$ does not normalize $\mathfrak D, \mathfrak D^{\mathfrak Q} = \mathfrak P_0$. Since $\mathfrak P = \langle \mathfrak P_0, \mathfrak D \cdot \rangle$, (8.30) holds. This fact has an important consequence. Namely, if $\mathfrak P \subseteq \mathfrak M^* \in \mathscr{MS}(\mathfrak S)$ and $\mathfrak P \triangleleft \mathfrak M^*$, then $\mathfrak M^*$ satisfies Hypothesis 8.1. If this were not so, then $\mathfrak P \subseteq C_{\mathfrak M^*}(\Omega_1(\mathbf Z(\mathfrak P))^{\mathfrak M^*})$. Now (8.23) implies that $\mathfrak P \triangleleft \mathfrak M^*$. Thus,

(8.31) if
$$\mathfrak{P} \subseteq \mathfrak{M}^* \in \mathscr{MS}(\mathfrak{G})$$
, then either $\mathfrak{P} \subset \mathfrak{M}^*$ or \mathfrak{M}^* satisfies Hypothesis 8.1.

Let $\widetilde{\mathfrak{M}}$ be an element of $\mathscr{MS}(\mathfrak{G})$ which contains $N(\mathfrak{A}^{\centerdot})$ and let $\mathfrak{P}_0 = O_3(\widetilde{\mathfrak{M}})$. We argue that

$$\mathfrak{P} \triangleleft N(\mathfrak{A}^{\cdot}).$$

Namely, $\mathfrak{P}\subseteq N(\mathfrak{A}^{\cdot})$. Also, $N(\mathfrak{A}^{\cdot})$ contains a S_3 -subgroup of \mathfrak{R}_i^{\cdot} . By (8.27), this implies that $N(\mathfrak{A}^{\cdot})$ has more than one S_3 -subgroup so (8.32) holds. By (8.31), it follows that $|\tilde{\mathfrak{P}}_0|=3^5$ and that $\widetilde{\mathfrak{M}}=N(\mathfrak{X})$, where \mathfrak{X} is some subgroup of $Z(\mathfrak{P})$ of order 3. Clearly, $\mathfrak{X}\neq \mathfrak{B}_i$, since $N(\mathfrak{A}^{\cdot})\nsubseteq \mathfrak{M}$. On the other hand, if I is the involution of \mathfrak{D} , then $I\in \widetilde{\mathfrak{M}}$. Since \mathfrak{A}^{\cdot} and \mathfrak{B}_i are the only subgroups of $Z(\mathfrak{P})$ of order 3 which are normalized by I, it follows that $\mathfrak{X}=\mathfrak{A}^{\cdot}$.

Since $\mathfrak{M} \neq \widetilde{\mathfrak{M}}$, so also $\mathfrak{P}_0 \neq \widetilde{\mathfrak{P}}_0$. Hence, (8.20) implies that $\mathfrak{P}_0 \cap \widetilde{\mathfrak{P}}_0$ is of order 34. Now (8.24) implies that $\mathfrak{D} \subseteq \mathfrak{P}_0 \cap \widetilde{\mathfrak{P}}_0$, so by (8.28), we have

$$\mathfrak{D} = \mathfrak{P}_{\scriptscriptstyle 0} \cap \tilde{\mathfrak{P}}_{\scriptscriptstyle 0} \; .$$

Since $\widetilde{\mathfrak{M}} = N(\mathfrak{A}^{\bullet})$, we have $\mathfrak{D}^{\bullet} \subseteq O_{\mathfrak{A}}(\widetilde{\mathfrak{M}})$. Hence,

$$\widetilde{\mathfrak{P}}_{\scriptscriptstyle 0} = \langle \mathfrak{D}, \mathfrak{D}^{\boldsymbol{\cdot}} \rangle.$$

Since I inverts \mathfrak{A}^{\bullet} , we have $I \in \widetilde{\mathfrak{M}}$. Let $\widetilde{\mathfrak{Q}}$ be a S_2 -subgroup of $O^{\mathfrak{A}^{\circ}}(\widetilde{\mathfrak{M}})$ which is normalized by I. Thus, $\widetilde{\mathfrak{Q}}$ is a quaternion group, and by (8.22) (with $\widetilde{\mathfrak{M}}$ in the role of \mathfrak{M}), we get that

(8.35)
$$\widetilde{\mathbb{Q}}\langle I \rangle$$
 is a S_z -subgroup of $\widetilde{\mathfrak{M}}$.

Let J be the involution of $\tilde{\Omega}$ and set

$$\mathfrak{H}=\langle I,J\rangle.$$

Thus, \mathfrak{F} is a four-group and $\mathfrak{F} \subseteq N(\mathfrak{F})$. Since $\mathfrak{B}_i = \mathbf{Z}(\mathfrak{F}) \cap C(I)$, it follows that $\mathfrak{F} \subseteq \mathfrak{M}$. Hence,

$$\mathfrak{P} \triangleleft \mathfrak{P}\mathfrak{H} = \mathfrak{M} \cap \widetilde{\mathfrak{M}}.$$

Notice that by (8.22), we have $\mathfrak{M}=\mathfrak{S}\backslash J$. Consider $C_{\mathfrak{M}}(I)=C_{\mathfrak{S}}(I)\backslash J$. By (8.5), it follows that $\mathfrak{Q} \subset C_{\mathfrak{S}}(I)$. Thus, J normalizes \mathfrak{Q} so that

(8.38)
$$\mathbb{Q}\langle J\rangle$$
 is a S_{\circ} -subgroup of \mathfrak{M} .

Let Q be an element of $\mathfrak Q$ of order 4 which normalizes $\mathfrak G$ and let $\widetilde Q$ be an element of $\widetilde{\mathfrak Q}$ of order 4 which normalizes $\mathfrak G$. By (8.22), it follows that $N_{\mathfrak M}(\mathfrak Q)/N_{\mathfrak P_0}(\mathfrak Q)\cong GL(2,3)$. Similarly for $\widetilde{\mathfrak M}$. Hence, neither Q nor $\widetilde Q$ centralizes $\mathfrak G$, that is,

(8.39) $\langle Q, \mathfrak{H} \rangle$ and $\langle \widetilde{Q}, \mathfrak{H} \rangle$ are dihedral groups of order 8.

We set

$$(8.40) I_1 = JQ , I_2 = IQ .$$

Thus, I_1 and I_2 are involutions and

$$(8.41) \hspace{1.5cm} I_{\scriptscriptstyle 1} J I_{\scriptscriptstyle 1} = J I \; , \hspace{0.5cm} I_{\scriptscriptstyle 1} I I_{\scriptscriptstyle 1} = I \; , \ I_{\scriptscriptstyle 2} J I_{\scriptscriptstyle 2} = J \; , \hspace{0.5cm} I_{\scriptscriptstyle 3} I I_{\scriptscriptstyle 2} = I J \; .$$

Finally, we get

$$\mathfrak{W}_0 = \langle I_1, I_2 \rangle \subseteq N(\mathfrak{H}).$$

We next show that \mathfrak{P}_0 is complemented in \mathfrak{M} . It is clear from the structure of $\mathfrak{M}=\mathfrak{N}_i$ that $C_{\mathfrak{M}}(I)$ covers $\mathfrak{N}_i/\mathfrak{C}_i=\mathfrak{N}_i/\mathfrak{P}_0$ and that $C_{\mathfrak{M}}(I)\cap\mathfrak{P}_0=\mathfrak{P}_0$. Hence \mathfrak{M} will split over \mathfrak{P}_0 if $C_{\mathfrak{M}}(I)$ splits over \mathfrak{P}_i . Since \mathfrak{P}_i is an abelian 3-group, this occurs if and only if a S_3 -subgroup of $C_{\mathfrak{M}}(I)$ splits over \mathfrak{P}_i , hence, if and only if $C_{\mathfrak{P}}(I)$ is elementary of order S_3 . Regarding I as an element of $\widetilde{\mathfrak{M}}$, we know from the structure of this group that $C_{\mathfrak{P}}(I)=C_{\widetilde{\mathfrak{P}}_0}(I)$. But $\widetilde{\mathfrak{P}}_0$ has exponent 3, by (8.16) and (8.19). Since the structure of \mathfrak{M} implies that $|C_{\mathfrak{P}}(I)|=3^2$, we have proved that

(8.43)
$$\mathfrak{M}$$
 splits over \mathfrak{F}_0 ; $\widetilde{\mathfrak{M}}$ splits over $\widetilde{\mathfrak{F}}_0$.

We define

$$\mathfrak{X}_{6} = \mathfrak{A}^{\bullet}, \, \mathfrak{X}^{5} = \mathfrak{B}_{i}, \, \mathfrak{X}_{4} = \mathfrak{A}^{\bullet Q}, \, \mathfrak{X}_{3} = \mathfrak{X}_{5}^{\widetilde{Q}}.$$

Since $\langle \mathfrak{X}_4, \mathfrak{X}_5, \mathfrak{X}_6 \rangle = \mathfrak{B}^{\mathfrak{M}}$ and $\langle \mathfrak{X}_3, \mathfrak{X}_5, \mathfrak{X}_6 \rangle = \mathfrak{B}^{\widetilde{\mathfrak{M}}}$, (8.28) implies that

$$\mathfrak{D} = \langle \mathfrak{X}_3, \mathfrak{X}_4, \mathfrak{X}_5, \mathfrak{X}_6 \rangle.$$

We set

$$\mathfrak{X}_1 = \mathfrak{X}_3^Q, \, \mathfrak{X}_2 = \mathfrak{X}_4^{\widetilde{Q}}.$$

It then follows that

Further, by construction,

(8.48)
$$\mathfrak{H}$$
 normalizes \mathfrak{X}_i , $1 \leq i \leq 6$.

We now set up a 6 by 2 array whose (i, j) entry is $\mathfrak{X}_i^{I_j}$, in case $\mathfrak{X}_i^{I_j} \subseteq \mathfrak{P}$, and is-otherwise.

We will eventually determine \mathfrak{M} and $\widetilde{\mathfrak{M}}$ in terms of generators and relations. To do this, a number of choices must be made, and some care is required to guarantee that these choices are possible. We have already chosen the groups \mathfrak{X}_i , $1 \leq i \leq 6$, each of order 3 and each normalized by \mathfrak{F} . Since $\mathfrak{X}_1 \nsubseteq \widetilde{\mathfrak{F}}_0$, and since \mathfrak{X}_1 centralizes J, we have $\mathfrak{X}_1 \subseteq C_{\mathfrak{M}}(J) = \widetilde{\mathfrak{Q}}\langle I \rangle \mathfrak{X}_1 \mathfrak{X}_6$. Hence, \mathfrak{X}_1 normalizes $\widetilde{\mathfrak{Q}}$. We therefore may choose a generator X_1 of \mathfrak{X}_1 such that $X_1\widetilde{\mathfrak{Q}}$ has order 3. Namely, let X_1 be any generator for \mathfrak{X}_1 . Then $(X_1\widetilde{\mathfrak{Q}})^3 \in \langle J \rangle$, so either $(X_1\widetilde{\mathfrak{Q}})^3 = 1$ or $(X_1\widetilde{\mathfrak{Q}})^3 = J$. Since $\widetilde{\mathfrak{Q}}J = \widetilde{\mathfrak{Q}}^{-1}$, in the second case we get $(X_1\widetilde{\mathfrak{Q}}^{-1})^3 = 1$, or equivalently, $(\widetilde{\mathfrak{Q}}X_1^{-1})^3 = 1$, or equivalently, $(X_1^{-1}\widetilde{\mathfrak{Q}})^3 = 1$. Thus, we may assume that

$$(8.50)$$
 $(X_{\scriptscriptstyle 1} \widetilde{Q})^{\scriptscriptstyle 3} = 1$.

For the same reason, we may choose a generator X_2 for \mathfrak{X}_2 such that

$$(8.51) (X_2Q)^3 = 1.$$

We set $X_3 = X_1^Q$, $X_4 = X_2^{\tilde{Q}}$, $X_5 = X_3^{\tilde{Q}}$, $X_6 = X_4^Q$. Notice that

$$\langle X_i \rangle = \mathfrak{X}_i, \, 1 \leq i \leq 6.$$

It is now convenient to draw up a table listing the action of \mathfrak{F} on each \mathfrak{X}_i . This information is available since we know the action

of \mathfrak{F} on \mathfrak{X}_1 and \mathfrak{X}_2 , and we know the action of Q, \widetilde{Q} on \mathfrak{F} , and of course we know the way in which Q, \widetilde{Q} permute the \mathfrak{X}_i . The result of this calculation is given in the following self-explanatory table:

Since $Q^2 = I$, $\widetilde{Q}^2 = J$, we couple our two tables and determine the action of Q, \widetilde{Q} on \mathfrak{P}_0 , \mathfrak{P}_0 respectively. The result of this calculation is summarized below:

It remains to determine the commutation relations in \mathfrak{P} . Since \mathfrak{D} is abelian and $\mathfrak{D}_i = \mathbf{Z}(\mathfrak{P}_0)$, we get

$$[X_i, X_j] = 1 \;, \qquad 3 \le i, j \le 6 \;, \\ [X_1, X_j] = 1 \;, \qquad 4 \le j \le 6 \;.$$

Since $\langle \mathfrak{X}_3, \mathfrak{X}_5, \mathfrak{X}_6 \rangle = \mathbf{Z}(\tilde{\mathfrak{P}}_0)$, we get

$$[X_2, X_3] = [X_2, X_5] = [X_2, X_6] = 1.$$

The three remaining commutation relations can be written as follows:

$$[X_1, X_3] = X_5^a,$$

$$[X_2, X_4] = X_6^b.$$

$$[X_1, X_2] = X_3^c X_4^d X_5^e X_6^f.$$

Here $a, b, c, d, e, f \in F_3$. Since \mathfrak{P}_0 and $\tilde{\mathfrak{P}}_0$ are non abelian, we see that

 $ab \neq 0$. It follows from (8.29) that $[X_1, X_2, X_2]$ does not lie in \mathfrak{X}_5 , so $d \neq 0$. By symmetry, $c \neq 0$. To determine the values a through f explicitly, we make use of the following identities:

$$[AB, C] = [A, C][A, C, B][B, C]$$

 $[A, BC] = [A, C][A, B][A, B, C]$
 $[A^{-1}, C] = [A, C, A^{-1}]^{-1}[A, C]^{-1}$
 $[A, B^{-1}] = [A, B, B^{-1}]^{-1}[A, B]^{-1}$
 $[A^{-1}, B^{-1}] = [A, B^{-1}, A^{-1}]^{-1}[A, B^{-1}]^{-1}$.

Since X_2Q has order 3, we have

$$Q^{-1}X_{\scriptscriptstyle 2}Q = IQX_{\scriptscriptstyle 2}Q = IX_{\scriptscriptstyle 2}^{-1}Q^{-1}X_{\scriptscriptstyle 2}^{-1} = X_{\scriptscriptstyle 2}^{-1}QX_{\scriptscriptstyle 2}^{-1}$$
 .

Using this relation, conjugate (8.59) by Q, to obtain

$$[X_3, X_2^{-1}QX_2^{-1}] = X_1^{-c}X_6^dX_5^eX_4^{-f}$$
.

Since X_2 and X_3 commute, we have

$$[X_3, X_2^{-1}QX_2^{-1}] = [X_3, QX_2^{-1}]$$
 .

By the preceding identities, $[X_3, QX_2^{-1}] = [X_3, Q][X_3, Q, X_2^{-1}]$. Now

$$[X_{\scriptscriptstyle 3},\,Q]\,=\,X_{\scriptscriptstyle 3}^{\scriptscriptstyle -1}Q^{\scriptscriptstyle -1}X_{\scriptscriptstyle 3}Q\,=\,X_{\scriptscriptstyle 3}^{\scriptscriptstyle -1}X_{\scriptscriptstyle 1}^{\scriptscriptstyle -1}$$
 ,

so that

$$[X_3,\,QX_2^{-1}]=X_3^{-1}X_1^{-1}[X_3^{-1}X_1^{-1},\,X_2^{-1}]$$
 .

Since \mathfrak{X}_2 and \mathfrak{X}_3 commute, we have $[X_3^{-1}X_1^{-1}, X_2^{-1}] = [X_1^{-1}, X_2^{-1}]$. Now by the preceding identities, we have

$$egin{aligned} [X_1^{-1},\,X_2^{-1}] &= [X_1,\,X_2^{-1},\,X_1^{-1}]^{-1}[X_1,\,X_2^{-1}]^{-1} \ &= [[X_1,\,X_2,\,X_2^{-1}]^{-1}[X_1,\,X_2]^{-1},\,X_1^{-1}]^{-1} \ & imes ([X_1,\,X_2,\,X_2^{-1}]^{-1}[X_1,\,X_2]^{-1})^{-1} \ . \end{aligned}$$

Since $[X_1, X_2, X_2^{-1}] \in \mathfrak{G}_i$, it follows that

$$[[X_{\scriptscriptstyle 1},\,X_{\scriptscriptstyle 2},\,X_{\scriptscriptstyle 2}^{\scriptscriptstyle -1}]^{\scriptscriptstyle -1}[X_{\scriptscriptstyle 1},\,X_{\scriptscriptstyle 2}]^{\scriptscriptstyle -1},\,X_{\scriptscriptstyle 1}^{\scriptscriptstyle -1}]^{\scriptscriptstyle -1}=[[X_{\scriptscriptstyle 1},\,X_{\scriptscriptstyle 2}]^{\scriptscriptstyle -1},\,X_{\scriptscriptstyle 1}^{\scriptscriptstyle -1}]^{\scriptscriptstyle -1}$$
 .

We get that $[X_1^{-1}, X_2^{-1}] = X_5^{ac} X_3^c X_4^d X_5^c X_6^{f+bd}$. Since $X_3^{-1} X_1^{-1} = X_1^{-1} X_3^{-1} X_5^{-a}$, we see that $[X_3, X_2^{-1}QX_2^{-1}] = X_1^{-1} X_3^{-1} X_5^{-a+ac} X_3^c X_4^d X_5^c X_6^{f+bd}$. This gives us the following equations: c = 1, d = -f, f + bd = d. Conjugating (8.59) successively by I, I, II and using the fact that $d \neq 0$ yield the values b = -1, a = e, d = -f. No more information is forthcoming from \mathfrak{M} , so we conjugate (8.59) by \widetilde{Q} and work in $\widetilde{\mathfrak{M}}$. We state the result of these calculations:

$$(8.60) a = -1, b = -1, c = 1, d = -1, e = -1, f = 1.$$

Let $\mathfrak{R}^* = \langle \mathfrak{X}_2, \mathfrak{X}_5 \rangle$ and note that $\mathfrak{R}^* = C_{\mathfrak{P}}(I)$. By construction, $\mathfrak{X}_2 \subseteq O_3(\widetilde{\mathfrak{M}})$ and $\mathfrak{X}_3 \subseteq Z(O_3(\widetilde{\mathfrak{M}}))$. Hence,

$$C_{\mathfrak{B}}(\mathfrak{X}_{\scriptscriptstyle 2}) = C_{\mathfrak{R}}(\mathfrak{R}^*) = \langle X_{\scriptscriptstyle 2},\, X_{\scriptscriptstyle 3},\, X_{\scriptscriptstyle 5},\, X_{\scriptscriptstyle 6}
angle$$
 ,

so that $|\mathfrak{P}: C_{\mathfrak{P}}(\mathfrak{R}^*)| = 9$. With \mathfrak{R}^* in the role of \mathfrak{A} in Lemma 7.6 (c), it follows that \mathfrak{R}^* centralizes every abelian subgroup of $\mathcal{M}(\mathfrak{R}^*; 2)$.

Since $O^{\mathfrak{s}}(\mathfrak{M}) \cap C(I) = \mathfrak{R}^*\mathfrak{Q}$, it follows that \mathfrak{Q} is normalized by \mathfrak{R}^* but is not centralized by \mathfrak{R}^* . Let \mathfrak{T}^* be a $S_{2,3}$ -subgroup of C(I) which contains $\mathfrak{R}^*\mathfrak{Q}$. Then \mathfrak{T}^* contains an element $\mathscr{U}(2)$. Let \mathfrak{T}_2 be a S_2 -subgroup of \mathfrak{T}^* which contains \mathfrak{Q} . By Lemma 7.5, there is an element \mathfrak{M}_1 of $\mathscr{MS}(\mathfrak{G})$ such that $(\mathfrak{R}^*,\mathfrak{T}^*,\mathfrak{T}_2,\mathfrak{R}=O_2(\mathfrak{M}_1),\mathfrak{M}_1)$ satisfies all parts of Lemma 7.5 with \mathfrak{R}^* in the role of \mathfrak{B} , \mathfrak{R} in the role of \mathfrak{S} , \mathfrak{M}_1 in the role of \mathfrak{M} . Since by (e) of Lemma 7.5, $\mathfrak{Q} \subseteq \mathfrak{R}$, it follows that $\mathfrak{M}_1 = C(I)$. Hence, $J \in \mathfrak{M}_1$.

The next task is shown that

$$(8.61) N(\mathfrak{D}) \subseteq N(\mathfrak{P}).$$

By our preceding results, $\mathfrak{D} \triangleleft \mathfrak{P}$. It is straightforward to verify that $N_{\mathfrak{M}}(\mathfrak{D}) \subseteq N_{\mathfrak{M}}(\mathfrak{P})$. Let $\mathfrak{M}^* \in \mathscr{MS}(\mathfrak{G})$ with $N(\mathfrak{D}) \subseteq \mathfrak{M}^*$. If $\mathfrak{P} \triangleleft \mathfrak{M}^*$, we have our desired containment. Otherwise, \mathfrak{M}^* satisfies Hypothesis 8.1. Hence, $N(\mathfrak{D}) = N_{\mathfrak{M}^*}(\mathfrak{D}) \subseteq N_{\mathfrak{M}^*}(\mathfrak{P}) \subseteq N(\mathfrak{P})$, as desired.

We next show that

$$(8.62) if X \in \mathfrak{X}_2^{\sharp}, Y \in \mathfrak{X}_5^{\sharp}, then |C(XY)|_3 = 3^4.$$

Let Z=XY. Let $X^*=X^{\widetilde{\varrho}}$, $Y^*=Y^{\widetilde{\varrho}}$, $Z^*=X^*Y^*$. Then $X^*\in\mathfrak{X}_4$, $Y^*\in\mathfrak{X}_3$, so it suffices to show that \mathfrak{D} is a S_3 -subgroup of $C(Z^*)$. Suppose false. Let $\widetilde{\mathfrak{D}}$ be a S_3 -subgroup of $C(\mathfrak{X}^*)$ which contains \mathfrak{D} , and let $\mathfrak{D}\subseteq\mathfrak{D}^*\subseteq\widetilde{\mathfrak{D}}$, with $|\mathfrak{D}^*:\mathfrak{D}|=3$. Then $\mathfrak{D}^*\subseteq N(\mathfrak{D})\subseteq N(\mathfrak{P})$, so $\mathfrak{D}^*\subseteq\mathfrak{P}$. However, $\mathfrak{D}=C_{\mathfrak{P}}(Z^*)$. Notice that we have shown that $\mathfrak{D}\triangle C(Z^*)$. Namely, \mathfrak{D} is a S_3 -subgroup of $C(Z^*)$, and since $\mathfrak{D}\in\mathscr{S}_{eng}(P)$, we have $O_{\mathfrak{F}'}(C(Z^*))=1$ so that

(8.63)
$$\mathfrak{D}$$
 is a normal S_3 -subgroup of $C(Z^*)$.

Retaining the preceding notation we will show that $\langle I \rangle = C_{\Re}(Z)$. Suppose false. Since $\langle I \rangle = C_{\Re}(\Re^*)$, it follows that $1 \neq [C_{\Re}(Z), \Re^*]$. This violates the fact that C(Z) is 3-closed by (8.63).

We next observe that $\mathfrak{X}_2 \sim \mathfrak{X}_6$ so that $|C(\mathfrak{X}_2)|_2 = |C(\mathfrak{X}_5)|_2 = 8$. These equalities together with the preceding paragraph show that \mathfrak{R} is extra special of width 2 and that

(8.64)
$$\Re$$
 is the central product of quaternion groups $\mathfrak{Q}, \mathfrak{Q}_1, \text{ where } \mathfrak{Q} = C_{\mathfrak{P}}(\mathfrak{X}_5), \mathfrak{Q}_1 = C_{\mathfrak{P}}(\mathfrak{X}_2)$.

This choice of notation conforms with our previous definition of \mathbb{Q} . Since \Re^* maps onto a S_3 -subgroup of $\mathfrak{A}_{\mathfrak{S}}(\Re)$, it follows that $\Re^* \Re < \mathfrak{M}_1$. Let

$$\mathfrak{L} = N_{\mathfrak{M}_1}(\mathfrak{R}^*) ,$$

so that $\mathfrak{L} \cap \mathfrak{R} = \langle I \rangle$, and $\mathfrak{M}_1 = \mathfrak{RL}$. \mathfrak{L} acts as a permutation group on the subgroups of \mathfrak{R}^* of order 3. By the previous arguments, \mathfrak{X}_2 and \mathfrak{X}_5 are permuted among themselves. Let

$$\mathfrak{L}^* = N_{\mathfrak{Q}}(\mathfrak{X}_2) = N_{\mathfrak{Q}}(\mathfrak{X}_5)$$

so that $|\mathfrak{L}:\mathfrak{L}^*| \leq 2$. Also, if $L \in \mathfrak{L}^*$ and L centralizes \mathfrak{X}_5 , then $L \in \mathfrak{R}^* \langle I \rangle$. Hence, $\mathfrak{L}^* = \mathfrak{R}^* \mathfrak{G}$, and $|\mathfrak{M}_1: \mathfrak{R}\mathfrak{L}^*| \leq 2$. Let \mathfrak{L}_2 be a S_2 -subgroup of \mathfrak{L} which contains \mathfrak{G} . Thus, $|\mathfrak{L}_2| = 4$ or 8.

We must now show that

$$\mathfrak{L}=\mathfrak{L}^*.$$

Suppose false. Since $\mathfrak{R}^{*\tilde{\varrho}} = \langle \mathfrak{X}_3, \mathfrak{X}_4 \rangle$, it follows that $\mathfrak{L}^{\tilde{\varrho}}$ normalizes $\langle \mathfrak{X}_3, \mathfrak{X}_4 \rangle$. From (8.63), we conclude that \mathfrak{D} char $C(\mathfrak{X}_3\mathfrak{X}_4)$. Hence, $N(\mathfrak{X}_3\mathfrak{X}_4) \subseteq N(\mathfrak{D})$. Now by (8.61), we have $N(\mathfrak{D}) \subseteq N(\mathfrak{P})$. Thus $\mathfrak{L}^{\tilde{\varrho}}$ normalizes \mathfrak{P} .

It is a straightforward consequence of (8.55) through (8.60) that $\mathfrak{P}_0 \cup \widetilde{\mathfrak{P}}_0$ is the set of elements of \mathfrak{P} of order at most 3. Hence, \mathfrak{P} contains exactly $3^6 - 2 \cdot 3^5 + 3^4 = 4.3^4$ elements of order 9. Thus, some involution I_0 of $\mathfrak{L}_2^{\widetilde{Q}}$ centralizes an element P of \mathfrak{P} of order 9. It is clear from (8.53) that $I_0 \notin \mathfrak{P}$.

If $X \in \mathfrak{X}_3^*\mathfrak{X}_3^*$, we will show that $C(X) \subseteq N(\mathfrak{P})$. Suppose false. Let $\mathfrak{M}^* \in \mathscr{MS}(\mathfrak{G})$ with $C(X) \subseteq \mathfrak{M}^*$. We may apply all the preceding results to \mathfrak{M}^* in place of \mathfrak{M} and conclude that $O_3(\mathfrak{M}^*)$ is of exponent 3 and order 3. However, \mathfrak{P}_0 and $\widetilde{\mathfrak{P}}_0$ are the only subgroups of \mathfrak{P} meeting these conditions, so $C(X) \subseteq \mathfrak{M}$ or $C(X) \subseteq \widetilde{\mathfrak{M}}$, from which the desired containment is obvious. In particular,

(8.68)
$$C(P^3) \subseteq N(\mathfrak{P})$$
.

Let \mathfrak{R}_2 be a S_2 -subgroup of $N(\mathfrak{P})$ which contains $\mathfrak{L}_2^{\widetilde{q}}$. By (8.23) \mathfrak{R}_2 is faithfully represented on $\mathfrak{B} = \mathbf{Z}(\mathfrak{P}) = \langle \mathfrak{X}_5, \mathfrak{X}_6 \rangle$. It is clear that Aut (\mathfrak{P}) is a 2, 3-group, so we conclude that

$$N(\mathfrak{P}) = \mathfrak{P}\mathfrak{P}^{\mathfrak{F}}.$$

It now follows from (8.68), (8.69), and (8.53) that

$$(8.70) C(P^3) = \mathfrak{P}\langle I_0 \rangle.$$

By hypothesis, $C(I_0)$ is solvable. Let $\mathfrak{F} = O_2(C(I_0))$. Suppose $\langle P \rangle$ acts faithfully on \mathfrak{F} . Then $m(\mathfrak{F}) \geq 6$, since P has order 9. But \mathfrak{M}_1

N-GROUPS II

487

contains a S_2 -subgroup of \mathfrak{G} , and since S_2 -subgroups of \mathfrak{M}_1 are extensions of \mathfrak{R} by a 4 group, it follows that every 2-subgroup of \mathfrak{G} is generated by 4-elements (naturally, this uses the action of the 4-group on \mathfrak{R}). Hence, P^3 centralizes \mathfrak{F} . By (8.70), we get $\mathfrak{F} = \langle I_0 \rangle$.

By Lemma 5.38 (a)(ii), $C(I_0)$ contains an element $\mathfrak U$ of $\mathscr U(2)$. Since $O_2(C(I_0)) = \langle I_0 \rangle$, we get that $O_{2,2'}(C(I_0)) = \langle I_0 \rangle \times O_{2'}(C(I_0))$, so that by Lemma 7.1, $\mathfrak U$ centralizes $O_{2,2'}(C(I_0))$. But $C(I_0)$ is solvable, so that $O_{2,2'}(C(I_0))$ contains its centralizer. Thus, $\mathfrak U \subseteq O_{2,2'}(C(I_0))$, an absurdity. This contradiction establishes (8.67). Notice that (8.67) is equivalent to

$$\mathfrak{M}_{1} = \mathfrak{RR}^{*}\langle J \rangle.$$

Since J inverts \Re^* , it follows that $\mathfrak{Q}\langle J\rangle$ and $\mathfrak{Q}_1\langle J\rangle$ are both isomorphic to S_2 -subgroups of GL(2,3). This implies that

(8.72)
$$C_{\mathfrak{M}_1}(J)$$
 is elementary of order 8.

The hard work is now completed. We may now determine the Weyl group. Recall that $I_1 = JQ$, $I_2 = I\widetilde{Q}$, so that I_1 and I_2 are involutions. Let $W = I_1I_2$. Thus W^3 centralizes \mathfrak{F} . Since W centralizes no element of \mathfrak{F}^{\sharp} , W^3 is not in \mathfrak{F}^{\sharp} . Since $W^3 \in O(\mathfrak{F}) \subseteq \mathfrak{M}_1$, and since the structure of $C_{\mathfrak{M}_1}(J)$ is given in (8.72), it follows that $W^6 = 1$, so that W is of order 3 or 6.

From (8.49), we get that $\mathfrak{X}_1^{W^3}=\mathfrak{X}_1^{I_2}\neq\mathfrak{X}_1$, and conclude that W is of order 6. Thus,

(8.73) $W_0 = W^3$ is an involution in the center of $\langle I_1, I_2 \rangle = \mathfrak{W}_0$.

We argue that

$$(8.74)$$
 $\mathfrak{P} \cap \mathfrak{P}^{W_0} = 1$.

Since $\mathfrak{P} \cap \mathfrak{P}^{w_0}$ is normalized by \mathfrak{P} and by W_0 , (8.53) implies that if $\mathfrak{P}^* = \mathfrak{P} \cap \mathfrak{P}^{w_0}$, then

$$\mathfrak{P}^*=(\mathfrak{P}^*\cap \langle\mathfrak{X}_{\scriptscriptstyle 1},\,\mathfrak{X}_{\scriptscriptstyle 6}\rangle)(\mathfrak{P}^*\cap \langle\mathfrak{X}_{\scriptscriptstyle 2},\,\mathfrak{X}_{\scriptscriptstyle 5}\rangle)(\mathfrak{P}^*\cap \langle\mathfrak{X}_{\scriptscriptstyle 3},\,\mathfrak{X}_{\scriptscriptstyle 4}\rangle)\;\text{.}$$

If $X \in \mathfrak{X}_3^* \mathfrak{X}_4^*$, we know that $C(X) \subseteq N(\mathfrak{D})$. This fact, coupled with (8.49) implies that $\mathfrak{P}^* = 1$, so that (8.74) holds.

Let $\mathfrak{B} = \mathfrak{PS}$. (No confusion with previous notation is to be feared.) We then get that $\mathfrak{M} = \mathfrak{B} \cup \mathfrak{B}I_1\mathfrak{B}$, $\widetilde{\mathfrak{M}} = \mathfrak{B} \cup \mathfrak{B}I_2\mathfrak{B}$. Hence, (8.49) implies that conditions (i') and (iv) of Théorème 1 of [40] are satisfied. Hence, $\mathfrak{B}\mathfrak{B}_0\mathfrak{B} = \mathfrak{G}_0$ is a group and if we let \mathfrak{B}_X be the largest subset of \mathfrak{B} such that $\mathfrak{B}_X^x \subseteq \mathfrak{P}^{w_0}$, it follows easily from (8.74) that each element of \mathfrak{G}_0 has a unique representation of the shape BXB_X , $B \in \mathfrak{B}$, $X \in \mathfrak{B}_0$, $B_X \in \mathfrak{B}_X$. Thus, $|\mathfrak{G}_0| = |E_2(3)|$, by an easy calculation. Hence, (8.41), (8.50), (8.51), (8.53), (8.54), (8.57), (8.58), (8.59), (8.60), (8.73) determine the multiplication table of \mathfrak{G}_0 . Thus, if \mathfrak{G}^* is any group which satisfies

the hypothesis of Theorem 8.1 and also satisfies Hypothesis 8.1, it follows that \mathfrak{G}^* contains a subgroup isomorphic to \mathfrak{G}_0 . Since we may take $\mathfrak{G}^* = E_2(3)$, it follows that $\mathfrak{G}_0 \cong E_2(3)$, and so $i(\mathfrak{G}_0) = 1$. Clearly, \mathfrak{G}_0 contains \mathfrak{M}_1 , so that \mathfrak{G}_0 contains the centralizer of each of its involutions. Hence, $i(\mathfrak{G}) = 1$, by Lemma 5.35.

Since $E_2(3)$ does not satisfy $E_{7,13}$ (by Sylow's theorem), it follows from Lemma 5.35 that $\mathfrak{G}_0=\mathfrak{G}\cong E_2(3)$.

The remaining lemmas are proved under the following hypothesis:

HYPOTHESIS 8.2. Whenever $\mathfrak{P} \subseteq \mathfrak{MS}(\mathfrak{G})$ and $\mathfrak{V} = \Omega_1(\mathbf{Z}(\mathfrak{P}))^{\mathfrak{M}}$, then $V(ccl_{\mathfrak{M}}(\mathfrak{D}); \mathfrak{P}) \subseteq C_{\mathfrak{M}}(\mathfrak{P})$.

We must derive a contradiction from this hypothesis. When this is done, the proof of Theorem 8.1 will be complete.

LEMMA 8.7. If \mathfrak{T} is a 2, 3-subgroup of \mathfrak{G} and \mathfrak{T}_3 is a S_3 -subgroup of \mathfrak{T} , then $V(ccl_{\mathfrak{G}}(\mathfrak{D});\mathfrak{T}_3) \triangleleft \mathfrak{T}$.

Proof. We assume without loss of generality that $\mathfrak{T}_3 \subseteq \mathfrak{P}$. First, suppose $\mathfrak{T}_3 = \mathfrak{P}$. Let $\mathfrak{T} \subseteq \mathfrak{M} \in \mathscr{MS}(\mathfrak{G})$, and let \mathfrak{T}^* be a $S_{2,3}$ -subgroup of \mathfrak{M} containing \mathfrak{T} . Let $\mathfrak{V} = \mathfrak{Q}_1(\mathbf{Z}(\mathfrak{P}))^{\mathfrak{M}}$, $\mathfrak{C} = \mathbf{C}_{\mathfrak{M}}(\mathfrak{P})$. As $\mathfrak{C} \triangleleft \mathfrak{M}$, $\mathfrak{C} \cap \mathfrak{T}^*$ is a $S_{2,3}$ -subgroup of \mathfrak{C} . By Hypothesis 8.2, $\mathfrak{V}^* \subseteq \mathfrak{C} \cap \mathfrak{T}^*$, where $\mathfrak{V}^* = \mathfrak{V}(ccl_{\mathfrak{G}}(\mathfrak{D}); \mathfrak{P})$. Since $\mathfrak{V} \subseteq \mathfrak{V}$, Lemmas 7.4 and 5.38 imply that $|\mathfrak{C} \cap \mathfrak{T}^*|$ is odd. Hence, $\mathfrak{C} \cap \mathfrak{T}^* \triangleleft \mathfrak{T}^*$ implies $\mathfrak{V}^* = \mathbf{V}(ccl_{\mathfrak{G}}(\mathfrak{D}); \mathfrak{C} \cap \mathfrak{T}^*) \triangleleft \mathfrak{T}^*$.

We may now assume that $\mathfrak{T}_3 \subset \mathfrak{P}$. We proceed by induction on $|\mathfrak{P}|/|\mathfrak{T}_3|$. Let $\mathfrak{B}^* = V(ccl_{\mathfrak{V}}(\mathfrak{D});\mathfrak{T}_3)$. As \mathfrak{B}^* is generated by conjugates of \mathfrak{B} , it follows that \mathfrak{B}^* centralizes $O_2(\mathfrak{T})$. Hence, if $\mathfrak{B}^* \neq 1$, then $O_2(\mathfrak{T}) = 1$, so that $O_{2,3}(\mathfrak{T}) = O_3(\mathfrak{T})$. If $\mathfrak{B}^* = 1$, the lemma is trivial, so suppose $\mathfrak{B}^* \neq 1$. In particular, $O_3(\mathfrak{T}) \neq 1$. If \mathfrak{T}_3 is not a S_3 -subgroup of $N(O_3(\mathfrak{T}))$, let \mathfrak{T}^* be a $S_{2,3}$ -subgroup of $N(O_3(\mathfrak{T}))$ containing \mathfrak{T} , and let \mathfrak{T}_3^* be a S_3 -subgroup of \mathfrak{T}^* which contains \mathfrak{T}_3 . Then $V(ccl_{\mathfrak{V}}(\mathfrak{D});\mathfrak{T}_3^*) \triangleleft \mathfrak{T}^*$. In particular, $[\mathfrak{B}^*,\mathfrak{T}]$ is a 3-group, so $\mathfrak{B}^* \triangleleft \mathfrak{T}$. Hence, we may assume that \mathfrak{T}_3 is a S_3 -subgroup of $N(O_3(\mathfrak{T}))$.

Let $\mathfrak{B}_0 = \Omega_1(\mathbf{Z}(O_3(\mathfrak{T})))$, so that $\mathfrak{B} \subseteq \mathfrak{B}_0$. Since $|C_T(\mathfrak{B}_0)|$ is odd, it follows that $O_3(\mathfrak{T}) = C_{\mathfrak{T}}(\mathfrak{B}_0)$. Suppose $\mathfrak{B}^* \not\subseteq O_2(\mathfrak{T})$. Choose G in \mathfrak{G} so that $\mathfrak{D}^G \subseteq \mathfrak{B}^*$ but $\mathfrak{D}^G \not\subseteq O_3(\mathfrak{T})$, and for any subset \mathfrak{S} of \mathfrak{G} , let $\mathfrak{S}^* = \mathfrak{S}^G$.

It is a straightforward consequence of Hypothesis 8.2 that $\mathfrak{D}'=1$.

As $\mathfrak{D}^{\boldsymbol{\cdot}}$ acts nontrivially on $Q_{\mathfrak{I}}^{\boldsymbol{\cdot}}(\mathfrak{T})$, we let \mathfrak{D} be a $\mathfrak{D}^{\boldsymbol{\cdot}}$ -invariant subgroup of $Q_{\mathfrak{I}}^{\boldsymbol{\cdot}}(\mathfrak{T})$ minimal subject to $[\mathfrak{D}^{\boldsymbol{\cdot}},\mathfrak{D}]\neq 1$. Let $\mathfrak{D}^{\boldsymbol{\cdot}}_{\mathfrak{I}}=C_{\mathfrak{D}^{\boldsymbol{\cdot}}}(\mathfrak{D})$, so that $|\mathfrak{D}^{\boldsymbol{\cdot}}:\mathfrak{D}^{\boldsymbol{\cdot}}_{\mathfrak{I}}|=3$. Thus, $\widetilde{\mathfrak{M}}_{\mathfrak{I}}=C_{\mathfrak{M}_{\mathfrak{I}}}(\mathfrak{D}^{\boldsymbol{\cdot}}_{\mathfrak{I}})$ is invariant under $\mathfrak{D}^{\boldsymbol{\cdot}}$ and \mathfrak{D} .

Let $N = \{i \mid 1 \leq i \leq 4, \mathfrak{B}_i \subseteq \mathfrak{D}_i, \mathfrak{D}_i \not\subseteq \mathfrak{D}_i\}$. If $\mathfrak{B}^{\bullet} \subseteq \mathfrak{D}_i$, then it is obvious that $N \neq \emptyset$. If $\mathfrak{B}^{\bullet} \subseteq \mathfrak{D}_i$, then no \mathfrak{D}_i is contained in \mathfrak{D}_i , $1 \leq i \leq 4$. Since $\mathfrak{B}^{\bullet} \cap \mathfrak{D}_i$ is of order 3 in this case, we again conclude that $N \neq \emptyset$. Choose $i \in N$. Thus, $\mathfrak{D}^{\bullet} = \langle \mathfrak{D}_i, \mathfrak{D}_i \rangle$ and $|\mathfrak{D}_i: \mathfrak{D}_i \cap \mathfrak{D}_i| =$

3. Since $\mathfrak Q$ is faithfully represented on $\widetilde{\mathfrak W}_0$, it follows that $[\mathfrak D^*_i,\,\widetilde{\mathfrak W}_0]\neq 1$. By Lemma 8.5, $[\mathfrak Q,\,\widetilde{\mathfrak W}_0]$ is of order 9 and is not centralized by $\mathfrak D^*$. Since $\mathfrak B\subseteq \mathfrak B_0$, so also $\mathfrak B\subseteq \widetilde{\mathfrak W}_0$. Hence, $\mathfrak Q$ centralizes some B of $\mathfrak B^*$, so if $\mathfrak Q=\mathfrak Q^*/C_{\mathfrak X}(\mathfrak B_0)$, then $\langle \mathfrak D^*,\,\mathfrak Q^*\rangle\subseteq C(B)$. By the preceding argument, $[\mathfrak Q^*,\,\mathfrak D^*]$ is a 3-group, violating the nontrivial action of $\mathfrak D^*$ on $\mathfrak Q$. Thus, $\mathfrak B^*\subseteq O_3(\mathfrak X)$, and so $\mathfrak B^* \triangleleft \mathfrak X$, completing the proof of this lemma.

For the remainder of this section, we let

$$\mathfrak{V} = V(ccl_{\mathfrak{S}}(\mathfrak{D}); \mathfrak{P}), \mathfrak{N} = N(\mathfrak{V})$$
.

LEMMA 8.8. (i) \Re contains no element of $\mathcal{J}(2)$. (See Definition 2.9.)

- (ii) If \mathfrak{T}_0 is any 2-subgroup of \mathfrak{N} , then $A_{\mathfrak{N}}(\mathfrak{T}_0)$ does not contain a subgroup of type (3,3).
- (iii) If \mathbb{C} is any subgroup of $\mathbf{Z}(\mathfrak{B})$ of type (3, 3), then $(\mathfrak{A}, \mathbb{C}) \in \mathcal{N}$ for all $\mathfrak{A} \in \mathcal{U}(2)$. (See Definition 7.2).
 - (iv) If \mathfrak{T}_1 is an abelian 2-subgroup of \mathfrak{R} , the $A_{\mathfrak{R}}(\mathfrak{T}_1)$ is a 3'-group.

Proof. We first prove (iii). We invoke Lemma 7.4, so that (iii) will hold if we can show that \mathfrak{C} centralizes every element of $\mathsf{M}(\mathfrak{C};2)$. Suppose $\mathfrak{D} \in \mathsf{M}(\mathfrak{C};2)$ is minimal subject to $[\mathfrak{D},\mathfrak{C}] \neq 1$. Let $\mathfrak{C}_0 = C_{\mathfrak{C}}(\mathfrak{D}) \neq 1$. Let \mathfrak{T} be a $S_{2,3}$ -subgroup of $C(\mathfrak{C}_0)$ containing $\mathfrak{C}\mathfrak{D}$. Since $C(\mathfrak{C}_0) \supseteq \mathfrak{B}$, it follows that if \mathfrak{T}_0 is a $S_{2,3}$ -subgroup of $C(\mathfrak{C}_0)$ containing \mathfrak{B} , then $\mathfrak{B} \subseteq O_3(\mathfrak{T}_0)$. By Lemma 0.7.5, we have $\mathfrak{C} \subseteq O_3(\mathfrak{T})$, so that $[\mathfrak{D},\mathfrak{C}] \subseteq \mathfrak{D} \cap O_3(\mathfrak{T}) = 1$. (iii) is proved.

Let $\mathfrak{T} \in \mathscr{J}(2)$, $\mathfrak{T} \subseteq \mathfrak{R}$. We may assume that \mathfrak{T} is a noncyclic abelian group of order 8. Since $\mathfrak{B} \subseteq \mathbf{Z}(\mathfrak{B})$, $\mathbf{Z}(\mathfrak{B})$ is noncyclic. Hence, \mathfrak{T} contains an involution I such that $C(I) \cap \mathbf{Z}(\mathfrak{B})$ is noncyclic. Thus, C(I) contains an element of $\mathscr{U}(2)$ and also a subgroup \mathfrak{C} of $\mathbf{Z}(\mathfrak{B})$ of type (3,3). By hypothesis, C(I) is solvable, in violation of (iii). (i) is proved.

(ii) is a straightforward consequence of (i).

To prove (iv), let \mathfrak{T}_1 be an abelian 2-subgroup of \mathfrak{R} minimal subject to $3 \mid A_{\mathfrak{R}}(\mathfrak{T}_1) \mid$. Thus, \mathfrak{T}_1 is a four-group, and the involutions of \mathfrak{T}_1 are all \mathfrak{R} -conjugate. Thus, (iii) implies that $C(I) \cap Z(\mathfrak{B})$ is cyclic for all $I \in \mathfrak{T}_1^*$. This implies that $|\mathcal{Q}_1(Z(\mathfrak{B}))| \leq 3^3$. Since the reverse inequality holds by (B), we find that $Z(\mathfrak{P}) \cap Z(\mathfrak{B})$ is cyclic. This is not the case, since $\mathfrak{B} \subseteq Z(\mathfrak{P}) \cap Z(\mathfrak{B})$. (iv) is proved.

LEMMA 8.9. If \mathfrak{T} is a 2, 3-subgroup of \mathfrak{G} and \mathfrak{T} contains a conjugate of \mathfrak{B} , then \mathfrak{T} is contained in conjugate of \mathfrak{R} .

Proof. We assume without loss of generality that \mathfrak{T} is a maximal

2, 3-subgroup of \mathfrak{G} , and that $\mathfrak{B} \subseteq \mathfrak{T}$. Since \mathfrak{B} centralizes $O_2(\mathfrak{T})$, it follows that $O_2(\mathfrak{T}) = 1$, and so $O_3(\mathfrak{T}) \neq 1$. Let \mathfrak{T}_3 be a S_3 -subgroup of \mathfrak{T} . By maximality of \mathfrak{T} , \mathfrak{T}_3 is a S_3 -subgroup of $N(O_3(\mathfrak{T}))$. We assume without loss of generality that $\mathfrak{T}_3 \subseteq \mathfrak{P}$. This implies that $\mathfrak{B} \subseteq Z(O_3(\mathfrak{T}))$.

If $\mathfrak T$ contains a conjugate of $\mathfrak D$, we are done by Lemma 8.7. We therefore suppose that for each G in $\mathfrak G$, $\mathfrak D^G \not\subseteq \mathfrak T$.

Suppose $1 \leq i \leq 4$, and $\mathfrak{D}_i \cap O_3(\mathfrak{T}) = \mathfrak{D}_i \cap \mathfrak{T}_3$. We conclude that $\mathfrak{D}_i \subseteq O_3(\mathfrak{T})$. Since $\mathfrak{D} \not\subseteq \mathfrak{T}_3$, we may choose i with $1 \leq i \leq 4$ such that $\mathfrak{D}_i \cap O_3(\mathfrak{T}) \subset \mathfrak{D}_i \cap \mathfrak{T}_3$. Set $\mathfrak{F} = \mathfrak{D}_i \cap O_3(\mathfrak{T})$, $\mathfrak{F}^* = \mathfrak{D}_i \cap \mathfrak{T}_3$. The index i is fixed in the following discussion. We note that \mathfrak{F} and \mathfrak{F}^* are normal elementary subgroups of \mathfrak{T}_3 .

Let $\mathfrak Q$ be a $\mathfrak F^*$ -invariant subgroup of $Q_3^{\mathfrak h}(\mathfrak T)$ minimal subject to $[\mathfrak F^*, \mathfrak Q] \neq 1$. Thus, $\mathfrak F^*$ acts irreducibly on the Frattini quotient group of $\mathfrak Q$. We remark that $\mathfrak Q$ is available, since $O_2(\mathfrak T) = 1$.

Let $\mathfrak{B}_0 = \Omega_1(\mathbf{Z}(\mathbf{O}_3(\mathfrak{T})))$, so that $\mathfrak{B} \subseteq \mathfrak{B}_0$.

Choose $Q \in \mathfrak{Q} - \mathfrak{Q}'$. We will show that $\mathfrak{B}^q \cap C(\mathfrak{D}_i) = 1$. Suppose false, and that B in \mathfrak{B}^* satisfies $B^q \in C(\mathfrak{D}_i)$. Hence, for D in \mathfrak{F}^* ($\subseteq \mathfrak{D}_i$), we have $B^{qp} = B^q$, or $B^{qpq^{-1}} = B$. Hence, $QDQ^{-1}D^{-1}$ centralizes B for each D in \mathfrak{F}^* . This implies that \mathfrak{Q} centralizes B. Apply Lemma 8.7 to C(B) and conclude that if $\mathfrak{Q} = \mathfrak{Q}^*/O_3(\mathfrak{T})$, then $[\mathfrak{Q}^*, \mathfrak{F}^*]$ is a 3-group. As this violates the nontrivial action of \mathfrak{F}^* on \mathfrak{Q} , the assertion follows.

Since $\mathfrak{B}^q \subseteq O_3(\mathfrak{T}) \subseteq \mathfrak{T}_3 \subseteq \mathfrak{P}$, we have $\mathfrak{B}^q \subseteq N(\mathfrak{D}_i)$. Since \mathfrak{D}_i is 3-reducible in $N(\mathfrak{D}_i)$, it follows that \mathfrak{B}^q is faithfully represented on $\mathfrak{L} = O_3/(N(\mathfrak{D}_i)/C(\mathfrak{D}_i))$. On the other hand, if $B \in \mathfrak{B}^\sharp$, then $[C(B)^q, \mathfrak{B}^q, \mathfrak{B}^q] = 1$. This implies that \mathfrak{B}^q centralizes every 2'-subgroup of \mathfrak{L} which \mathfrak{B}^q normalizes. Thus, there is a 2-subgroup \mathfrak{T}_0 of $N(\mathfrak{D}_i)$ such that $A_{N(\mathfrak{D}_i)}(\mathfrak{T}_0)$ contains a subgroup of type (3,3). This violates Lemma 8.8 by $D_{2,3}$ in $N(\mathfrak{D}_i)$. The proof is complete.

LEMMA 8.10. If \mathbb{C} is any subgroup of \mathbb{G} of type (3, 3), then \mathbb{C} centralizes every abelian subgroup in $\mathsf{M}(\mathbb{C}; 2)$.

Proof. Suppose $\mathfrak Q$ is a four-group in $\mathsf M(\mathfrak C;2)$ with $[\mathfrak Q,\mathfrak C]\neq 1$. Let $\mathfrak C_0=C_{\mathfrak C}(\mathfrak Q)$. Let $\mathfrak T$ be a $S_{2,3}$ -subgroup of $C(\mathfrak C_0)$ which contains $\mathfrak C\mathfrak Q$. By Lemma 8.9, $\mathfrak T^G\subseteq\mathfrak R$ for some G in $\mathfrak G$. Lemma 8.8 (iv) is violated.

LEMMA 8.11. Hypothesis 7.2 is satisfied with p = 2. Furthermore, \mathfrak{M} has the following properties:

- (i) S_3 -subgroups of \mathfrak{M} are noncyclic.
- (ii) \mathfrak{M} is a 2, 3-group.
- (iii) M contains no elementary subgroup of order 27.
- (iv) $m(\mathfrak{M}_0) \leq 2$ for every 3-subgroup \mathfrak{M}_0 of \mathfrak{M} .

Proof. Let $\mathfrak T$ be a 2, 3-subgroup of $\mathfrak S$ which contains elements of $\mathcal T(2)$ and $\mathcal T(3)$; $\mathfrak T$ is available by hypothesis (vii) of Theorem 8.1. We assume without loss of generality that $\mathfrak T$ is a maximal 2, 3-subgroup of $\mathfrak S$. By Lemma 8.8 (i), $\mathfrak T$ is contained in no conjugate of $\mathfrak R$. By Lemma 8.9, $\mathfrak T$ contains no conjugate of $\mathfrak S$. This fact together with maximality of $\mathfrak T$ implies that $O_3(\mathfrak T)=1$.

Let $\mathfrak C$ be a subgroup of $\mathfrak T$ of type (3,3) and let $\mathfrak T_3$ be a S_3 -subgroup of $\mathfrak T$ containing $\mathfrak C$. By Lemma 8.10, $\mathfrak C$ centralizes $Z(O_2(\mathfrak T))$. Hence, $\mathcal Q_1(\mathfrak T_3)$ centralizes $Z(O_2(\mathfrak T))$. By Lemma 8.9, each $S_{2,3}$ -subgroup of $N(\mathcal Q_1(\mathfrak T_3))$ is contained in a conjugate of $\mathfrak R$. Hence, $\mathfrak T_2$ centralizes $Z(O_2(\mathfrak T))$ by Lemma 8.8 (iv). By hypothesis (iv) of Theorem 8.1, $\mathfrak T \cdot C(Z(O_2(\mathfrak T)))$ is solvable, so by maximality of $\mathfrak T$, we conclude that $\mathfrak T$ is a $S_{2,3}$ -subgroup of $\mathfrak T \cdot C(Z(O_2(\mathfrak T)))$. Hence, we can choose a S_2 -subgroup $\mathfrak P_2$ of $\mathfrak S$ such that $\mathfrak P_2 \cap \mathfrak T = \mathfrak T_2$ is a S_2 -subgroup of $\mathfrak T$, and be guaranteed that $Z(\mathfrak P_2) \subseteq Z(O_2(\mathfrak T))$. Hence, $\mathfrak T \subseteq C(Z(\mathfrak P_2))$, so by maximality of $\mathfrak T$, we have $\mathfrak T_2 = \mathfrak P_2$.

By Lemma 7.4, $\Omega_1(\mathbf{Z}(\mathbf{O}_2(\mathfrak{T}))) = \Omega_1(\mathbf{Z}(\mathfrak{T}_2))$ is of order 2 and

$$N(\Omega_{\scriptscriptstyle 1}(Z(\mathfrak{T}_{\scriptscriptstyle 2})))=\mathfrak{M}\in\mathscr{MS}(G)$$
 .

By construction, $\mathfrak{T}_3 \subseteq \mathfrak{M}$, so (i) is satisfied. By Lemma 7.5, $O_2(\mathfrak{M}) = \mathfrak{S}$ is of symplectic type with $w \leq 4$. (ii) is an easy consequence of this fact together with (i).

Suppose $\mathfrak G$ is an elementary subgroup of $\mathfrak M$ of order 27. Clearly, the width of $\mathfrak S$ is at least 3. By Lemma 7.5, no element of $\mathfrak G^*$ centralizes any four-subgroup of $\mathfrak S$. This is obviously impossible.

It remains to prove (iv). By Lemma 7.5 (c), \mathfrak{M}_0 is isomorphic to a subgroup \mathfrak{M}_1 of $(Z_3 \ S_3) \times Z_3$. By Lemma 8.11 (iii), the intersection of \mathfrak{M}_1 with the normal abelian subgroup \mathfrak{A} such that $m(\mathfrak{A}) = 4$ in $(Z_3 \sim Z_3) \times Z_3$, is of order at most 3^2 . It follows that \mathfrak{M}_0 is either trivial, abelian of type (3), (3, 3) or (3², 3), or non abelian of order 3^3 . In all cases, $m(\mathfrak{M}_0) \leq 2$. The proof is complete.

Let $\mathfrak C$ be a subgroup of $\mathfrak M$ of type (3,3), let $\mathfrak T_3$ be a S_3 -subgroup of $\mathfrak M$ containing $\mathfrak C$, and let $\mathfrak S_1 = [\mathfrak S,\mathfrak C]$, where $\mathfrak S = O_2(\mathfrak M)$. Let I be the involution of $\mathfrak S'$. Choose C in $\mathfrak C^*$ so that $C_{\mathfrak S_1}(C) = \mathfrak D$ is not centralized by $\mathfrak C$. We may assume that $C_{\mathfrak M}(C) \subseteq \mathfrak N$, since replacing $\mathfrak M$ by a suitable conjugate guarantees this. Let $\mathfrak L$ be a $S_{2,3}$ -subgroup of $\mathfrak M$ containing $\mathfrak C\mathfrak D$. This notation is fixed throughout the concluding argument.

Lemma 8.12. (i) Ω is a quaternion group.

- (ii) \Re is a 2, 3-group.
- (iii) $\mathfrak{R} \in \mathscr{MS}(\mathfrak{G})$ and \mathfrak{R} is the only element of $\mathscr{MS}(\mathfrak{G})$ which contains \mathfrak{P} .
 - (iv) \Re is the only element of $\mathscr{MS}(\mathfrak{G})$ which contains \mathfrak{C} .

Proof. Since \mathfrak{G}_i is extra special, so is \mathfrak{Q} . Since $\mathfrak{Q} \subseteq O^{\mathfrak{F}}(\mathfrak{N})$, Lemma 8.8 and Lemma 5.27 imply (i)

By (i) and Lemma 8.8, $\mathfrak Q$ is a S_2 -subgroup of $O^{\mathfrak F}(\mathfrak R)$. Clearly, since $\mathfrak M$ is a 2, 3-group, $N_{\mathfrak R}(\mathfrak Q)$ is a 2, 3-group. Since $\mathfrak G\mathfrak Q \subseteq O^{\mathfrak F}(\mathfrak R)$, it follows that $\mathfrak Q \subseteq O^{\mathfrak F}(\mathfrak R)'$. Hence, $\mathfrak Q$ has a normal complement $\mathfrak R$ in $O^{\mathfrak F}(\mathfrak R)'$. To prove (ii), it suffices to show that $\mathfrak R$ is a 3-group. Let $\mathfrak R_0$ be a S_3 -subgroup of $\mathfrak R$ normalized by $\mathfrak Q$. Then I inverts $\mathfrak R_0$ since $\mathfrak M$ is a 2, 3-group. Choose $\mathfrak F$ char $O_3(\mathfrak R)$ with $\ker (\mathfrak R \to \operatorname{Aut}(\mathfrak F))$ a 3-group, and with $\mathfrak F$ of exponent 3. Such an $\mathfrak F$ is available by Lemma 5.18 and 0.3.6. As $\mathfrak Q$ is nonabelian, $\mathfrak R_0$ is noncyclic. It follows readily that I centralizes a subgroup of $\mathfrak F/D(\mathfrak F)$ of order 27. This implies that $C_{\mathfrak F}(I)$ contains an elementary subgroup of order 27, in violation of Lemma 8.11. (ii) is proved.

Let $\mathfrak{P} \subseteq \mathfrak{N}_1 \in \mathscr{MS}(\mathfrak{G})$. By Hypothesis 8.2, it suffices to show that $C_{\mathfrak{N}_1}(\widetilde{\mathfrak{P}}) \subseteq \mathfrak{N}$, where $\widetilde{\mathfrak{B}} = \Omega_1(\mathbf{Z}(\mathfrak{P}))^{\mathfrak{N}_1}$. Since $C_{\mathfrak{N}_1}(\widetilde{\mathfrak{P}}) \subseteq N(\Omega_1(\mathbf{Z}(\mathfrak{P})))$, and since $I \in N(\mathfrak{P}) \subseteq N(\Omega_1(\mathbf{Z}(\mathfrak{P})))$, we may replace \mathfrak{N}_1 by an element of $\mathscr{MS}(\mathfrak{G})$ which contains $N(\Omega_1(\mathbf{Z}(\mathfrak{P})))$ and so assume that $I \in \mathfrak{N}_1$.

Let $\mathfrak L$ be a S_3 -subgroup of $\mathfrak R_1$ which contains I. By Lemma 8.8 (i) and Lemma 8.9, it follows that $\mathfrak L$ has a normal 2-complement $\mathfrak R$. Since $\mathfrak M$ is a 2, 3-group, I inverts $\mathfrak R$. Suppose by way of contradiction that $\mathfrak R \neq 1$. Since $O_3(\mathfrak R_1) = 1$, $\mathfrak R < I >$ is faithfully represented as automorphisms of $O_3(\mathfrak R_1)$. By Lemma 8.11 (iv), the only possibility is that $|\mathfrak R| = 5$, that $C(\mathfrak R) \cap O_3(\mathfrak R_1) \supseteq D(O_2(\mathfrak R_1))$ and that $O_3(\mathfrak R_1)/C(\mathfrak R) \cap O_3(\mathfrak R_1)$ is elementary of order 3^4 . Since $\mathfrak R$ is an S-subgroup of $\mathfrak R_1$, it follows that $\mathfrak R O_5(\mathfrak R_1)/O_5(\mathfrak R_1)$ is a chief factor of $\mathfrak R_1$. Hence, $I \notin \mathfrak R'_1$. This implies that $O_3(\mathfrak R_1) = \mathfrak R$, so that $\mathfrak R_1 \subseteq N(\mathfrak R) = \mathfrak R$. Hence, $\mathfrak R_1 = \mathfrak R$. This is absurd since $I \in \mathfrak R'$. This contradiction forces $\mathfrak R = 1$, that is, $\mathfrak R_1$ is a 2, 3-group.

Since $|C(\Omega_1(Z(\mathfrak{P})))|$ is odd, it follows that $C_{\mathfrak{N}_1}(\widetilde{\mathfrak{B}}) = C_{\mathfrak{P}}(\widetilde{\mathfrak{B}}) \subseteq \mathfrak{P} \subseteq \mathfrak{N}$. Thus, (iii) holds.

We turn to (iv). Let $\mathscr{P} = \{\mathfrak{P}_0 \mid (i) \ \mathfrak{P}_0 \text{ is a 3-subgroup of } N, \ (ii) \ \mathfrak{P}_0 \supseteq \mathfrak{B}^N \text{ for some } N \text{ in } \mathfrak{R}, \ (iii) \ \mathfrak{P}_0 \text{ is contained in a solvable subgroup of } \mathfrak{B}$ which is not contained in $\mathfrak{R}.$ }. Suppose by way of contradiction that $\mathscr{P} \neq \varnothing$. Choose \mathfrak{P}_0 in \mathscr{P} with $|\mathfrak{P}_0|$ maximal. We assume without loss of generality that $\mathfrak{P}_0 \subseteq \mathfrak{P}$. Let \mathfrak{R} be a solvable subgroup of \mathfrak{B} which contains \mathfrak{P}_0 and is minimal subject to $\mathfrak{R} \not\subseteq \mathfrak{R}$. Since $\mathfrak{P} \in \mathscr{P}$, it follows that $\mathfrak{P}_0 \subset \mathfrak{P}$, so maximality of $|\mathfrak{P}_0|$ forces $N_{\mathfrak{P}}(\mathfrak{P}_0) \in \mathscr{P}$. In particular, $N(\mathfrak{P}_0) \subseteq \mathfrak{R}$. This implies that \mathfrak{P}_0 is a S_p -subgroup of \mathfrak{R} . Minimality of \mathfrak{R} yields that $\mathfrak{R} = \mathfrak{P}_0\mathfrak{R}_1$, where \mathfrak{R}_1 is a q-group for some prime $q \neq 3$.

Since $\mathfrak{B}^N \subseteq \mathfrak{P}_0$ for some N in \mathfrak{N} , it follows that $O_{3'}(\mathfrak{R}) \subseteq \mathfrak{N}$, as $O_{3'}(\mathfrak{R})$ is generated by its subgroups $O_{3'}(\mathfrak{R}) \cap C(B)$, $B \in (\mathfrak{B}^N)^{\sharp}$.

Suppose q=2. Then by Lemma 8.9, $\Re \subseteq \Re^{G}$ for some G in \Im . Hence $\Re_{0} \subseteq \Re^{G}$. Let \Re^{*} be a S_{3} -subgroup of $\Re \cap \Re^{G}$ which contains \Re_{0} .

Maximality of $|\mathfrak{P}_0|$ forces $\mathfrak{P}_0 = \mathfrak{P}^*$. But then since $N(\mathfrak{P}_0) \subseteq \mathfrak{R}$, we get that \mathfrak{P}_0 is a S_3 -subgroup of \mathfrak{R}^c . This is absurd. Hence, $q \neq 2$.

It is a consequence of [43] that $\Re = O_{3'}(\Re) \mathfrak{A}_1 \mathfrak{A}_2$, where

$$\mathfrak{A}_{\scriptscriptstyle 1}=\emph{\textbf{C}}_{\scriptscriptstyle igotimes}(\emph{\textbf{Z}}(\mathfrak{P}_{\scriptscriptstyle 0})),\,\mathfrak{A}_{\scriptscriptstyle 2}=\emph{\textbf{N}}_{\scriptscriptstyle igotimes}(\emph{\textbf{J}}(\mathfrak{P}_{\scriptscriptstyle 0}))$$
 .

Maximality of $|\mathfrak{P}_0|$ forces $N(Z(\mathfrak{P}_0)) \subseteq \mathfrak{N}$, $N(J(\mathfrak{P}_0)) \subseteq \mathfrak{N}$, so $\mathfrak{R} \subseteq \mathfrak{N}$. This establishes (iv).

We may now complete the proof of Theorem 8.1. Choose C_1 in \mathbb{S}^{\sharp} . Then $C(C_1) \supseteq \mathfrak{B}$, so that $C(C_1) \subseteq \mathfrak{N}$. Hence, $\mathfrak{F} \subseteq \mathfrak{N}$, in violation of Lemma 8.8 (ii).

9. A characterization of $S_4(3)$.

THEOREM 9.1. $S_4(3)$ is the only simple group @ with the following properties:

- (i) S contains an elementary subgroup of order 27.
- (ii) If $\mathfrak B$ is a S_3 -subgroup of $\mathfrak B$ and $\mathfrak A \in \mathscr{S}_{eng}(\mathfrak B)$, then $\mathsf{M}(\mathfrak A)$ is trivial.
 - (iii) The center of a S₃-subgroup of S is cyclic.
- (iv) The normalizer of every nonidentity 3-subgroup of S is solvable.
- (v) S_z -subgroups of $\mathfrak S$ contain normal elementary subgroups of order 8.
- (vi) If $\mathfrak T$ is a S_2 -subgroup of $\mathfrak B$ and $\mathfrak B \in \mathscr{S}_{en3}(\mathfrak T)$, then $\mathsf{M}(\mathfrak B)$ is trivial.
 - (vii) The centralizer of every involution of \mathbb{G} is solvable.
 - (viii) $2 \sim 3$. (See Definition 2.9.).

After careful translation, it can be shown that Dickson [12] lists several properties of $S_4(3)$. Namely, A(4,3) is Dickson's notation for $S_4(3)$ (pp. 89–100). Now in § 194 (pp. 109–191), Dickson sets $FO(m, p^n) = O'_1(m, p^n)$ (for m odd), so by § 189 (pp. 179–183), $A(4,3) \cong FO(5,3) \cong S_4(3)$. Thus, by § 270 (pp. 292–293), $S_4(3)$ has a subgroup of index 27 which is a split extension of an elementary group of order 16 by A_5 . So $S_4(3)$ is not an N-group. That $S_4(3)$ satisfies the hypothesis of Theorem 9.1 is left as an exercise. We remark that (viii) holds for $S_4(3)$, the centralizers of suitable involutions exhibiting $2 \sim 3$.

Throughout most of this section the following notation is used: \mathfrak{P} is a S_3 -subgroup of \mathfrak{G} ,

$$\mathfrak{Z} = \Omega_{\mathfrak{I}}(\mathbf{Z}(\mathfrak{P})), \mathfrak{N} = N(\mathfrak{Z}), \mathfrak{H} = O_{\mathfrak{Z}}(\mathfrak{N})$$
.

By hypothesis (iii), $|\mathfrak{Z}|=3$, and by hypothesis (ii), $O_{\mathfrak{F}}(\mathfrak{R})=1$. By hypothesis (iv), \mathfrak{R} is solvable, so by Lemma 1.2.3 of [26], $C_{\mathfrak{R}}(\mathfrak{H})=Z(\mathfrak{H})$.

Clearly, $C_{\mathfrak{N}}(\mathfrak{H}) = C(\mathfrak{H})$.

We remark that @ satisfies Hypothesis 7.4 and also satisfies Hypothesis 7.1 for p=2 and for p=3.

HYPOTHESIS 9.1. \mathfrak{F} is the central product of a cyclic group and a nonabelian group of order 27 and exponent 3.

LEMMA 9.1. Assume that Hypothesis 9.1 is satisfied. Then

- (i) $|\mathfrak{P}: \mathfrak{H}| = 3$.
- (ii) $| \S | = 27$.
- (iii) $O^{3'}(\mathfrak{N})/\mathfrak{H} \cong SL(2,3)$.

Proof. We remark that GL(2,3) contains no noncyclic abelian subgroup of order 8.

As $\mathfrak{N}/\mathfrak{S}$ is faithfully represented on $\Omega_{\mathfrak{l}}(\mathfrak{S})/\boldsymbol{D}(\Omega_{\mathfrak{l}}(\mathfrak{S}))$, it follows that \mathfrak{N} is a 2, 3-group, and $\mathfrak{N}/\mathfrak{S}$ is isomorphic to a subgroup of GL(2,3). As \mathfrak{S} contains no elementary subgroup of order 27 and \mathfrak{P} does, (i) holds.

Let $\mathfrak A$ be a normal elementary subgroup of $\mathfrak B$ of order 27. Since $|\mathfrak B:\mathfrak S|=3$, it follows that $O^{\mathfrak F}(\mathfrak R)/\mathfrak S\cong SL(2,3)$, yielding (iii). Let $\mathfrak D$ be a S_2 -subgroup of $O^{\mathfrak F}(\mathfrak R)$ so that $\mathfrak D$ is a quaternion group. Let $\mathfrak A_0=\mathfrak A\cap\mathfrak S$. Let I be the involution of $\mathfrak D$. As I inverts every element of $\Omega_1(\mathfrak S)/\mathfrak B$, it follows that I normalizes $\mathfrak A_0$. Since I also normalizes $\mathfrak B$, it follows that I normalizes $C_{\mathfrak F}(\mathfrak A_0)=\langle \mathfrak A, Z(\mathfrak S)\rangle$. Hence, I normalizes $\Omega_1(C_{\mathfrak F}(\mathfrak A_0))=\mathfrak A$. Since I centralizes the factor $O^{\mathfrak F}(\mathfrak R)/O^{\mathfrak F}(\mathfrak R)/\mathfrak S\cong \mathfrak F/\mathfrak S$, it follows that $\mathfrak A=\mathfrak A_0$ contains an element A_1 such that $A_1^I=A_1$. Since I also centralizes $\mathfrak B$, it follows that $C_{\mathfrak F}(I)=\langle A_1\rangle\times\mathfrak B=\mathfrak A_1$. Also, $C_{\mathfrak F}(I)=\mathfrak A_1\mathfrak B_1$, where $\mathfrak B_1=Z(\mathfrak S)$, and it is clear that $C_{\mathfrak F}(I)$ is a S_3 -subgroup of $C_{\mathfrak F}(I)$.

Suppose $|\mathfrak{J}_1| > 3$. Thus, $|\mathfrak{P}| > 3^4$, so Lemma 7.6 is at our disposal. If $G \in \mathfrak{G}$ and $\mathfrak{J}_1^g \subseteq \mathfrak{P}$, then $\mathfrak{J}^1(\mathfrak{J}_1^g)$ centralizes \mathfrak{P} , and so $\mathfrak{Q}_1(\mathfrak{J}_1^g) = \mathfrak{Q}_1(\mathfrak{J}_1) = \mathfrak{J}_1$, so that $G \in \mathfrak{R}$, $\mathfrak{J}_1^g = \mathfrak{J}_1$. We may therefore apply Theorem 14.4.2 of [21] and conclude that $\mathfrak{P} \subseteq \mathfrak{P}'$. Since Aut (\mathfrak{J}_1) is abelian, this implies that $\mathfrak{J}_1 = \mathbf{Z}(\mathfrak{P})$. We may therefore appeal to Lemma 7.6 (d) and conclude that if \mathfrak{A}^* is any subgroup of \mathfrak{A} of type (3, 3), then \mathfrak{A}^* centralizes every element of $\mathsf{M}(\mathfrak{A}^*; \mathfrak{Z})$. Taking $\mathfrak{A}^* = \mathfrak{A}_1$, Lemma 7.4 is violated. This completes the proof of (ii).

LEMMA 9.2. Assume that Hypothesis 9.1 is satisfied. Let $\mathfrak{A} \in \mathscr{S}_{cra}(\mathfrak{P})$ and let I be an involution of \mathfrak{R}' . Then

- (i) S_2 -subgroups of $\mathfrak R$ are quaternion.
- (ii) If $\mathfrak{A}_0 = C_{\mathfrak{A}}(I)$, then
 - (a) $|\mathfrak{A}_0| = 9$.
 - (b) \mathfrak{A}_0 contains a subgroup \mathfrak{A}_1 of order 3 such that $C(\mathfrak{A}_1) \nsubseteq \mathfrak{R}$.

(iii) If $\mathfrak{M} = C(I)$, then $O_2(\mathfrak{M})$ is extra special of width 2, $O_2(\mathfrak{M}) = 1$, and $|\mathfrak{M}: O_2(\mathfrak{M})|_2 = 2$.

(iv)
$$A_{\mathfrak{S}}(\mathfrak{A}) \cong \Sigma_{4}$$
.

Proof. Let \mathfrak{Q} be a S_2 -subgroup of $O^{3'}(\mathfrak{N})$. By Lemma 9.1 (i), \mathfrak{Q} is a quaternion group. It clearly suffices to prove the lemma on the assumption that I is the involution of \mathfrak{Q} .

By Lemma 9.1 and hypothesis (i) of Theorem 9.1, the group $\mathfrak P$ is $Z_3 \subseteq Z_3$. Hence, $\mathfrak A$ char $\mathfrak P$. Since I normalizes $\mathfrak P$, it therefore normalizes $\mathfrak A$. This implies (ii)(a), since I centralizes $Z(\mathfrak P)$ and $O^3(\mathfrak R)/O^3(\mathfrak R)'$.

Clearly, $\mathfrak M$ contains an element of $\mathscr U(2)$. It is equally clear from (B) and Lemma 9.1 that

if \mathfrak{X} is any noncyclic subgroup of \mathfrak{A} , then \mathfrak{X} centralizes every abelian subgroup of $\mathsf{M}(\mathfrak{X};2)$.

Let \mathfrak{T} be a $S_{2,3}$ -subgroup of \mathfrak{M} which contains $\langle \mathfrak{A}_0, \mathfrak{Q} \rangle$. Let \mathfrak{T}_2 be a S_2 -subgroup of \mathfrak{T} which contains \mathfrak{Q} . We may apply Lemma 7.5 with \mathfrak{A}_0 in the role of \mathfrak{B} . Thus, there is an element $\widetilde{\mathfrak{M}}$ of $\mathscr{MS}(\mathfrak{G})$ satisfying the conclusions of Lemma 7.5. By Lemma 7.5 (e), we get $\mathfrak{Q} \subseteq O_2(\widetilde{\mathfrak{M}})$. Hence, $\langle I \rangle \lhd \widetilde{\mathfrak{M}}$, so $\widetilde{\mathfrak{M}} = C(I) = \mathfrak{M}$. Since $\langle I \rangle$ is a S_2 -subgroup of $C(\mathfrak{A}_0)$, it follows that

(9.1) $O_2(\mathfrak{M})$ is extra special of width w=2, 3, or 4.

Thus, (ii)(b) holds.

Again, let $\mathfrak X$ be a noncyclic subgroup of $\mathfrak A$. Suppose that $|C(\mathfrak X)\cap N(\mathfrak A)|$ is even. Then of course $|\mathfrak X|=9$, as $\mathfrak A$ is a self-centralizing subgroup of $\mathfrak B$. Let J be an involution of $C(\mathfrak X)\cap N(\mathfrak A)$. Then (*) and Lemma 7.5 yield that J and I are conjugate in $\mathfrak B$. Since $\mathfrak X$ is faithfully represented on $O_2(C(J))$, we can choose a subgroup $\mathfrak Y$ of $\mathfrak X$ of order 3 such that

Thus, $C(\mathfrak{Y})$ is not 3-closed. Thus, \mathfrak{A} is not a S_3 -subgroup of $C(\mathfrak{Y})$. This implies that

(9.3) $C(\mathfrak{Y})$ contains a S_3 -subgroup of \mathfrak{S} .

Let $\widetilde{\mathfrak{P}}$ be a S_3 -subgroup of $C(\mathfrak{P})$ which contains \mathfrak{A} . Thus $\langle \widetilde{\mathfrak{P}}, J \rangle \subseteq C(\mathfrak{P})$. Thus, J normalizes both \mathfrak{A} and $O_3(C(\mathfrak{P}))$, so J normalizes $\langle \mathfrak{A}, O_3(C(\mathfrak{P})) \rangle$. Thus, Lemma 9.1 yields that

(9.4) if $\mathfrak X$ is any noncyclic subgroup of $\mathfrak A$, then each involution of $C(\mathfrak X)\cap N(\mathfrak A)$ normalizes some S_3 -subgroup of $N(\mathfrak A)$.

By (9.3) with the pair $(\mathfrak{A}_1, \mathfrak{A}_0)$ in the role of $(\mathfrak{Y}, \mathfrak{X})$, we conclude that $C(\mathfrak{A}_1)$ contains a S_3 -subgroup \mathfrak{P}^* of \mathfrak{G} with $\mathfrak{A} \subset \mathfrak{P}^*$. Hence, $N(\mathfrak{A})$ is not 3-closed, since \mathfrak{P} and \mathfrak{P}^* are distinct S_3 -subgroups of $N(\mathfrak{A})$.

Set $\widetilde{\mathfrak{N}} = N(\mathfrak{A})$. Clearly,

$$\mathfrak{A} = O_{\mathfrak{A}}(\widetilde{\mathfrak{N}}) = C(\mathfrak{A}), 1 = O_{\mathfrak{A}'}(\widetilde{\mathfrak{N}}), I \in \widetilde{\mathfrak{N}}.$$

Suppose $13 \mid \mid \widetilde{\mathfrak{N}} \mid$. Since $I \in \widetilde{\mathfrak{N}}$, it follows that I centralizes a S_{13} -subgroup of $\widetilde{\mathfrak{N}}$, since the nonidentity 13-elements of GL(3,3) are nonreal. However, $13 \nmid \mid \mathfrak{M} \mid$, since $4 \geq w$. Hence, $\widetilde{\mathfrak{N}}$ is a 2, 3-group.

Let \mathfrak{T}_0 be a S_2 -subgroup of $O_{3,2}(\widetilde{\mathfrak{N}})$, and let $\mathfrak{R}=N_{\widetilde{\mathfrak{N}}}(\mathfrak{T}_0)$. Thus, $\widetilde{\mathfrak{N}}=\mathfrak{NR},\,\mathfrak{N}\cap\mathfrak{R}=1$, so that $\mathfrak{R}\cong A_{\mathfrak{S}}(\mathfrak{N})$. Suppose J is an involution of \mathfrak{T}_0 and $\mathfrak{N}\cap C(J)=\mathfrak{X}$ is noncyclic. Thus, $|\mathfrak{X}|=9$. By (9.4), J normalizes some S_3 -subgroup $\widetilde{\mathfrak{P}}$ of $\widetilde{\mathfrak{N}}$. Since $\widetilde{\mathfrak{P}}\supset\mathfrak{N},\,\widetilde{\mathfrak{P}}\cap\mathfrak{R}$ is of order 3. Hence, $[\widetilde{\mathfrak{P}}\cap\mathfrak{R},\,J]\subseteq\mathfrak{T}_0\cap\widetilde{\mathfrak{P}}=1$, so that $\widetilde{\mathfrak{P}}\cap\mathfrak{R}$ centralizes J. Hence, $\widetilde{\mathfrak{P}}\cap\mathfrak{R}$ normalizes \mathfrak{X} , that is, $\mathfrak{X}\triangleleft\widetilde{\mathfrak{P}}$. Hence, $\mathfrak{X}\in\mathscr{U}(3)$. Thus, J centralizes elements of $\mathscr{U}(3)$ and $\mathscr{U}(2)$. This violates the solvability of C(J). Hence,

(9.5) no element of \mathfrak{T}_0^* centralizes a noncyclic subgroup of \mathfrak{A} .

Since $|Z(\mathfrak{P})|=3$, $\mathfrak{P}\cap\mathfrak{R}$ is indecomposable on \mathfrak{A} . Hence, \mathfrak{T}_0 acts on \mathfrak{A} as a multiple of the sum of the \mathfrak{R} -conjugates of a fixed F_3 -irreducible representation ρ . If \mathfrak{T}_0 is nonabelian, then 2 divides $\deg \rho$. Hence, 2 divides $3=m(\mathfrak{A})$, a contradiction. Hence, \mathfrak{T}_0 is abelian. If \mathfrak{T}_0 is not elementary, then $\deg \rho \neq 1$ or 3. So $\deg \rho = 2$, which again gives a contradiction. Hence, \mathfrak{T}_0 is elementary. Now (9.5) implies that $|\mathfrak{T}_0| \leq 4$, so we must have equality, since $\mathfrak{T}_0 = O_2(\mathfrak{R})$ and $|\mathfrak{P}\cap\mathfrak{R}| = 3$. Since $I \in \mathfrak{R} \cap N(\mathfrak{P})$, it follows that $\mathfrak{R} \cong \mathcal{L}_4$, which establishes (iv) and also (i).

It remains to show that w=2 and that $|\mathfrak{M}: O_2(\mathfrak{M})|_2=2$, since by (9.1) we know that as $O_2(\mathfrak{M})$ is extra special.

Suppose $\mathfrak A$ is any subgroup of $\mathfrak A$ of order 3 which is conjugate to $\mathfrak B$, $\mathfrak A^*_{\mathfrak S}$ $\mathfrak B$. We contend that $\mathfrak A^*_{N(\mathfrak A)}\mathfrak B$. Namely, let $\mathfrak B^*$ be a S_3 -subgroup of $C(\mathfrak A^*)$ which contains $\mathfrak A$. Then $\mathfrak B$ and $\mathfrak B^*$ both normalize $\mathfrak A$, since $|\mathfrak B^*:\mathfrak A|=3$. We may thus choose N in $N(\mathfrak A)$ such that $\mathfrak B^{*N}=\mathfrak B$; since $\mathfrak B=Z(\mathfrak B)$, we necessarily have $\mathfrak A^{*N}=\mathfrak B$, as desired.

Since $\mathfrak{P}\langle I\rangle$ normalizes \mathfrak{Z} , we obtain all $N(\mathfrak{A})$ -conjugates of \mathfrak{Z} by transformation with elements of \mathfrak{T}_0 . We will show that \mathfrak{Z} and \mathfrak{A}_1 are the only $N(\mathfrak{A})$ -conjugates of \mathfrak{Z} which are in \mathfrak{A}_0 . If $K \in \mathfrak{T}_0^*$ and $\mathfrak{Z}^K \subseteq \mathfrak{A}_0$, then since no element of \mathfrak{T}_0^* normalizes \mathfrak{Z} , we conclude that K normalizes \mathfrak{A}_0 . It is clear that \mathfrak{T}_0 does not normalize \mathfrak{A}_0 , so our assertion follows.

It is an immediate consequence of the preceding paragraph that w=2. That is, only 3 and \mathfrak{A}_1 centralize elements of $O_2(\mathfrak{M})-\langle I\rangle$. Since $N(\mathfrak{A}_0)\subseteq N(\mathfrak{A})$, we have $|\mathfrak{M}:O_2(\mathfrak{M})|_2=2$, and the proof is complete.

We now change notation somewhat in order to conform with more standard notation. Let $\mathfrak{B}_1 = N(\mathfrak{F})$, $\mathfrak{B}_2 = N(\mathfrak{A})$, and let $\mathfrak{B} = \mathfrak{F}\langle I \rangle$, $\mathfrak{F} = \langle I \rangle$. Let \mathfrak{D}_1 be a S_2 -subgroup of \mathfrak{B}_1 which contains I, and let \mathfrak{D}_2 be a S_2 -subgroup of \mathfrak{B}_2 which contains I. Thus, \mathfrak{D}_1 is a quaternion group and \mathfrak{D}_2 is a dihedral group of order 8. Let $\mathfrak{T}_2 = \mathfrak{D}_2 \cap O^{\mathfrak{F}}(\mathfrak{B}_2)$, so that \mathfrak{T}_2 is a four-group.

Let $\mathfrak{C}_2 = N_{\mathfrak{B}_2}(\mathfrak{X}_2)$. Thus, \mathfrak{C}_2 is a complement to \mathfrak{A} in \mathfrak{B}_2 and $\mathfrak{C}_2 \cong \mathcal{E}_4$. Let $\mathfrak{X}_1 = \mathfrak{P} \cap \mathfrak{C}_2$, so that \mathfrak{X}_1 is of order 3 and is inverted by I. Since $O_3(\mathfrak{B}_1)$ contains all elements of \mathfrak{P} which are inverted by I, we have $\mathfrak{X}_1 \subseteq O_3(\mathfrak{B}_1)$. Since \mathfrak{Q}_1 permutes transitively the subgroups of $O_3(\mathfrak{B}_1)/\mathfrak{Z}$ of order 3, we may choose Q in \mathfrak{Q}_1 so that $\mathfrak{X}_2 = \mathfrak{X}_1^Q$ lies in \mathfrak{A} . Thus, I inverts \mathfrak{X}_2 , since Q centralizes I. Let $\langle J \rangle = \mathfrak{X}_2 \cap C(I)$, that is, let J be a generator for $Z(\mathfrak{Q}_2)$. Since $\mathfrak{A} \cap C(I)$ is of order 9, \mathfrak{X}_2 is the only subgroup of \mathfrak{A} of order 3 which is inverted by I, so that $\mathfrak{X}_2^I = \mathfrak{X}_2$. Let $\mathfrak{X}_4 = \mathfrak{Z}_1$ and set $\mathfrak{X}_3 = \mathfrak{X}_4^I$. We may now draw up the following table:

	J	Q
$\mathfrak{X}_{_{1}}$		\mathfrak{X}_{2}
$\mathfrak{X}_{_{2}}$	$\mathfrak{X}_{\scriptscriptstyle 2}$	$\mathfrak{X}_{_{1}}$
$\mathfrak{X}_{\scriptscriptstyle 3}$	$\mathfrak{X}_{\scriptscriptstyle{4}}$	_
$\mathfrak{X}_{_{4}}$	$\mathfrak{X}_{\scriptscriptstyle 3}$	$\mathfrak{X}_{\scriptscriptstyle{4}}$

Let X_i be a generator for \mathfrak{X}_i , so that we have the following table:

Let $\mathfrak{N}=\langle J,Q\rangle$. Since $\mathfrak{N}\subseteq \mathfrak{M}$, the structure of \mathfrak{N} may be easily determined. Let $\mathfrak{Q}_1,\mathfrak{Q}_1^*$ be the quaternion subgroups of $O_3(\mathfrak{M}),\mathfrak{Q}_1$ being as above. As J normalizes $\langle \mathfrak{X}_3,\mathfrak{X}_4\rangle$ and $\langle \mathfrak{X}_3,\mathfrak{X}_4\rangle$ is a S_3 -subgroup of \mathfrak{M} , it follows that $\mathfrak{Q}_1^J=\mathfrak{Q}_1^*$. Hence, $(JQ)^2=JQJQ$ is an involution distinct from I. This means that $\mathfrak{N}/\langle I\rangle$ is a dihedral group of order 8 with involutory generators $J\langle I\rangle$, $Q\langle I\rangle$.

Finally, notice that $\mathfrak{B} = \mathfrak{P}\langle I \rangle = N(\mathfrak{P})$.

Since $(JX_1)^3 = 1$ and since $(\mathfrak{Q}X_3)^3 \in \langle I \rangle$, it is straightforward to deduce from the first table that $\mathfrak{BNB} = \mathfrak{G}_1$ is a group. We will determine the multiplication table of \mathfrak{G}_1 . First, we assume without

loss of generality that $(QX_3)^3 = 1$, since replacement of Q by $Q^{-1} = QI$ will achieve this if $(QX_3)^3 = I$. Since I inverts X_1 and centralizes X_3 , it follows easily that I neither inverts nor centralizes $[X_1, X_3]$. Thus, we may choose X_2 , X_4 as generators for \mathfrak{X}_2 , \mathfrak{X}_4 respectively such that

$$[X_1, X_3] = X_2 X_4.$$

By construction, $\mathfrak{X}_4 = \mathfrak{Z} = \mathbf{Z}(\mathfrak{P})$, so to complete the determination of \mathfrak{B} , we must compute $[X_1, X_2]$. Conjugation of (9.6) by I yields $[X_1^{-1}, X_3] = X_2^{-1}X_4$, from which we find easily that $[X_1, X_2] = X_4$.

Let $X_1^Q = X_2^a$. Since $(QX_3)^3 = 1$, an easy calculation (conjugation of (9.6) by Q) shows that a = +1. Since $J \in \mathfrak{T}_2 \subset \mathfrak{T}_2$, it follows that $C_{\mathfrak{A}}(J)$ has order 3. Since J normalizes but does not invert $\langle X_3, X_4 \rangle$, it follows that $C_{\mathfrak{A}}(J) \subseteq \langle X_3, X_4 \rangle$. Hence, $X_2^J = X_2^{-1}$. Let $X_3^J = X_4^b$. Since $(X_1J)^3 = 1$, an easy calculation (conjugation of (9.6) by J) shows that b = -1.

Set $W_0 = (JQ^2)$. We argue that

$$\mathfrak{P} \cap \mathfrak{P}^{w_0} = 1.$$

Suppose by way contradiction that 9.7 is false. Since W_0 is an involution, $\mathfrak{D} = \mathfrak{P} \cap \mathfrak{P}^{W_0}$ is normalized by W_0 . Since $W_0 \in \mathbf{Z}(\mathfrak{N})$, it follows that $\mathfrak{H} = \langle I \rangle$ also normalizes \mathfrak{D} . Since $C_{\mathfrak{R}}(I) = \langle X_3, X_4 \rangle$ and since $W_0 \in \mathfrak{M}$, it follows from the construction of \mathfrak{N} that I inverts \mathfrak{D} . Thus, $\mathfrak{D}\subset O_3(\mathfrak{B}_1)$, since $O_3(\mathfrak{B}_1)$ contains all the elements of \mathfrak{P} which are inverted by I. As $\mathfrak D$ is abelian, and as I centralizes $\mathfrak X_4 = \mathbf Z(O_3(\mathfrak B_1))$, it follows that $|\mathfrak{D}|=3$. There are exactly 4 subgroups of $O_3(\mathfrak{B}_1)$ of order 3 which are inverted by I; they are all of the shape $\mathfrak{X}_2^{Q^*}$ for some Q^* in \mathfrak{Q}_1 . Since I normalizes \mathfrak{X}_2 and since $\mathfrak{Q}_1 = \langle Q \rangle \cup \langle Q^{X_3} \rangle \cup \langle Q^{X_3^{-1}} \rangle$, we may assume that $\mathfrak{D}=\mathfrak{X}_2^{Q^*}$, where Q^* is one of 1, Q, $X_3^{-1}QX_3$, $X_3QX_3^{-1}$. Since W_0 normalizes \mathfrak{D} , we get that $Q^*W_0Q^{*-1}\in N(\mathfrak{X}_2)$. Since $Q^*\in\mathfrak{M}$ and $W_0 \in O_2(\mathfrak{M})$, we get that $Q^*W_0Q^{*-1} \in N(\mathfrak{X}_2) \cap O_2(\mathfrak{M}) = \mathfrak{L}$, say. Since I inverts X_2 , it follows that $I \notin \mathbf{D}(\mathfrak{D})$. Thus, \mathfrak{L} is elementary. But 1 and $\langle I \rangle$ are the only elementary subgroups of $O_2(\mathfrak{M})$ which admit $\langle X_3, X_4 \rangle$, so $Q^* W_0 Q^{*-1} = \langle I \rangle$. This is not the case, since $Q^* \in \mathfrak{M}$, $I \in \mathbf{Z}(\mathfrak{M})$, and $I \neq W_0$. This proves (9.7).

Set $\mathfrak{W} = \{1, Q, J, QJ, JQ, QJQ, JQJ, W_0\}$, a set of representatives for the cosets of \mathfrak{F} in \mathfrak{R} . For each W in \mathfrak{W} , let $\mathfrak{B}_W = \langle \mathfrak{X}_i \mid 1 \leq i \leq 4$, $\mathfrak{X}_i^{W-1} \subseteq \mathfrak{P}^{W_0} \rangle$. It follows that condition (iii) of Théorème I of [36] is satisfied, so by that theorem, so is condition (ii), that is, if W_1 , $W_2 \in \mathfrak{W}$ and $BW_1B = BW_2B$, then $W_1 = W_2$. In view of our preceding information, we conclude that each element of \mathfrak{G}_1 has a normal form of the shape PHWP', where $P \in \mathfrak{P}$, $H \in \mathfrak{F}$, $W \in \mathfrak{W}$, $P' \in \mathfrak{B}_W$. Furthermore, it is clear that the normal forms for PHWP'J and PHWP'Q are determined by our information. This implies immediately that if \mathfrak{G}^* is any group which satisfies the hypothesis of Theorem 9.1 and Hy-

pothesis 9.1, then \mathfrak{G}^* contains a subgroup \mathfrak{G}_1^* isomorphic to \mathfrak{G}_1 . Taking $\mathfrak{G}^*=S_4(3)$, a comparison of orders yields $\mathfrak{G}_1\cong S_4(3)$. In particular, $i(\mathfrak{G}_1)=2$ and I,W_0 are representatives for the two classes of involutions of \mathfrak{G}_1 . Since $\mathfrak{M}=\langle Q_1,J,X_3,X_4\rangle$, we have $\mathfrak{M}\subseteq\mathfrak{G}_1$. We will show that $C(W_0)\subseteq\mathfrak{G}_1$. Let $\mathfrak{R}=O_2(C_{\mathfrak{G}_1}(W_0))$. Then \mathfrak{R} is elementary of order 2^4 and \mathfrak{R} is characteristic in a S_2 -subgroup of $C_{\mathfrak{G}_1}(W_0)$. Thus, it suffices to show that $N(\mathfrak{R})=N_{\mathfrak{G}_1}(\mathfrak{R})$. Since $N_{\mathfrak{G}_1}(\mathfrak{R})$ is an extension of \mathfrak{R} by A_5 and since $\mathfrak{R}=C(\mathfrak{R})$, it follows that $A_{\mathfrak{G}}(\mathfrak{R})$ is a subgroup of Aut $(\mathfrak{R})=L_4(2)$ which contains a subgroup isomorphic to A_5 and has S_2 -subgroups of order 4. Hence, $A_{\mathfrak{G}}(\mathfrak{R})=A_{\mathfrak{G}_1}(\mathfrak{R})\cong A_5$. Hence, \mathfrak{G}_1 contains the centralizer of each of its involutions. By Lemma 5.35, $\mathfrak{G}=\mathfrak{G}_1$. Thus, Theorem 9.1 is proved in case Hypothesis 9.1 is satisfied.

We now revert to our previous notation.

Hypothesis 9.2. \mathfrak{H} is of symplectic type and width $w \geq 2$.

Hypothesis 9.3. (i) \mathfrak{H} is extra special of order 3^5 .

- (ii) $|\mathfrak{P}| = 3^6$.
- (iii) 3 is not weakly closed in 5.

Lemmas 9.3 through 9.10 are all proved under Hypothesis 9.2. Notice that Hypothesis 9.3 trivially implies Hypothesis 9.2.

LEMMA 9.3. (i) C(3) does not contain a four-group.

- (ii) If $\mathfrak D$ is any abelian 2-subgroup of $\mathfrak R$, then $A_{\mathfrak R}(\mathfrak D)$ is a 2-group.
- (iii) If $\mathfrak A$ is any subgroup of $\mathfrak S$ of type (3,3) which contains $\mathfrak Z$, then $|C(\mathfrak A)|$ is odd.
- (iv) If $\mathfrak A$ is any subgroup of $\mathfrak S$ of type (3,3) which contains $\mathfrak Z$, then $\mathfrak A \in \mathscr E(3)$.

Proof. Clearly, (i) implies (ii), and (iii) implies (i). Suppose (iv) holds, but I is an involution in $C(\mathfrak{A})$. By Lemma 5.37, C(I) contains an element of $\mathcal{U}(2)$. By Lemma 7.4, C(I) is nonsolvable. Hence, (iv) implies (iii). To complete the proof of the lemma, it suffices to prove (iv). However, (iv) is a consequence of Lemma 7.2.

LEMMA 9.4. Suppose
$$B\in \Omega_1(\mathfrak{H})-\mathfrak{Z}$$
 and $\mathfrak{H}_0=C_{\mathfrak{H}}(B)$. Then $C(\mathfrak{H}_0)=Z(\mathfrak{H}_0)=\langle B \rangle \times Z(\mathfrak{H})$.

Proof. Since $\mathfrak{Z} \subset \mathfrak{Z}_0$, it follows that $C(\mathfrak{Z}_0) = C_{\mathfrak{R}}(\mathfrak{Z}_0)$. Since a S_3 -subgroup of \mathfrak{R} is faithfully represented on \mathfrak{Z} , it follows that $C(\mathfrak{Z}_0)$ is a 3-group. It suffices to show that $C(\mathfrak{Z}_0) \subseteq \mathfrak{Z}$. Suppose false and

 $C \in C(\mathfrak{F}_0), C \notin \mathfrak{F}$. We may assume that $C^3 \in \mathfrak{F}$. In this case, $\langle C \rangle / \langle C^3 \rangle$ is faithfully represented on $Q^1_3(\mathfrak{R})$ and by Lemma 5.30, it follows that $[Q^1_3(\mathfrak{R}), \langle C \rangle] = \tilde{\mathfrak{Q}}$ is a quaternion group. Let \mathfrak{Q} be a subgroup of \mathfrak{R} incident with $\tilde{\mathfrak{Q}}$. Clearly, $\mathfrak{F} = C_{\mathfrak{F}}(\mathfrak{Q})[\mathfrak{Q}, \mathfrak{F}]$ and $C_{\mathfrak{F}}(\mathfrak{Q})$ commutes elementwise with $[\mathfrak{Q}, \mathfrak{F}]$. By Lemma 9.3 (iii), \mathfrak{Q}' centralizes no noncyclic subgroup of \mathfrak{F} . It follows that $C_{\mathfrak{F}}(\mathfrak{Q}) = Z(\mathfrak{F})$ is cyclic. However, $w \geq 2$ and C centralizes \mathfrak{F}_0 .

LEMMA 9.5. Hypothesis 9.3 is not satisfied.

Proof. Suppose false.

Let $\mathscr{Z} = \{\mathfrak{Z}_1 \mid \mathfrak{Z}_1 \subseteq \mathfrak{G}, \mathfrak{Z}_1 \sim \mathfrak{Z}, \mathfrak{Z}_1 \neq \mathfrak{Z}\}$. By Hypothesis 9.3 (iii), $\mathscr{Z} \neq \varnothing$. Since $\mathfrak{G} \triangleleft \mathfrak{N}, \mathscr{Z}$ is invariant in \mathfrak{N} . Choose $\mathfrak{Z}_1 \in \mathscr{Z}$ such that $C_{\mathfrak{B}}(\mathfrak{Z}_1)$ is a S_3 -subgroup of $C_{\mathfrak{N}}(\mathfrak{Z}_1)$. Let $\mathfrak{P}_0 = C_{\mathfrak{B}}(\mathfrak{Z}_1)$.

If $\mathfrak{P}_0 = C_{\mathfrak{H}}(\mathfrak{Z}_1)$, then \mathfrak{Z} char \mathfrak{P}_0 . This is impossible since \mathfrak{P}_0 is not a S_3 -subgroup of $C(\mathfrak{Z}_1)$. Hence, $|\mathfrak{P}_0| = 3^5$.

Let $\mathfrak{D} = \langle \mathfrak{F}, \mathfrak{F}_{\mathfrak{I}} \rangle$, so that $\mathfrak{D} \subseteq \mathbf{Z}(\mathfrak{P}_{\mathfrak{I}})$. If $\mathfrak{D} \subset \mathbf{Z}(\mathfrak{P}_{\mathfrak{I}})$, then choose $Z \in \mathbf{Z}(\mathfrak{P}_{\mathfrak{I}}) - \mathfrak{F}$, so that Z centralizes a 3-dimensional subspace of $\mathfrak{F}/\mathfrak{F}'$. This implies that some involution of $\mathbf{O}^{\mathfrak{F}}(\mathfrak{N})$ has a noncyclic fixed point set on \mathfrak{F} , in violation of Lemma 9.3 (iii). Hence, $\mathfrak{D} = \mathbf{Z}(\mathfrak{P}_{\mathfrak{I}})$.

Let \mathfrak{P}^* be a S_3 -subgroup of $C(\mathfrak{F}_1)$ which contains \mathfrak{P}_0 . Thus, $\langle \mathfrak{P}, \mathfrak{P}^* \rangle \subseteq N(\mathfrak{P}_0) \subseteq N(\mathfrak{D})$, so $O^{\mathfrak{F}}(A_{\mathfrak{S}}(\mathfrak{D})) \cong SL(2,3)$.

By Lemma 9.3, $|C(\mathfrak{D})|$ is odd. Since \mathfrak{P}_0 is a S_3 -subgroup of $C(\mathfrak{D})$ and since $O_{\mathfrak{P}}(C(\mathfrak{D}))=1$, it follows that $\mathfrak{P}_0=C(\mathfrak{D})$. Hence, $N(\mathfrak{P}_0)=N(\mathfrak{D})$. Let $\mathfrak{M}=N(\mathfrak{D})$.

Let $\mathfrak Q$ be a S_2 -subgroup of $O^{\mathfrak F}(\mathfrak R)$. Thus, $\mathfrak Q$ is a quaternion group. Let J be the involution of $\mathfrak Q$. Let $\mathfrak Q^*$ be a S_2 -subgroup of $O^{\mathfrak F}(\mathfrak R)$. Thus $\mathfrak Q^*$ is a quaternion group. Let I be the involution of $\mathfrak Q^*$. Since J inverts $\mathfrak G/\mathfrak G'$, $J \in \mathfrak R$. Since I inverts $\mathfrak D$, $I \in \mathfrak R$. We assume without loss of generality that I normalizes $\mathfrak Q$ and J normalizes $\mathfrak Q^*$.

Since J neither inverts nor centralizes \mathfrak{D} , it is clear that $A_{\mathfrak{G}}(\mathfrak{D}) \cong GL(2,3)$ and so $\langle J, \mathfrak{D}^* \rangle$ is isomorphic to a S_2 -subgroup of GL(2,3). Let Q^* be an element of \mathfrak{D}^* of order 4 which is inverted by J.

We will show that $\langle I, \mathfrak{D} \rangle$ is isomorphic to a S_2 -subgroup of GL(2,3). Since $I \in \mathfrak{R}$, we need only prove that I inverts $\mathfrak{P}_0/\mathfrak{P}_0 \cap \mathfrak{F}$. Suppose false. Then I centralizes $\mathfrak{P}_0/\mathfrak{P}_0 \cap \mathfrak{F}$. We know that $\mathfrak{D} \subseteq \mathfrak{P}_0'$, because \mathfrak{M} operates irreducibly on \mathfrak{D} and \mathfrak{D} contains $\mathfrak{F}_0 = (\mathfrak{F}_0 \cap \mathfrak{F})'$. Since \mathfrak{D}^* is faithfully represented on \mathfrak{P}_0 , there must be a 2-dimensional subspace of $\mathfrak{P}_0/D(\mathfrak{P}_0)$ which I inverts and \mathfrak{D}^* leaves invariant. Since I centralizes $\mathfrak{P}_0/\mathfrak{P}_0 \cap \mathfrak{F}$ and $|\mathfrak{P}_0| = 3^5$, we conclude that $\mathfrak{D} = \mathfrak{P}_0' = D(\mathfrak{P}_0)$, and that $\mathfrak{P}_0 \cap \mathfrak{F}/\mathfrak{D}$ is the subspace of $\mathfrak{P}_0/\mathfrak{P}_0'$ inverted by I. This forces I to invert both $\mathfrak{P}_0 \cap \mathfrak{F}/\mathfrak{D}$ and \mathfrak{D} , that is, to invert $\mathfrak{P}_0 \cap \mathfrak{F}$. So $\mathfrak{P}_0 \cap \mathfrak{F}$ is abelian, which is false.

Let Q be an element of \mathfrak{D} of order 4 which is inverted by I.

Set $\mathfrak{X}_6=\mathfrak{Z}$. Since J normalizes \mathfrak{D} and centralizes \mathfrak{X}_6 , we can choose an element X_5 of \mathfrak{D} of order 3 such that $X_5^J=X_5^{-1}$. Let $\mathfrak{X}_5=\langle X_5\rangle$, $\mathfrak{X}_4=\mathfrak{X}_5^Q$, $X_4=X_5^Q$. Then we have relations $X_5^I=X_5^{-1}$, $X_5^J=X_5^{-1}$, $X_4^J=X_4$. Suppose $[X_4,X_5]\neq 1$. The following argument is designed to exclude this possibility.

Let $[X_4, X_5] = X_6$ so that X_6 is a generator for \mathfrak{X}_6 . Since $X_4 \notin \mathfrak{P}_0$, it follows that $\mathfrak{P}_0 \cap C(I)$ is of order 3 with generator X_3 , say. Thus, $[\langle X_3, X_4 \rangle = C_{\mathfrak{P}}(I)$ is of order 9, so that $[X_3, X_4] = 1$. As \mathfrak{P}_0 contains all the elements of \mathfrak{P}_0 which are centralized by I, we have $X_3 \in H$. Since $\langle X_3 \rangle = C_{\mathfrak{P}_0}(I)$, it follows that I normalizes $\langle X_3 \rangle$, so that $X_3^I = X_3^{-1}$, as I inverts $\mathfrak{P}_0/\mathfrak{P}_0$. Let $X_2 = X_3^Q$. Since $[X_3, X_4] = 1$, so also $[X_2, X_4^Q] = 1$. But $X_4^Q = X_5^{Q^2} = X_5^{-1}$, so X_2 centralizes X_5 , that is, $X_2 \in \mathfrak{P}_0$. Let $X_1 = X_2^{Q^*}$, and let $\mathfrak{X}_i = \langle \mathfrak{X}_i \rangle$, $1 \leq i \leq 6$. We obtain the following data:

Table 1				Table 2		
		J	I		Q	Q*
	X_1	X_1	X_1^{-1}	X_1	_	X_{2}^{-1}
	X_2	X_2^{-1}	X_2^{-1}	X_2	X_3^{-1}	X_1
	X_3	X_3^{-1}	X_3	X_3	X_2	X_3
	X_4	X_{4}^{-1}	X_4	X_4	X_5^{-1}	_
	X_5	X_5^{-1}	X_5^{-1}	X_5	X_4	X_6^{-a}
	X_6	X_6	X_6^{-1}	X_6	X_6	X_5^a

Here $a^2 = 1$, and the last two entries in Table 2 are at our disposal since Q^* normalizes $\langle I, J \rangle$ and since \mathfrak{X}_5 , \mathfrak{X}_6 are the only subgroups of \mathfrak{D} of order 3 which admit $\langle I, J \rangle$. In addition we have the following commutation relations:

$$[X_i,\,X_6]=1,\,1\leqq i\leqq 6,\,[X_4,\,X_5]=X_6$$
 , $[X_i,\,X_5]=1,\,1\leqq i\leqq 3,\,[X_3,\,X_4]=[X_2,\,X_4]=1$.

Furthermore, $[X_2, X_3] = X_5^b$, so by Table 2, we get $[X_1, X_3] = X_5^{ab}$. Here $b^2 = 1$, for if b = 0, we get $X_3 \in \mathbf{Z}(\mathfrak{S})$, which is not the case. The as yet undetermined commutation relations are:

$$[X_{\scriptscriptstyle 1}, \, X_{\scriptscriptstyle 4}] = X_{\scriptscriptstyle 2}{}^x X_{\scriptscriptstyle 3}{}^y X_{\scriptscriptstyle 5}{}^z X_{\scriptscriptstyle 6}{}^t \; , \qquad [X_{\scriptscriptstyle 1}, \, X_{\scriptscriptstyle 2}] = X_{\scriptscriptstyle 3}{}^c X_{\scriptscriptstyle 5}{}^d X_{\scriptscriptstyle 6}{}^e \; .$$

Use Table 1 and conjugate the second relation by J, obtaining e = bc. Then conjugation by I yields d = abc. Conjugation of the first relation by J yields t = xyb + z. Conjugation of the first relation by I yields y = cx.

Assume $c \neq 0$. Then

$$\mathfrak{P}_0'=\langle X_3,X_5,X_6\rangle, [\mathfrak{P}_0',\mathfrak{P}_0]=\langle X_5,X_6\rangle=\mathfrak{D}=\mathbf{Z}(\mathfrak{P}_0)$$
.

We see that \mathfrak{P}'_0 is elementary abelian. If $A \in \mathfrak{P}_0$, $B \in \mathfrak{P}'_0$, then $(AB)^3 = A^3B^{A^2+A+1}$. But $cl(\mathfrak{P}_0) = 3$ and so $B^{A^2+A+1} = B^3[B, A]^3 = 1$. Hence,

there is a map φ of $\mathfrak{P}_0/\mathfrak{P}_0'$ given by $\varphi(A\mathfrak{P}_0')=A^3$.

Clearly, $\varphi(X_1\mathfrak{P}_0')=1$. But \mathfrak{M} operates as GL(2,3) on \mathfrak{D} . Since $|\mathfrak{P}_0\colon\mathfrak{P}_0'|=3^2$, this forces \mathfrak{M} to operate as GL(2,3) on $\mathfrak{P}_0/\mathfrak{P}_0'$. In particular, the four subgroups of $\mathfrak{P}_0/\mathfrak{P}_0'$ of order 3 are all conjugate under \mathfrak{M} . Hence, $\varphi(A\mathfrak{P}_0')=1$ for all A in \mathfrak{P}_0 and \mathfrak{P}_0 is of exponent 3.

By [21, p. 324], the order of the Burnside group of exponent 3 on 2 generators is 27. Since \mathfrak{P}_0 must be a homomorphic image of this group, we get a contradiction, as $|\mathfrak{P}_0| = 3^5 > 27$. So c = 0.

Since c=0, so also c=d=e=y=0. Since y=0, we also have t=z. Conjugation of the first relation by Q yields $[Q^{-1}X_1Q, X_5^{-1}]=X_3^-xX_4^zX_5^z$. Now $C(J)\cap O^{3'}(\mathfrak{R})=\langle X_1, X_6, \mathfrak{D}\rangle$, so $C(J)\cap O^{3'}(\mathfrak{R})$ is 2-closed, that is, X_1 normalizes \mathfrak{D} . Hence, $(QX_1)^3=J^u$, u=0 or 1. Hence, $Q^{-1}X_1Q=JX_1^{-1}Q^{-1}X_1^{-1}J^u$. The previous commutation relation now yields x=0.

Since x=0, it follows that X_4 centralizes $\mathfrak{P}_0/\mathfrak{D}$. Hence, \mathfrak{D}^* is forced to centralize $\mathfrak{P}_0/\mathfrak{D}$. This is not the case, since $\mathfrak{D} \subseteq \mathfrak{P}_0'$. We conclude that $[X_4, X_5] = 1$.

Since I centralizes X_4 , it follows that $\langle X_4, X_5, , X_6 \rangle = \mathfrak{C} \triangleleft \mathfrak{M}$. Namely, $\mathfrak{D} \triangleleft \mathfrak{M}$, so we need to show that $\mathfrak{C}/\mathfrak{D} \triangleleft \mathfrak{M}/\mathfrak{D}$. Since X_4 centralizes \mathfrak{D} , we have $X_4 \in \mathfrak{P}_0$. Since $\mathfrak{P}_0/\mathfrak{D}$ is of order 27 and admits \mathfrak{D}^* as a group of automorphisms, it follows that $\mathfrak{C}/\mathfrak{D} = C_{\mathfrak{P}_0/\mathfrak{D}}(I) \triangleleft \mathfrak{M}/\mathfrak{D}$. Thus, $\langle \mathfrak{M}, Q \rangle \subseteq N(\mathfrak{C})$. Since $\langle \mathfrak{P}, Q \rangle = O^{\mathfrak{F}}(\mathfrak{N})$, it follows that both \mathfrak{M} and $O^{\mathfrak{F}}(\mathfrak{N})$ are subgroups of $N(\mathfrak{C})$.

Let $\mathfrak{E}^* = O_{\mathfrak{p}}(N(\mathfrak{E}))$. Thus,

$$\mathfrak{E} \subseteq \mathfrak{E}^* \subseteq O_3(\mathfrak{M}) \cap O_3(\mathfrak{N}) = \mathfrak{P}_0 \cap \mathfrak{S}$$
.

Suppose $\mathfrak{E}^* = \mathfrak{P}_0 \cap \mathfrak{F}$. Then $\mathfrak{Z} = \mathfrak{E}^{*'} \triangleleft N(\mathfrak{E})$, against $O^{\mathfrak{I}'}(\mathfrak{R}) \subset N(\mathfrak{E})$. Hence, $\mathfrak{E}^* \subset \mathfrak{P}_0 \cap \mathfrak{F}$. Since $|\mathfrak{E}| = 3^{\mathfrak{I}}$ and $|\mathfrak{P}_0 \cap \mathfrak{F}| = 3^{\mathfrak{I}}$, it follows that $\mathfrak{E}^* = \mathfrak{E}$. Thus, $N(\mathfrak{E})/\mathfrak{E}$ is isomorphic to a subgroup of Aut (\mathfrak{E}) which (a) is solvable, (b) contains a S_3 -subgroup of Aut (\mathfrak{E}), (c) is 3-reduced. There are no such groups. The proof of the lemma is complete.

LEMMA 9.6. Let \mathfrak{B} be a subgroup of \mathfrak{H} of type (3,3). Then $\mathfrak{B} \in \mathfrak{D}$. (See Definition 7.3.)

Proof. We first show that if $B \in \mathfrak{B}$, then

(9.8) for some N in \Re , B centralizes an element of $\mathscr{U}(\Re^N)$.

Let

$$\mathfrak{H}_1 = \mathfrak{Q}_1(\mathfrak{H}), \mathfrak{V} = \mathfrak{H}_1/\boldsymbol{D}(\mathfrak{H}_1), \mathfrak{V}_0 = \boldsymbol{C}_{\mathfrak{R}}(\mathfrak{P})$$
.

Suppose $|\mathfrak{V}_0| > 3$. Then $\mathfrak{V}_0 = \mathfrak{W}/D(\mathfrak{F}_1)$ and every subgroup of \mathfrak{W} which contains $D(\mathfrak{F}_1)$ is normal in \mathfrak{F} . Let $\mathfrak{W}_1 = \mathfrak{W} \cap C(B)$ so that $|\mathfrak{W}: \mathfrak{W}_1| \leq 3$.

Since $|\mathfrak{B}_0| > 3$, so also $|\mathfrak{B}_1| \ge 9$. Thus, B centralizes an element of $\mathscr{U}(\mathfrak{P})$ in this case. We may assume that $|\mathfrak{B}_0| = 3$.

Suppose $\mathfrak{R}/\mathfrak{F}$ has a normal subgroup $\mathfrak{R}/\mathfrak{F}=\mathfrak{X}$ of odd order $\neq 1$. Let k be a field of characteristic 3 which contains all $|\mathfrak{X}|^{\text{th}}$ roots of 1. Let $\mathfrak{F}=k\otimes_{F_3}\mathfrak{B}$. Thus, \mathfrak{F} admits $\mathfrak{R}/\mathfrak{F}$ and $k\otimes\mathfrak{B}_0$ is the set of all fixed points of $\mathfrak{F}/\mathfrak{F}$ on \mathfrak{F} . Let $\mathfrak{F}=\bigoplus_{\rho}\mathfrak{F}(\rho)$, where $\mathfrak{F}(\rho)$ is the largest \mathfrak{X} -submodule of \mathfrak{F} on which \mathfrak{X} acts as a multiple of the irreducible representation ρ . Since \mathfrak{F} inherits the non singular symplectic structure of \mathfrak{F} , it follows that ρ and ρ^* appear with the same multiplicity in \mathfrak{F} , ρ^* denoting the contragredient representation of ρ . Since $|\mathfrak{F}|$ is odd, $\mathfrak{F}(\rho)$ and $\mathfrak{F}(\rho^*)$ are not conjugate under \mathfrak{F} . Hence, \mathfrak{F}_0 is not 1-dimensional in this case.

We may now assume that

(9.9)
$$F(\mathfrak{R}/\mathfrak{H})$$
 is a 2-group.

If $\mathfrak{F}=\mathfrak{P}$, then (9.8) is obvious, so suppose $\mathfrak{F}\subset\mathfrak{P}$. Set $\mathfrak{N}^*=C(\mathfrak{F})$, so that $|\mathfrak{N}:\mathfrak{N}^*|\leq 2$. By Lemma 9.3 (i), together with (9.9), we conclude that \mathfrak{N} is a 2, 3-group, and that a S_2 subgroup of \mathfrak{N}^* is quaternion. Hence, $|\mathfrak{F}:\mathfrak{F}|=3$. Since $|\mathfrak{F}_0|=3$, we get that the width of \mathfrak{F} is 1, against Hypothesis 9.2. Thus, (9.8) holds.

Suppose $\mathfrak{B} \notin \mathscr{D}$. Then $\mathcal{N}(\mathfrak{B}; 2)$ contains a four-group \mathfrak{Q} which is not centralized by \mathfrak{B} . Hence, $[\mathfrak{B}, \mathfrak{Q}] = \mathfrak{Q}$, and $\mathfrak{B}_0 = C_{\mathfrak{B}}(\mathfrak{Q})$ is of order 3.

Let $\mathbb{C} = C(\mathfrak{B}_0)$, $\mathfrak{F}_0 = C_{\mathfrak{F}}(\mathfrak{B}_0)$. By Lemma 7.2 applied to $\langle \mathfrak{B}_0, \mathfrak{F}_0 \rangle$, it follows that $\mathfrak{F}_0 = C_{\mathfrak{F}_0}(\mathbb{C})$. Hence, $[O_{\mathfrak{F}_0}(\mathbb{C}), \mathfrak{F}_0] \subseteq \mathfrak{F} \cap O_{\mathfrak{F}_0}(\mathbb{C}) = 1$. This implies that $O_{\mathfrak{F}_0}(\mathbb{C}) = 1$ by Lemma 9.4.

Let \mathfrak{P}_0 be a S_3 -subgroup of \mathfrak{C} containing \mathfrak{P}_0 and let \mathfrak{P}^* be a S_3 -subgroup of \mathfrak{G} containing \mathfrak{P}_0 . Then $\mathfrak{P}^* = \mathfrak{P}^c$, so that with $\mathfrak{P}^* = \mathfrak{P}^c$, it follows that $\mathfrak{P}^* \subseteq \mathbf{Z}(O_3(\mathfrak{C}))$. Let $\mathfrak{W} = \mathfrak{P}^*$, so that \mathfrak{W} is 3-reducible in \mathfrak{C} . Set $\mathfrak{C}_1 = C_{\mathfrak{C}}(\mathfrak{W})$. We argue that $\mathfrak{C}_1 \cap \mathfrak{D} = 1$. If not, then $\mathfrak{D} \subseteq C(\mathfrak{W})$, as \mathfrak{D} is an irreducible \mathfrak{P} -module. Hence, $\mathfrak{D} \subseteq C(\mathfrak{P}^*)$, against Lemma 9.3 (i). Hence,

$$\mathfrak{C}_{_{1}}\cap\mathfrak{Q}=1\;.$$

By (B), elements of $\mathfrak{B} - \mathfrak{B}_0$ have minimal polynomial $(x-1)^3$ on \mathfrak{B} . We next argue that $\mathfrak{B} \subseteq \mathfrak{C}_1$. If not, then \mathfrak{S}_0 contains an extra special subgroup of width w-1 disjoint from \mathfrak{C}_1 . We get that $m(\mathfrak{B}) \geq 2 \cdot 3^{w-1}$. Since $m(\mathfrak{B} \cap \mathfrak{S}^{\sigma}) \leq w+1$, we have $m(\mathfrak{B}/\mathfrak{B} \cap \mathfrak{S}^{\sigma}) \geq 2 \cdot 3^{w-1} - w-1$. By [32], it follows that $w^2 \geq 2 \cdot 3^{w-1} - w-1$. This is false for $w \geq 3$, so w=2. Thus, $C(\mathfrak{F})/\mathfrak{S}$ is isomorphic to a subgroup of $GL(\mathfrak{F},\mathfrak{F})$ which (a) is solvable, (b) is 3-reduced, (c) has an elementary subgroup of

order 27. There are no such groups. We conclude that $\mathfrak{Z} \subseteq \mathfrak{C}_{i}$.

Since $\mathfrak{Z} \subseteq \mathfrak{C}_1$, we have $\mathfrak{W} \subseteq \mathfrak{N}$, so that $[\mathfrak{W}, \mathfrak{B}, \mathfrak{B}] \subseteq \mathfrak{Z}$. Hence by (B),

$$[\mathfrak{B},\mathfrak{B},\mathfrak{B}]=\mathfrak{Z}.$$

Since $\mathfrak{W} \subseteq \mathbf{Z}(\mathfrak{C}_1)$, we get

$$\mathfrak{Z} \subseteq \mathbf{Z}(\mathfrak{C}_1) ,$$

which implies that

$$\mathfrak{C}_1 \subseteq \mathfrak{N} .$$

By (9.13), we get $[\mathfrak{C}_1, \mathfrak{B}, \mathfrak{B}] \subseteq \mathfrak{Z}$, and in particular,

$$[O_3(\mathbb{C}), \mathfrak{B}, \mathfrak{B}] = \mathfrak{Z},$$

equality holding by (9.11) and the obvious containment $\mathfrak{W} \subseteq O_3(\mathbb{C})$. Now (9.14) and (9.11) yield

$$(9.15) O_3(\mathfrak{C}) = \mathfrak{W}_1 \times \mathfrak{W}_2,$$

where

(9.16)
$$\mathfrak{Z} \subset \mathfrak{W}_1 = [\mathfrak{D}, O_3(\mathfrak{C})], \text{ and } \mathfrak{W}_1 \text{ is elementary of order 27},$$

$$\mathfrak{W}_{2} = C(\mathfrak{D}) \cap O_{3}(\mathfrak{C}).$$

Let $\mathfrak{C}_2 = O_3$ ($\mathfrak{C} \mod \mathfrak{C}_1$), $\mathfrak{C}_3 = \mathfrak{C}_2 \mathbf{Z}(\mathfrak{H})$. Thus, $\mathfrak{C}_1 \mathbf{Z}(\mathfrak{H})$ contains a S_3 -subgroup of \mathfrak{C}_3 . Thus, $\mathbf{Z}(\mathfrak{H})$ is normal in a S_3 -subgroup of \mathfrak{C}_3 . By Lemma 5.22, we get $\mathbf{Z}(\mathfrak{H}) \subseteq O_3(\mathfrak{C}_3)$. Hence, $\mathbf{Z}(\mathfrak{H}) \subseteq O_3(\mathfrak{C})$. From (9.16), we conclude that $\mathbf{Z}(\mathfrak{H}) = \mathfrak{H}$, that is,

We argue that $O_{3,3'}(\mathbb{S})$ does not centralize $Z(O_3(\mathbb{S}))$. If it does, then since $\mathfrak{Z} \subseteq Z(O_3(\mathbb{S}))$, it follows that $O_{3,3'}(\mathbb{S}) \subseteq \mathfrak{R}$, so $[O_{3,3'}(\mathbb{S}), \mathfrak{F}_0] \subseteq \mathfrak{F}$, which implies that $\mathfrak{F}_0 \subseteq O_3(\mathbb{S})$, which in turn gives $\mathfrak{D} = [\mathfrak{B}, \mathfrak{D}] \subseteq O_3(\mathbb{S})$. Since $\mathfrak{B}_0 \subseteq Z(\mathbb{S})$, it follows that

$$[Z(O_3(\mathbb{C})), O_{3,3'}(\mathbb{C})]$$
 and $C(O_{3,3'}(\mathbb{C})) \cap Z(O_3(\mathbb{C}))$

are disjoint nontrivial normal abelian subgroups of \mathfrak{C} . In particular, if \mathfrak{P}_0 is a S_3 -subgroup of \mathfrak{C} containing \mathfrak{F}_0 , then $\mathbf{Z}(\mathfrak{P}_0)$ is not cyclic. By Lemma 9.4, we get that $\mathfrak{Q}_1(\mathbf{Z}(\mathfrak{P}_0)) = \mathfrak{B}_0 \times \mathfrak{Z}$, and in particular, $\mathfrak{P}_0 \subseteq \mathfrak{N}$.

Since $\mathfrak{P}_0 \subseteq \mathfrak{N}$, we get that $[\mathfrak{P}_0, \mathfrak{B}, \mathfrak{B}] \subseteq \mathfrak{Z}$. Thus, if $B \in \mathfrak{B}$, the minimal polynomial of B on the Frattini quotient group of $O_{3,3',3}(\mathbb{C})/O_{3,3'}(\mathbb{C})$ divides $(x-1)^2$. By (B), it follows that \mathfrak{Q} centralizes $O_{3,3',3}(\mathbb{C})/O_{3,3'}(\mathbb{C})$, and so $\mathfrak{Q} \subseteq O_{3,3'}(\mathbb{C})$.

Let $\mathfrak{R}=\langle \mathfrak{D}, \mathfrak{F}_0 \rangle \subseteq \mathfrak{C}$, let $\mathfrak{R}_0=C_{\mathfrak{R}}(O_3(\mathfrak{C}))$ and for any subset \mathfrak{S} of \mathfrak{R} , let $\bar{\mathfrak{S}}=\mathfrak{S}\mathfrak{R}_0/\mathfrak{R}_0$.

We argue that $\bar{\Omega} \subseteq O_{3'}(\bar{\Re})$. Namely, $\Omega \subseteq O_{3,3'}(\mathfrak{C})$, and so $\Omega \subseteq O_{3,3'}(\Re)$,

Thus, it suffices to show that $[O_3(\Re), \Im] \subseteq \Re_0$. But

$$[O_3(\Re), \Im] \subseteq O_3(\Re) \cap O_{3,3'}(\Im) \subseteq O_3(\Re) \cap O_3(\Im)$$

and so

$$egin{aligned} [O_3(\Re),\, \mathfrak Q] &= [O_3(\Re),\, \mathfrak Q,\, \mathfrak Q] &\subseteq [O_3(\Re)\cap O_3(\mathbb C),\, \mathfrak Q] &\subseteq [O_3(\mathbb C),\, \mathfrak Q] \ &= \mathfrak W_1 &\subseteq Z(O_3(\mathbb C)) \ , \end{aligned}$$

whence $[O_3(\Re), \Im] \subseteq \Re \cap Z(O_3(\Im)) \subseteq \Re_0$.

Case 1. $\langle \overline{\mathbb{Q}}, \overline{\mathbb{Q}}^H \rangle$ is abelian for all $H \in \mathfrak{H}_0$.

Since $[\overline{\mathfrak{Q}^{\mathfrak{H}_0}},\overline{\mathfrak{B}}]$ admits the abelian group $\overline{\mathfrak{F}}_0$, and since $\mathfrak{Q} \subseteq [\mathfrak{Q}^{\mathfrak{H}_0},\mathfrak{B}]$, it follows that $[\overline{\mathfrak{Q}^{\mathfrak{H}_0}},\overline{\mathfrak{B}}] = \overline{\mathfrak{Q}^{\mathfrak{H}_0}}$. Since $\mathfrak{W}_2 = C(\mathfrak{Q}) \cap O_3(\mathfrak{C})$ admits the abelian group $\overline{\mathfrak{Q}^{\mathfrak{H}_0}}$, (B) implies that $\overline{\mathfrak{Q}^{\mathfrak{H}_0}}$ centralizes \mathfrak{W}_2 . Hence, $\overline{\mathfrak{Q}^{\mathfrak{H}_0}}$ is isomorphic to an elementary 2-subgroup of Aut (\mathfrak{W}_1) . Since $[\overline{\mathfrak{Q}^{\mathfrak{H}_0}},\overline{\mathfrak{B}}] = \overline{\mathfrak{Q}^{\mathfrak{H}_0}}$, we get that $\overline{\mathfrak{Q}} = \overline{\mathfrak{Q}^{\mathfrak{H}_0}}$, so that $\overline{\mathfrak{Q}}$ is a S_2 -subgroup of $\overline{\mathfrak{R}}$.

Let $\Re_1 = O_3(\Re \mod \Re_0)$. Thus, $\Re_1 \cap \mathfrak{F}_0$ is of index 3 in \mathfrak{F}_0 and $\langle \Re_1 \cap \mathfrak{F}_0, \Re \rangle = \mathfrak{F}_0$. Since $|\Re_0|$ is odd, it follows that \mathfrak{L} is a S_2 -subgroup of \Re . Let $\mathfrak{L} = \Re_1 O_3(\mathbb{C})$ and let \mathfrak{L}_3 be a S_3 -subgroup of \mathfrak{L} which contains $\Re_1 \cap \mathfrak{F}_0$ and is normalized by \mathfrak{F}_0 . Since $|\mathfrak{L}|$ is odd, it follows that S_2 -subgroups of $N(\mathfrak{L}_3) \cap \mathfrak{L}$ are four-groups. If $\mathfrak{L} \subseteq D(\mathfrak{L}_3)$, then by (B), S_2 -subgroups of $N(\mathfrak{L}_3) \cap \mathfrak{L}$ centralize \mathfrak{L}_3 . This is not the case, as \mathfrak{L} does not centralize \mathfrak{L}_1 . Hence, $\mathfrak{L} \subseteq D(\mathfrak{L}_3)$. In particular, $\mathfrak{L} \subseteq D(\mathfrak{L}_1) \cap \mathfrak{L}_0$. But $\mathfrak{L}_1 \cap \mathfrak{L}_0$ is of index 3 in \mathfrak{L}_0 . Since \mathfrak{L}_1 is extra special, it follows that w = 2. Clearly, $\mathfrak{L} \subseteq \mathfrak{L}$, since $O_3(\mathbb{C})$ contains an elementary subgroup of order \mathfrak{L}_1 . On the other hand, Lemma 9.3 implies that $|\mathfrak{L}_1 \cap \mathfrak{L}_1| \subseteq \mathfrak{L}_1$. Hence, $|\mathfrak{L}_1 \cap \mathfrak{L}_1| = \mathfrak{L}_1$. Since \mathfrak{L}_0 is obviously not conjugate to \mathfrak{L}_1 , it follows that $O_3(\mathbb{C})$ is elementary of order \mathfrak{L}_1 and $\mathfrak{L}_0 = O_3(\mathbb{C})\mathfrak{L}_0$, $\mathfrak{L}_0 \cap O_3(\mathbb{C}) = 27$. Clearly, $O_3(\mathbb{C})$ char \mathfrak{L}_0 , since $O_3(\mathbb{C})$ is the only elementary subgroup of its order in \mathfrak{L}_0 .

Let $\mathfrak{M} = N(O_3(\mathbb{C}))$ so that \mathfrak{M} contains a S_3 -subgroup $\widetilde{\mathfrak{P}}$ of \mathfrak{G} with $\widetilde{\mathfrak{P}} \supset \mathfrak{P}_0$. Since $\mathfrak{Z} = \mathbf{Z}(\mathfrak{P}_0) \cap \mathfrak{P}_0'$ char \mathfrak{P}_0 , we have $\mathfrak{Z} \triangleleft \widetilde{\mathfrak{P}}$. In particular, $\mathfrak{S} \subset \mathfrak{M}$. We therefore assume without loss of generality that $\mathfrak{P} = \widetilde{\mathfrak{P}}$.

It is clear that $O_3(\mathbb{C}) = O_3(\mathfrak{M})$ and that \mathfrak{M} is a 2, 3-group. It is equally clear that $l_3(\mathfrak{M}) = 2$, so that $\mathfrak{D} \subseteq O_{3,2}(\mathfrak{M})$. Hence, \mathfrak{B} is a S_3 -subgroup of $N(\mathfrak{D}) \cap \mathfrak{M}$, so we can choose a subgroup \mathfrak{B}_1 of \mathfrak{B} of order 3 such that $\mathfrak{B} = \mathfrak{B}_0 \times \mathfrak{B}_1$ and such that \mathfrak{B}_1 normalizes some S_2 -subgroup \mathfrak{T}_0 of $O_{3,2}(\mathfrak{M})$. Let $\mathfrak{A} = N(\mathfrak{T}_0) \cap \mathfrak{P}$. Thus, \mathfrak{A} is elementary of order 9, $\mathfrak{B}_1 \subset \mathfrak{A}$ and $\mathfrak{B} = \mathfrak{A}O_3(\mathfrak{M})$, $\mathfrak{A} \cap O_3(\mathfrak{M}) = 1$. Since $O_3(\mathfrak{M}) \cap C(\mathfrak{B}_1)$ is of order 9, it follows that $C(\mathfrak{B}_1) \cap \mathfrak{P}$ is of order 3. Hence, $C(\mathfrak{B}_1) \cap \mathfrak{P} = C(\mathfrak{B}_1) \cap \mathfrak{P}$; since \mathfrak{A} is elementary we get $\mathfrak{A} \subset \mathfrak{P}$.

We now choose \mathfrak{A}_1 of order 3 in \mathfrak{A} so that \mathfrak{A} does not centralize $C_{\mathfrak{T}_0}(\mathfrak{A}_1)$. Let $\mathfrak{T}_1 = [C_{\mathfrak{T}_0}(\mathfrak{A}_1), \mathfrak{A}]$. Thus, \mathfrak{T}_1 is faithfully represented on $C(\mathfrak{A}_1) \cap O_3(\mathfrak{M}) = \mathfrak{R}$. It is straightforward to verify that $|\mathfrak{R}| = 9$ and

that \mathfrak{T}_1 is a quaternion group. Hence, $\mathfrak{R} = [O_3(\mathfrak{M}), \mathfrak{A}_1]$, so $\mathfrak{R} \subseteq \mathfrak{G}$. Since $\mathfrak{Z} \subset \mathfrak{R}$, it follows that \mathfrak{Z} is not weakly closed in \mathfrak{G} . As this violates Lemma 9.5, we conclude that Case 1 does not hold.

Case 2. There is an element H of \mathfrak{F}_0 such that $\langle \overline{\mathfrak{Q}}, \overline{\mathfrak{Q}^H} \rangle$ is nonabelian.

Set $\widetilde{\mathfrak{W}} = \langle \mathfrak{W}_1, \mathfrak{W}_1^H \rangle$, so that $\langle \mathfrak{Q}, \mathfrak{Q}^H \rangle$ normalizes $\widetilde{\mathfrak{W}}$ and centralizes $O_3(\mathbb{C})/\widetilde{\mathfrak{W}}$. Since $\mathfrak{W}_1 \cap \mathfrak{P}_2 \supset \mathfrak{P}_3$, it follows that $|\mathfrak{W}_1 \cap \mathfrak{W}_1^H| \geq 9$. Clearly, $\mathfrak{W}_1 \neq \mathfrak{W}_1^H$, since $\langle \overline{\mathfrak{Q}}, \overline{\mathfrak{Q}}^H \rangle$ is nonabelian. Hence, $\widetilde{\mathfrak{W}}$ is elementary of order 3^4 . Since $\langle \overline{\mathfrak{Q}}, \overline{\mathfrak{Q}}^H \rangle$ is injected into Aut $(\widetilde{\mathfrak{W}})$ under the restriction map, it follows readily that $\langle \overline{\mathfrak{Q}}, \overline{\mathfrak{Q}}^H \rangle$ is the central product of two quaternion groups, each of which necessarily admits \mathfrak{B} . In particular, $\langle \overline{\mathfrak{Q}}, \overline{\mathfrak{Q}}^H \rangle'$ is of order 2 and inverts $\mathfrak{W}_1 \cap \mathfrak{F}$. Since no involution of \mathfrak{G} centralizes $\mathfrak{W}_1 \cap \mathfrak{F}$, it follows that $\overline{\mathfrak{Q}}_0$ 0 is extra special of order 32. Hence, $[\mathfrak{Q}_0^{\mathfrak{P}_0}, O_3(\mathfrak{C})]$ is elementary of order 3^4 . This implies that $O_3(\mathfrak{C})$ contains $[\mathfrak{Q}_0^{\mathfrak{P}_0}, O_3(\mathfrak{C})] \times \mathfrak{B}_0$, an elementary subgroup of order 3^5 . Hence, $w \geq 3$.

Write $O_3(\mathfrak{C}) = \mathfrak{X} \times \mathfrak{Y}$, where

$$\mathfrak{X} = [O_3(\mathbb{C}), \mathfrak{Q}^{\mathfrak{D}_0}]$$
 and $\mathfrak{Y} = O_3(\mathbb{C}) \cap C(\mathfrak{Q}^{\mathfrak{D}_0})$.

Thus, \mathfrak{H}_0 normalizes both \mathfrak{X} and \mathfrak{Y} . Suppose $Y \in \mathfrak{Y} \cap \mathfrak{H}$. Then

$$[Y, \mathfrak{F}_0] \subseteq \mathfrak{Z} \cap \mathfrak{Y} = 1$$
, so $Y \in \mathbf{Z}(\mathfrak{F}_0) = \mathfrak{Z} \times \mathfrak{B}_0$.

Hence, $\mathfrak{Y} \cap \mathfrak{F} = \mathfrak{B}_0$. Since $[\mathfrak{Y}, \mathfrak{F}_0] \subseteq \mathfrak{F}$, it follows that $[\mathfrak{Y}, \mathfrak{F}_0] \subseteq \mathfrak{B}_0$. Since $\mathfrak{D}^{\mathfrak{F}_0}$ is absolutely irreducible on \mathfrak{X} , it follows that

$$[C_{\mathfrak{F}_0}(\overline{\mathfrak{D}^{\mathfrak{F}_0}}), O_{\mathfrak{I}}(\mathfrak{C})] \subseteq \mathfrak{B}_{\mathfrak{0}} \;, \;\; ext{ so } \;\; C_{\mathfrak{F}_0}(\overline{\mathfrak{D}_{\mathfrak{F}^0}}) \subseteq O_{\mathfrak{I}}(\mathfrak{C}) \;,$$

since $O_3(\mathbb{C}) = O_3(\mathbb{C} \mod \mathfrak{B}_0)$.

Clearly, $|\mathfrak{F}_0: C_{\mathfrak{F}_0}(\overline{\mathfrak{Q}^{\mathfrak{F}_0}})| = 3^a$, a = 1 or 2, since $\overline{\mathfrak{Q}^{\mathfrak{F}_0}}$ is extra special of order 32. If a = 1, then $\mathfrak{F}_0 \cap O_3(\mathbb{C})$ is of index 9 in \mathfrak{F} , so is nonabelian since $w \geq 3$. This is impossible, since $\mathfrak{F} \not\subseteq D(O_3(\mathbb{C}))$.

Suppose a=2. Set $\mathfrak{A}=\mathfrak{S}_0\cap O_3(\mathfrak{C})$. Since \mathfrak{A} is abelian, w=3. Thus, $\mathfrak{A}\in\mathscr{S}_{cr}(\mathfrak{S})$. Let $\mathfrak{A}_1=\mathfrak{X}\cap\mathfrak{A}$, so that $27\geqq|\mathfrak{A}_1|\geqq9$. Suppose $|\mathfrak{A}_1|=9$. Let \mathfrak{A}_2 be a complement to \mathfrak{A}_1 in \mathfrak{X} , so that $|\mathfrak{A}_2|=9$, and $\mathfrak{A}_2\cap\mathfrak{S}=1$. Since \mathfrak{A}_2 centralizes \mathfrak{A} , we get $[\mathfrak{S},\mathfrak{A}_2]\subseteq\mathfrak{S}\cap C(\mathfrak{A})=\mathfrak{A}$, so that $[\mathfrak{S},\mathfrak{A}_2,\mathfrak{A}_2]=1$. Thus, $[Q_3^1(\mathfrak{R}),\mathfrak{A}_2]$ is a 2-group on which \mathfrak{A}_2 is faithfully represented. This violates Lemma 9.3. Hence, \mathfrak{A}_1 is of order 3^3 , so that $\mathfrak{A}=\mathfrak{A}_1\times\mathfrak{B}_0$. Suppose $\mathfrak{B}_0\subset\mathfrak{P}$. Let \mathfrak{P}_1 be a subgroup of \mathfrak{P} of order \mathfrak{P} which contains \mathfrak{B}_0 . Then $\mathfrak{X}\mathfrak{P}_1$ is abelian of order 3^6 , and $[\mathfrak{S},\mathfrak{X}\mathfrak{P}_1]\subseteq\mathfrak{S}\cap C(\mathfrak{A})=\mathfrak{A}$, so that $[\mathfrak{S},\mathfrak{X}\mathfrak{P}_1,\mathfrak{X}\mathfrak{P}_1]=1$. It follows that $[Q_3^1(\mathfrak{R}),\mathfrak{X}\mathfrak{P}_1]$ is a 2-group on which $\mathfrak{X}\mathfrak{P}_1/\mathfrak{A}$ is faithfully represented. This again violates Lemma 9.3, so $\mathfrak{P}=\mathfrak{B}_0$.

Since $\mathfrak{Y} = \mathfrak{B}_0$ and a = 2, $O_3(\mathfrak{C})$ is elementary of order 3^5 and $|\mathfrak{P}_0| = 3^7$. Lemma 5.2 implies that if U is any element of $\mathfrak{C}/O_3(\mathfrak{C})$ of order 3, then $C(U) \cap O_3(\mathfrak{C})$ is of order at most 3^3 .

Suppose by way of contradiction that $\mathfrak U$ is an elementary subgroup of $\mathfrak P_0$ of order 3^5 which is distinct from $O_3(\mathbb C)$. By the previous paragraph, we conclude that $\mathfrak U\cap O_3(C)$ is of order 3^3 , and that if $U\in\mathfrak U-O_3(\mathbb C)$, then $O_3(\mathbb C)\cap C(U)=O_3(\mathbb C)\cap \mathfrak U$. Let $\mathfrak U_0$ be a complement to $\mathfrak U\cap O_3(\mathbb C)$ in $\mathfrak U$. Thus, $\mathfrak U_0$ is faithfully represented on $Q_3^1(\mathfrak R)$, the central product of two quaternion groups. Let $\mathfrak R$ be a quaternion subgroup of $Q_3^1(\mathfrak R)$, and let $\mathfrak U_1=C(\mathfrak R)\cap \mathfrak U_0$. Thus, $\mathfrak U_1$ is of order 3. By Lemma 3.7 of [20], $\mathfrak R$ is faithfully represented on $O_3(\mathbb C)\cap C(\mathfrak U_1)$. This is absurd, since $\mathfrak U_0$ centralizes $O_3(\mathbb C)\cap C(\mathfrak U_1)$. We conclude that $O_3(\mathbb C)$ is the only elementary subgroup of its order in $\mathfrak P_0$.

Since $|\mathfrak{P}_0| = |\mathfrak{F}| = 3^7$ and since \mathfrak{P}_0 is obviously not extra special it follows that \mathfrak{P}_0 is not a S_3 -subgroup of \mathfrak{S} . Hence, \mathfrak{P}_0 is not a S_3 -subgroup of $N(O_3(\mathbb{C}))$. Hence, $A_{\mathfrak{S}}(O_3(\mathbb{C}))$ is a solvable subgroup of GL(5,3) with S_3 -subgroups of order at least 27 and with no nonidentity normal 3-subgroups. There are no such groups. The proof of Lemma 9.6 is complete.

LEMMA 9.7. Every involution in R centralizes 3.

Proof. Suppose false. Let $\mathfrak{F}_1 = \mathfrak{Q}_1(\mathfrak{F})$, so that \mathfrak{F}_1 is extra special of exponent 3 and width $w \geq 2$. Let $\mathfrak{F}_0 = C_{\mathfrak{F}_1}(I)$ and let \mathfrak{F}_2 be the set of elements of \mathfrak{F}_1 inverted by I. Here I is an involution of \mathfrak{R} which does not centralize \mathfrak{F}_2 . Since $\mathfrak{F}_2 \subseteq \mathfrak{F}_2$, it follows that \mathfrak{F}_0 is abelian. Since I centralizes [H, H'] for all H, H' in \mathfrak{F}_2 , it follows that $\mathfrak{F}_2 \subseteq \mathfrak{F}_2$ is abelian. Hence, $\mathfrak{F}_2 = \mathfrak{F}_2 = \mathfrak{F}_2$. As is well known, $\mathfrak{F}_1 = \mathfrak{F}_0 \mathfrak{F}_2$ and $\mathfrak{F}_0 \cap \mathfrak{F}_2 = \mathfrak{F}_1$. Hence, \mathfrak{F}_2 is elementary of order $\mathfrak{F}_2 = \mathfrak{F}_2 = \mathfrak{F}_$

By Lemmas 7.5 and 9.6, there is a subgroup \mathfrak{M} in $\mathscr{MS}(\mathfrak{G})$ with $\mathfrak{F}_0 \subseteq \mathfrak{M}$ such that \mathfrak{M} satisfies Hypothesis 7.2 and p=2. Let w_1 be the width of $O_2(\mathfrak{M})$. Hence, $w \leq w_1 \leq 4$, the first inequality holding since \mathfrak{F}_0 is faithfully represented on $O_2(\mathfrak{M})$, the second inequality holding by Lemma 7.5.

Suppose $w \geq 3$. Hence, $w_1 \geq 3$. If $H \in \mathcal{S}_0^\sharp$ and $C(H) \cap O_2(\mathfrak{M})$ contains a four-subgroup \mathfrak{V} containing $l_1(Z(O_2(\mathfrak{M})))$, then by Lemma 7.2, both $\langle H, \mathfrak{Z} \rangle$ and \mathfrak{V} satisfy the hypothesis of Lemma 7.4, so C(H) is nonsolvable. This is impossible, so H is not available. This implies that w=2.

Suppose $\mathfrak{F}=\mathfrak{F}$. In this case, if H is any element of order 3 in \mathfrak{F} , then \mathfrak{F} char $C_{\mathfrak{F}}(H)$. This implies immediately that \mathfrak{F} is weakly closed in \mathfrak{F} , which in turn implies that \mathfrak{N} contains the centralizer of each of its nonidentity 3-elements. This implies that $O_2(\mathfrak{M}) \subseteq \mathfrak{R}$, which

is not the case. Hence $\mathfrak{G} \subset \mathfrak{P}$.

Since every 3, 5-subgroup of $S_4(3)$ is either a 3-group or a 5-group, it follows from the preceding paragraph that $\mathfrak N$ is a 2, 3-group, $S_4(3)$ being a 2, 3, 5-group. By Lemma 9.3, it then follows that $O^{\mathfrak s'}(\mathfrak N)/\mathfrak S\cong SL(2,3)$. Furthermore, if J is an involution of $O^{\mathfrak s'}(\mathfrak N)$, then $C_{\mathfrak S}(J) \triangleleft \mathfrak N$. It follows that J inverts $\mathfrak S/Z(\mathfrak S)$.

If I centralizes $O^{\mathfrak{s}'}(\mathfrak{N})/O^{\mathfrak{s}'}(\mathfrak{N})'$, we conclude that I centralizes $O^{\mathfrak{s}'}(\mathfrak{N})/\mathfrak{S}$. But $C(I) \subseteq \mathfrak{M}$, so in particular, $C_{\mathfrak{N}}(I) \subseteq \mathfrak{M}$. Since I centralizes $O^{\mathfrak{s}'}(\mathfrak{N})/\mathfrak{S}$, it follows that I centralizes a S_2 -subgroup \mathfrak{Q} of $O^{\mathfrak{s}'}(\mathfrak{N})$. Hence, \mathfrak{Q} normalizes \mathfrak{S}_0 . Hence, $\mathfrak{Q}\mathfrak{S}_0$ is of index 3 in $C(I) \cap O^{\mathfrak{s}'}(\mathfrak{N})$. Let $\mathfrak{Q}' = \langle J \rangle$. By the preceding paragraph, \mathfrak{Q} is faithfully represented on \mathfrak{S}_0 . Thus, $\mathfrak{D} = C(I) \cap N(\mathfrak{Q}) \cap O^{\mathfrak{s}'}(\mathfrak{N}) \cong SL(2,3)$ and \mathfrak{D} is faithfully represented on \mathfrak{S}_0 .

Since \mathfrak{F}_0 is faithfully represented on $O_2(\mathfrak{M})$, so is $\mathfrak{F}_0\mathfrak{D}$. Since $\mathfrak{F}_0\cap\mathfrak{D}=1$, S_3 -subgroups of $\mathfrak{F}_0\mathfrak{D}$ are of exponent 3. Since the four subgroups of \mathfrak{F}_0 of order 3 are permuted transitively by \mathfrak{D} , it follows that $w_1 \geq 4$. Hence, $w_1 = 4$ and $O_2(\mathfrak{M})$ is extra special. Let \mathfrak{F}_0 be a S_3 -subgroup of $\mathfrak{F}_0\mathfrak{D}$. We can choose P in $\mathfrak{F}_0-\mathfrak{F}_0$ such that $C(P)\cap O_2(\mathfrak{M})$ contains a four-group. Since $C_{\mathfrak{M}}(P)$ clearly contains an element of $\mathscr{U}(3)$, Lemma 7.4 is violated. We conclude that I does not centralize $O^3(\mathfrak{R})/O^3(\mathfrak{R})'$.

Since Aut $(Z(\S))$ is abelian, the preceding paragraph implies that $Z(\S) = Z(\S)$.

Since $O_2(\mathfrak{M}) \nsubseteq \mathfrak{N}$, we can choose H in \mathfrak{H}^{\sharp} such that $C(H) \nsubseteq \mathfrak{N}$.

Let $|Z(\mathfrak{F})| = 3^a$, and suppose $a \geq 2$. Let $\widetilde{\mathfrak{F}}$ be a S_3 -subgroup of $C_{\mathfrak{F}}(H)$. Thus, $Z(\mathfrak{F}) \subseteq Z(\widetilde{\mathfrak{F}})$, and $\mathfrak{F} = \mathfrak{F}^{a-1}(Z(\widetilde{\mathfrak{F}}))$ char $\widetilde{\mathfrak{F}}$, whence $\widetilde{\mathfrak{F}}$ is a S_3 -subgroup of C(H). By Lemma 7.2 applied to $\langle H, \mathfrak{F} \rangle$, it follows that \mathfrak{F} centralizes $O_{\mathfrak{F}}(C(H))$, and so

$$[{\it O}_{\scriptscriptstyle 3'}({\it C}(H)),\,{\it C}_{\scriptscriptstyle 5\!\!\!\!0}(H)]$$
 \subseteq 5 $\!\!\!\!/ \cap {\it O}_{\scriptscriptstyle 3'}({\it C}(H))=1$.

By Lemma 9.4, we have $O_{\mathfrak{F}'}(C(H))=1$. Let $\widetilde{\mathfrak{P}}_1=O_{\mathfrak{F}}(C(H))\subseteq \widetilde{\mathfrak{P}}$. Thus, $Z(\mathfrak{P})\subseteq Z(\widetilde{\mathfrak{P}}_1)$, and we get $\mathfrak{F}=\mathfrak{F}^{a-1}(Z(\widetilde{\mathfrak{P}}_1))$, whence $C(H)\subseteq \mathfrak{R}$. This contradiction forces a=1, $Z(\mathfrak{P})=\mathfrak{F}$, $|\mathfrak{P}|=3^6$.

Throughout the remainder of this lemma, the following notation is used: $\mathbb Q$ is a S_2 -subgroup of $O^3(\mathfrak R)$ normalized by I. Since $\mathbb Q$ is a quaternion group, our preceding information implies the existence of an element Q in $\mathbb Q$ of order 4 such that $IQI = Q^{-1}$. Let $J = Q^2$. Thus, J centralizes $\mathfrak Z$ and inverts $\mathfrak Z/\mathfrak Z$.

We argue that \mathfrak{G} is not 3-normal. Namely, for some H in \mathfrak{F}_0^* , we have $\mathfrak{C} = C(H) \not\subseteq \mathfrak{N}$. If $|\mathfrak{C}|_3 = |\mathfrak{G}|_3$, then $\langle H \rangle$ is a conjugate of \mathfrak{F}_0 contained in \mathfrak{F}_0 , and we are done. Otherwise, it is clear that $\mathfrak{C} \cap \mathfrak{N}$ contains a S_3 -subgroup of \mathfrak{C} and since $\mathfrak{F}_0 \subseteq \mathfrak{C}$, $O_3(\mathfrak{C})$ contains at least two conjugates of \mathfrak{F}_0 . As $O_3(\mathfrak{C}) \subseteq \mathfrak{N}$, we again are done.

We next argue that 3 is not weakly closed in 5. Choose G in

 \mathfrak{G} such that $\mathfrak{Z}_1 = \mathfrak{Z}^a \subseteq \mathfrak{P}$ and $\mathfrak{Z} \neq \mathfrak{Z}_1$. If $\mathfrak{Z}_1 \subseteq \mathfrak{F}$, we are done. Otherwise, let $\mathfrak{P}_0 = C_{\mathfrak{P}}(\mathfrak{Z}_1) = \mathfrak{Z}_1 \times C_{\mathfrak{H}}(\mathfrak{Z}_1)$. Since \mathfrak{P}_0 is not a S_3 -subgroup of S but \mathfrak{P}_0 is a S_3 -subgroup of $C_{\mathfrak{P}}(\mathfrak{Z}_1)$, it follows that \mathfrak{Z} ch/ar \mathfrak{P}_0 . This implies that \mathfrak{P}_0 is elementary. Clearly, $27 \leq |\mathfrak{P}_0| \leq 81$, since w = 2. We assume without loss of generality that $\mathfrak{P} \cap \mathfrak{P}^{\sigma} = \mathfrak{P}_0$. If $\mathfrak{Z} \subseteq \mathfrak{F}^{\sigma}$, we are done, so we may assume that $\mathfrak{Z} \subseteq \mathfrak{S}^{G}$, which yields $\mathfrak{P}_{0} =$ $\mathfrak{Z} \times (\mathfrak{P}_0 \cap \mathfrak{F}^c)$. In particular, $\mathfrak{F} \cap \mathfrak{F}^c \neq 1$; let $\mathfrak{B} = \mathfrak{F} \cap \mathfrak{F}^c$, a group of order at least 3. Suppose $|\mathfrak{B}|=3$. Let $\mathfrak{R}=C(B)$, so that $|\mathfrak{R}\cap\mathfrak{P}|=$ $|\Re \cap \Re^{g}| = 3^{5}$. If $|\Re|_{3} = 3^{6}$, we are done, so we may assume that $|\Re|_3=3^5$. In this case, we see that $|O_3(\Re)|=3^4$, which implies that $|O_3(\Re) \cap \Im| \ge 27, |O_3(\Re) \cap \Im^{G}| \ge 27.$ Hence, $|\Im \cap \Im^{G}| \ge 9$, contrary to assumption. Thus, we may assume that $|\mathfrak{B}| = 9$. We may also assume that \mathfrak{B} contains no conjugate of \mathfrak{F} . We have $\mathfrak{F}_0 = \mathfrak{F} \times \mathfrak{F}_1 \times \mathfrak{F}$. We argue that $\mathfrak{P}_0 \triangleleft \langle \mathfrak{P}, \mathfrak{P}^G \rangle$. Namely, let $\mathfrak{P}_0 \subset \mathfrak{P}_1 \subset \mathfrak{P}$. If \mathfrak{P}_0 char \mathfrak{P}_1 , then clearly \mathfrak{P} normalizes \mathfrak{P}_0 . Suppose \mathfrak{P}_0 ch/ar \mathfrak{P}_1 . Then $\mathfrak{P}_1 = \mathfrak{P}_0 \mathfrak{P}_0^*$, where \mathfrak{P}_0^* is elementary of order 34. Hence, $\mathbf{Z}(\mathfrak{P}_1) = \mathfrak{P}_0 \cap \mathfrak{P}_0^*$ is of order 27. This implies that \mathfrak{P}'_1 is of order 3. Since $\mathfrak{P}_1 \cap \mathfrak{P}$ is nonabelian, we have $\mathfrak{P}'_1 = \mathfrak{Z}$. Thus, \mathfrak{Z}_1 centralizes $(\mathfrak{P}_1 \cap \mathfrak{Z})/\mathfrak{Z}$. This is not the case, since involutions of $O^{\mathfrak{F}}(\mathfrak{R})$ invert $\mathfrak{H}/\mathfrak{F}$, so that the action of $\mathfrak{F}_{\mathfrak{I}}$ on $\mathfrak{H}/\mathfrak{F}$ is given either by $J_3 \oplus J_1$ or by $J_2 \oplus J_2$. By symmetry, we have $\mathfrak{P}_0 \triangleleft \langle \mathfrak{P}, \mathfrak{P}^c \rangle$. It is easy to verify that $O_3(N(\mathfrak{P}_0))$ is of order 35, which implies that $|\mathfrak{H} \cap \mathfrak{H}^e| \geq 27$, the desired contradiction.

Since all parts of Hypothesis 9.3 are satisfied, Lemma 9.5 is violated. The proof of the lemma is complete.

Lemma 9.8. \Re is the only element of $\mathscr{MS}(\Im)$ which contains \Im .

Proof. Suppose false. Choose $\Re \in \mathscr{SL}(\mathfrak{S})$ so that $\mathfrak{S} \subseteq \Re \not\subseteq \Re$, and with this restriction, minimize $|\Re|$. Since $\mathsf{M}(\mathfrak{S})$ contains only 1, Lemma 0.7.6 implies that $l_3(\Re) \leq 2$. If $l_3(\Re) = 1$, then $\Im \subset \Re$, contrary to assumption. Hence, $l_3(\Re) = 2$; and \Re is a \Im , p-group for some prime p. Furthermore, $\Im \cong \operatorname{acts} \operatorname{irreducibly} \operatorname{on} O_{\Im,p}(\Re)/D(O_{\Im,p}(\Re \operatorname{mod} O_{\Im}(\Re)))$. Let $\Im \cong \Im \cap O_3(\Re)$, $\Im \cong \Im \cap O_3(\Re)$. By Lemma 9.4, $\Im \cong \Im \cap O_3(\Re)$ so $|\Im| \leq 2$. Thus, $O_{\Im,p}(\Re)/O_3(\Re)$ is a quaternion group whose involution inverts $\Im \cap G_3(\Re)$. Lemma 9.7 is violated. The proof is complete.

LEMMA 9.9. Every involution I of \Re inverts $\Re/\mathbf{Z}(\S)$.

Proof. By Lemma 9.7, I centralizes $\mathfrak{Z}, \mathfrak{Z}(\mathfrak{Z})$. If the lemma is false, then $C_{\mathfrak{Z}}(I)$ contains a subgroup \mathfrak{A} of type (3,3) with $\mathfrak{A} \supset \mathfrak{Z}$. This violates Lemma 9.3 (iii).

LEMMA 9.10. If $\mathfrak{A} \in \mathscr{A}_4(\mathfrak{P})$, then \mathfrak{R} is the only element of $\mathscr{MS}(\mathfrak{S})$ which contains \mathfrak{A} .

Proof. As in O, let $\mathscr{N}_1 = \{\mathfrak{A} \mid \mathfrak{A} \text{ is a 3-subgroup of } \mathfrak{R}, \mathfrak{A} \text{ contains an element of } \mathscr{SCN}_3(\mathfrak{P}^N) \text{ for some } N \text{ in } \mathfrak{R}, \mathscr{N}_{n+1} = \{\mathfrak{A} \mid \mathfrak{A} \text{ is a 3-subgroup of } \mathfrak{R}, \mathfrak{A} \text{ contains a subgroup } \mathfrak{B} \text{ of type } (3,3), C_{\mathfrak{R}}(B) \text{ contains an element of } \mathscr{N}_n \text{ for all } B \text{ in } \mathfrak{B} \}.$ Among all $\mathfrak{A} \in \mathscr{N}_+$ which violate the conclusion of the lemma, maximize $|\mathfrak{A} \cap \mathfrak{P}|$, and with this restriction, maximize $|\mathfrak{A}|$. By Lemma 9.8, $\mathfrak{F} \not\subseteq \mathfrak{A}$. Let $\mathfrak{M} \in \mathscr{MS}(\mathfrak{S})$ with $\mathfrak{A} \subseteq \mathfrak{M}, \mathfrak{M} \neq \mathfrak{R}$. By maximality of $|\mathfrak{A}|$, it follows that $\mathfrak{A} \text{ is a } S_3\text{-subgroup of } \mathfrak{M}$. We can therefore choose a prime q and a q-subgroup \mathfrak{D} of \mathfrak{M} permutable with \mathfrak{A} such that $\mathfrak{A} = \mathfrak{A} \mathfrak{D}$ is not contained in \mathfrak{A} . Let \mathfrak{D} be minimal with these properties. By Lemma 0.7.6, $l_3(\mathfrak{P}) \leq 2$.

We first show that $O_q(\mathfrak{L}) \subseteq \mathfrak{N}$. Suppose $\mathfrak{N} \cap \mathfrak{F}$ is noncyclic. Let \mathfrak{B} be a subgroup of $\mathfrak{N} \cap \mathfrak{F}$ of type (3,3). It suffices to show that $C(B) \subseteq \mathfrak{N}$ for all $B \in \mathfrak{B}^*$. Suppose false. Then maximality of $|\mathfrak{N} \cap \mathfrak{F}|$ yields $|\mathfrak{F}: \mathfrak{N} \cap \mathfrak{F}| \leq 3$. In this case, $\mathsf{M}(\mathfrak{N} \cap \mathfrak{F}) = 1$, so $O_q(\mathfrak{L}) = 1$. Thus, we may assume that $\mathfrak{N} \cap \mathfrak{F}$ is cyclic. Since $w \geq 2$, it follows that if P is any element of \mathfrak{P} of order 3, then $C_{\mathfrak{F}}(P)$ is noncyclic. Hence, every subgroup of \mathfrak{N} of type (3,3) is in \mathscr{A} . Since \mathfrak{N} contains a subgroup of type (3,3), maximality of $|\mathfrak{N} \cap \mathfrak{F}|$ implies that $C(A) \subseteq \mathfrak{N}$ for all elements A of \mathfrak{N} of order 3. Thus, in all cases, we have $O_q(\mathfrak{L}) \subseteq \mathfrak{N}$.

By minimality of \mathfrak{Q} , $O_{q,3}(\mathfrak{L}) = O_q(\mathfrak{L}) \times O_3(\mathfrak{L})$. Since $l_3(\mathfrak{L}) \leq 2$, it follows that $l_3(\mathfrak{L}) = 2$, by maximality of $|\mathfrak{U}|$ and the structure of $O_{q,3}(\mathfrak{L})$. Since $D(\mathfrak{Q})$ is permutable with \mathfrak{U} , we get $D(\mathfrak{L}) \subseteq \mathfrak{R}$, by minimality of \mathfrak{Q} .

Clearly, $\mathfrak A$ is a S_3 -subgroup of $N(O_3(\mathfrak A))$. Hence, $\mathfrak A \subseteq Z(O_3(\mathfrak A))$. Since $\mathfrak Q O_3(\mathfrak A) < \mathfrak A$, and since $\mathfrak A$ is a S_3 -subgroup of $N(O_3(\mathfrak A))$, and since $\mathfrak A \subseteq \mathfrak A$, it follows that $\mathfrak A \cap \mathfrak A$ acts nontrivially on $Q_3^1(\mathfrak A)$, but trivially on every proper $\mathfrak A$ -invariant subgroup of $Q_3^1(\mathfrak A)$. Since $D(\mathfrak A)$ centralizes $\mathfrak A$, it follows that $D(\mathfrak A)$ centralizes $\mathfrak A \subseteq \mathfrak A$.

If $q \geq 5$, then maximality of $\mathfrak A$ and Theorem 1 of [39] imply that $\mathfrak A = \mathfrak B$, against Lemma 9.8. Hence, q = 2. We may apply Theorem 1 of [39] once again and conclude that $D(\mathfrak Q) \neq 1$. By Lemma 9.9, each element of $D(\mathfrak Q)^*$ inverts $\mathfrak G/\mathfrak Z(\mathfrak G)$. Since $Z(\mathfrak G)$ is a normal cyclic subgroup of $\mathfrak B$, it follows that $\mathfrak A \cap Z(\mathfrak G) \subseteq O_3(\mathfrak R)$. Since $\mathfrak A \cap \mathfrak G \not\subseteq O_3(\mathfrak R)$, choose $H \in \mathfrak A \cap \mathfrak G - O_3(\mathfrak R)$. Let I be the element in $D(\mathfrak Q)^*$. Then $H^I = H^{-1}H_0$ with H_0 in $Z(\mathfrak G)$. Since $H_0 \in \mathfrak A$, it follows that [H, I] is contained in $\mathfrak A \cap \mathfrak A \cap O_{3,q}(\mathfrak R) \subseteq \mathfrak A \cap O_3(\mathfrak R)$. This violates the fact that $\mathfrak A \cap \mathfrak A \not\subseteq O_3(\mathfrak R)$. The proof is complete.

It is now easy to show that Hypothesis 9.2 is not satisfied. Otherwise, $\mathfrak R$ contains a four-subgroup $\mathfrak T$. But by Lemma 9.9, each element of $\mathfrak T^*$ inverts $\mathfrak S/Z(\mathfrak S)$. This is not possible, since $\mathfrak S=\langle C_{\mathfrak S}(J)\mid J\in\mathfrak T^*\rangle$.

The remaining lemmas in this section are proved on the hypothesis

that S contains a noncyclic characteristic abelian subgroup.

Among all noncyclic normal elementary subgroups of \mathfrak{R} , let \mathfrak{E} be minimal. Thus, $\mathfrak{E}/\mathfrak{Z}$ is a chief factor of \mathfrak{R} . Let $\mathscr{E}:\mathfrak{E}\supset\mathfrak{Z}\supset 1$. We will show that $A_{\mathfrak{G}}(\mathscr{E})=A(\mathscr{E})$. First, suppose \mathfrak{E} is not 3-reducible in \mathfrak{R} . Let $\mathfrak{L}=O_{\mathfrak{Z}}(\mathfrak{R} \bmod C(\mathfrak{E}))$. Since $\mathfrak{E}/\mathfrak{Z}$ is a chief factor of N, we have $[\mathfrak{L},\mathfrak{E}]=\mathfrak{Z}$, and $\mathfrak{L}=C_{\mathfrak{E}}(\mathfrak{L})$. These equalities imply immediately that \mathfrak{L} maps onto $A(\mathscr{E})$. Suppose \mathfrak{E} is 3-reducible in \mathfrak{R} . Let $\mathfrak{L}=O_{\mathfrak{Z}}(\mathfrak{R} \bmod C(\mathfrak{E}))$. Then $\mathfrak{Z}=C_{\mathfrak{E}}(\mathfrak{L})$ and $[\mathfrak{L},\mathfrak{E}]$ admits $N_{\mathfrak{R}}(\mathfrak{L})=\mathfrak{R}$. Since $A_{\mathfrak{L}}(\mathfrak{E})$ is a 3'-group it follows that $[\mathfrak{L},\mathfrak{E}]$ is a normal subgroup of \mathfrak{R} disjoint from \mathfrak{Z} . Hence, $[\mathfrak{L},\mathfrak{E}]=1$, since \mathfrak{Z} is the only minimal normal subgroup of \mathfrak{P} . Since \mathfrak{E} is 3-reducible in \mathfrak{R} and $O_{\mathfrak{L}}(\mathfrak{R} \bmod C(\mathfrak{E}))$, it follows that $\mathfrak{E}\subseteq Z(\mathfrak{R})$. This is absurd since \mathfrak{Z} is the only minimal normal subgroup of \mathfrak{P} . Thus, $A_{\mathfrak{G}}(\mathscr{E})=A(\mathscr{E})$.

Throughout the remainder of this section, the following notation is used: \mathfrak{P} , \mathfrak{P} , \mathfrak{R} are as before, and \mathfrak{E} is a noncyclic normal elementary subgroup of \mathfrak{R} such that $\mathfrak{E}/\mathfrak{P}$ is a chief factor of \mathfrak{R} . Also, $\mathscr{E}:\mathfrak{E}\supset\mathfrak{P}\supset 1$.

LEMMA 9.11. (i) If $\mathfrak S$ is a 2, 3-subgroup of $\mathfrak S$ and $\mathfrak S$ contains an element $\mathfrak A$ of $\mathcal E(3)$, then $O_2(\mathfrak S)=1$.

(ii) If $\mathfrak{A} \in \mathcal{E}(3)$, then $|C(\mathfrak{A})|$ is odd.

Proof. (i) Suppose I is an involution in $O_2(\mathfrak{S})$. Since \mathfrak{A} centralizes $O_2(\mathfrak{S})$, Lemmas 7.4 and 5.38 imply that C(I) is nonsolvable.

(ii) Suppose I is an involution of $C(\mathfrak{A})$. Then $\mathfrak{A} \times \langle I \rangle$ violates (i).

Lemma 9.12. (i) If I is an involution of C(3), then I inverts $\mathfrak{G}/3$.

(ii) C(3) contains no four-group.

(iii) If $\mathfrak T$ is an abelian 2-subgroup of $\mathfrak R$, then $A_{\mathfrak R}(\mathfrak T)$ is a 2-group.

Proof. (i) is a consequence of Lemmas 9.11 and 7.3, and (ii), (iii) are consequences of (i).

Lemma 9.13. \Re does not contain a noncyclic abelian subgroup of order 8.

Proof. Suppose false. Let \mathfrak{D}_0^* be a S_2 -subgroup of \mathfrak{R} permutable with \mathfrak{P} , and let $\mathfrak{N}_0 = \mathfrak{P}\mathfrak{D}_0^*$. Let $\mathfrak{D}_0 = \mathfrak{D}_0^* \cap O^{\mathfrak{I}}(\mathfrak{N}_0)$. Thus, \mathfrak{D}_0 is either a quaternion group or $\mathfrak{D}_0 = 1$. Let \mathfrak{D} be a subgroup of \mathfrak{D}_0^* which contains \mathfrak{D}_0 , is permutable with \mathfrak{P} , contains a noncyclic abelian subgroup of order 8, and is minimal with these properties. Let $\mathfrak{N}_1 = \mathfrak{P}\mathfrak{D}$. Thus, \mathfrak{D} is abelian of type (2, 4) if and only if every 2, 3-subgroup of \mathfrak{R} is 3-closed. If $\mathfrak{D}_0 \neq 1$, then $|\mathfrak{D}| = 2^4$ and \mathfrak{D} is either the direct product of a group of order 2 and \mathfrak{D}_0 or \mathfrak{D} is the central product of a cyclic group of order 4 and \mathfrak{D}_0 . Let $\mathfrak{F}/\mathfrak{F}$ be a chief factor of \mathfrak{R}_1

with $\mathfrak{F} \subseteq \mathfrak{C}$. Let $\mathfrak{P}_0 = O_3(\mathfrak{R}_1)$, $\mathfrak{P}_1 = C_{\mathfrak{P}_0}(\mathfrak{F})$. Since $A_{\mathfrak{R}}(\mathscr{C}) = A(\mathscr{C})$, so also $A_{\mathfrak{R}_1}(\mathscr{C}_0) = A(\mathscr{C}_0)$ where $\mathscr{C}_0 \colon \mathfrak{F} \supset \mathfrak{F} \supset 1$. Hence, $\mathfrak{P}_0/\mathfrak{P}_1$ is also a chief factor of \mathfrak{R}_1 with the same order as $\mathfrak{F}/\mathfrak{F}$. If $\mathfrak{D}' = 1$, then

(9.19)
$$\mathfrak{P} \triangleleft \mathfrak{N}_1, \mathfrak{D}$$
 is of type (4, 2), and $|\mathfrak{F}: \mathfrak{F}| = 9$.

Suppose $\mathfrak{Q}' \neq 1$. If $\mathfrak{Q} = \mathfrak{Q}_0 \times \mathfrak{Q}_1$, where $|\mathfrak{Q}_1| = 2$, then

$$\mathfrak{R}_{\scriptscriptstyle 1}/\mathfrak{P}_{\scriptscriptstyle 0}\cong SL(2,3)\times Z_{\scriptscriptstyle 2}, \text{ and } |\mathfrak{F}:\mathfrak{F}|=9.$$

Suppose $\mathfrak Q$ is the central product of $\mathfrak Q_0$ and a cyclic group of order 4. Then

(9.21)
$$\mathfrak{R}_{_{1}}/\mathfrak{P}_{_{0}}$$
 is the central product of $SL(2,3)$ and $Z_{_{4}}$, and $|\mathfrak{F}:\mathfrak{F}|=3^{_{4}}$.

By Lemmas 5.41 and 9.12, (9.19), (9.20), (9.21) exhaust all possibilities. It is clear from Lemma 9.12 that

(9.22) if (9.19) holds, a
$$S_{2,3}$$
-subgroup of $\mathfrak R$ is 3-closed.

We next will show that

(9.23) every subgroup of
$$\mathfrak{F}$$
 of order 9 is in \mathscr{D} .

To see this, let \mathfrak{F}_0 be a subgroup of \mathfrak{F} of order 9. If $\mathfrak{Z} \subset \mathfrak{F}_0$, then $\mathfrak{F}_0 \in \mathscr{C}(3) \subseteq \mathscr{D}$. Thus, we may assume that $\mathfrak{F}_0 \cap \mathfrak{Z} = 1$. Let \mathfrak{T} be an abelian subgroup in $\mathsf{M}(\mathfrak{F}_0; 2)$ and assume by way of contradiction that $[\mathfrak{T}, \mathfrak{F}_0] \neq 1$. We may assume that \mathfrak{T} is a four-group. Let $\mathfrak{F}_1 = \mathfrak{F}_0 \cap C(\mathfrak{T})$, a group of order 3. Let $\mathfrak{C} = C(\mathfrak{F}_1) \supseteq \langle \mathfrak{F}, \mathfrak{T} \rangle$. Since $m(\mathfrak{F}) \geq 3$ and $\mathfrak{F} \subset \mathfrak{F}$, there is $\mathfrak{A} \in \mathscr{SCN}_3(\mathfrak{F})$ with $\mathfrak{F} \subseteq \mathfrak{A}$. Hence, $\mathfrak{A} \subseteq \mathfrak{C} = C(\mathfrak{F}_1)$ implies $O_{\mathfrak{F}_1}(\mathfrak{C}) = 1$ by hypothesis (ii) of Theorem 9.1.

By Lemma 5.5, $\mathfrak{Z} \subseteq O_3(\mathfrak{C})$. Let $\mathfrak{W} = \Omega_1(\mathbf{Z}(O_3(\mathfrak{C})))$, and let \mathfrak{P}^* be a S_3 -subgroup of \mathfrak{C} . Let \mathfrak{P}^{σ} be a S_3 -subgroup of \mathfrak{G} which contains \mathfrak{P}^* . Then $\mathfrak{Z}^{\sigma} \subset \mathfrak{P}^*$, so $\mathfrak{Z}^{\sigma} \subseteq \mathfrak{W}$. By Lemma 9.12 (iii), \mathfrak{T} is faithfully represented on \mathfrak{W} . Hence, if $F \in \mathfrak{F}_0 - \mathfrak{F} \cap C(\mathfrak{T})$, then the minimal polynomial of F on \mathfrak{W} is $(x-1)^3$. On the other hand, \mathfrak{Z} centralizes \mathfrak{W} . Since $\mathfrak{C} \subset \mathfrak{N}$, the minimal polynomial of F on \mathfrak{W} is a divisor of $(x-1)^2$. This contradiction establishes (9.23).

Since \mathfrak{D} contains an abelian subgroup of type (2, 4), we can choose an involution I of \mathfrak{D} such that $\mathfrak{F}_0 = C_{\mathfrak{F}}(I)$ is noncyclic. By Lemmas 7.4 and 5.38, C(I) contains no element of $\mathcal{E}(3)$. Hence, I inverts 3. Thus, in cases (9.19), (9.20) respectively, we have

$$(9.19)' - (9.20)'$$
 $\mathfrak{F} = \mathfrak{F}_0 \times \mathfrak{F}$.

In case (9.21), we have

$$|\mathfrak{F}_{\scriptscriptstyle{0}}| = |\, C_{\mathfrak{F}_{\scriptscriptstyle{0}}/\mathfrak{F}_{\scriptscriptstyle{1}}}\!(I) \,| = 9$$
 .

Thus, in case (9.21), we have $|C_{\mathfrak{B}_0}(I)| \geq 3^4$.

Let $\mathfrak L$ be a $S_{2,3}$ -subgroup of C(I) which contains $\mathfrak F_0$. Since $\mathfrak F_0 \in \mathscr D$ and since C(I) contains an element of $\mathscr U(2)$, there is an element $\mathfrak M$ of $\mathfrak M\mathfrak S(G)$ which satisfies all the conclusions of Lemma 7.5, contains $\mathfrak F_0$ and contains a S_2 -subgroup of $\mathfrak L$. By Lemma 7.5 (f), $I \in O_2(\mathfrak M)$.

We will show that

$$(9.24) C_{\mathfrak{N}_{1}}(I) \subseteq \mathfrak{M}.$$

By Lemma 7.5 (f), it suffices to show that \mathfrak{M} contains an S_2 -subgroup of C(I). By construction, \mathfrak{M} contains an S_2 -subgroup of \mathfrak{L} , which is an $S_{2,3}$ -subgroup of C(I). This proves (9.24).

Suppose (9.19) holds. In this case, we have (9.22). Also, (9.19) implies that every element of \mathfrak{G} of order 3 centralizes an element of $\mathscr{E}(3)$. Let \mathfrak{F}_1 be a subgroup of \mathfrak{F}_0 of order 3 such that

$$[O_2(\mathfrak{M})\cap C(\mathfrak{F}_1),\,\mathfrak{F}_0]=\mathfrak{Q}^*
eq 1$$
.

Thus, \mathfrak{Q}^* is a quaternion group and a $S_{2,3}$ -subgroup of $C(\mathfrak{F}_1)$ is not 3-closed. By (9.22), $\mathfrak{F}_1 \nsim \mathfrak{F}$. Since $|C_{\mathfrak{R}_1}(\mathfrak{F}_1)|_3 = |\mathfrak{P}|/3$, it follows that $C_{\mathfrak{R}_1}(\mathfrak{F}_1)$ contains a S_3 -subgroup of $C(\mathfrak{F}_1)$. Let \mathfrak{P}^* be a S_3 -subgroup of $C_{\mathfrak{N}_1}(\mathfrak{F}_1)$. Since $C(\mathfrak{F}_1)$ contains an element of $\mathscr{S}_{erg}(\mathfrak{P})$, it follows that O_3 (\mathfrak{C}) = 1, where $\mathfrak{C} = C(\mathfrak{F}_1)$. Let $\mathfrak{R} = O_3(\mathfrak{C})/\mathfrak{F}_1$. Thus, $\mathfrak{Q}^* \not\subset F \not = 1$ is faithfully represented on $Z(\mathfrak{R})$ for each F in $\mathfrak{F}_0 - \mathfrak{F}_1$. But $[\mathfrak{R}, F] \subseteq \langle \mathfrak{F}, \mathfrak{F}_1 \rangle / \mathfrak{F}_1$, so \mathfrak{Q}^* centralizes a subgroup of $O_3(\mathfrak{R})$ of index 9.

Suppose (9.19) holds and $O_3(\mathbb{C}) \cap C(I)$ is noncyclic, where I is the involution of \mathbb{C}^* . In this case, since \mathfrak{F}_0 centralizes I and $O_3(\mathbb{C}) \cap \mathfrak{F}_0 = \mathfrak{F}_1$, it follows that $\mathbb{C} \cap \mathbb{M}$ contains a subgroup of order 27 and exponent 3. Since every element of \mathbb{G} of order 3 centralizes an element of $\mathbb{G}(3)$, it follows that a S_3 -subgroup of \mathbb{M} is nonabelian of order 27 and the width of $O_2(\mathbb{M})$ is 3. Since $|O_3(\mathbb{C}):O_3(\mathbb{C})\cap C(I)|=9$, it follows that $|O_3(\mathbb{C})| \leq 3^4$. Since $O_3(\mathbb{C})\cap C(I)$ is assumed noncyclic, and since $m(Z(O_3(\mathbb{C})) \geq 3$, it follows that $O_3(\mathbb{C})$ is elementary of order 3^4 . Since $\mathbb{C}^* \subseteq \mathbb{C}$, and since $\langle I \rangle = O_2(\mathbb{M}) \cap C(\mathfrak{F}_0)$, it follows that $O_3(\mathbb{C})$ is of index 3 in \mathfrak{P}^* . Hence, $|\mathfrak{P}| = 3^6$, since \mathfrak{P}^* is of index 3 in some S_3 -subgroup of \mathfrak{G} .

Since $|\mathfrak{P}^*| = 3^5$, we have $\mathfrak{P}^* = O_3(\mathfrak{C})\mathfrak{F}_0$.

We argue that $C_{\mathfrak{P}^*}(F)$ is of index 9 in \mathfrak{P}^* for every F in $\mathfrak{F}_0 - \mathfrak{F}_1$. This assertion is equivalent to the assertion that $O_3(\mathfrak{C}) \cap C(F)$ is of order 9, since $\mathfrak{P}^* = O_3(\mathfrak{C}) \langle F \rangle$. Now $O_3(\mathfrak{C}) = \mathfrak{U}_1 \times \mathfrak{U}_2$, where $\mathfrak{U}_1 = C(I) \cap O_3(\mathfrak{C})$, \mathfrak{U}_2 is inverted by I, and $|\mathfrak{U}_1| = |\mathfrak{U}_2| = 9$. Since $\mathfrak{U}_i \triangleleft \mathfrak{P}^*\mathfrak{D}^*$, i = 1, 2, we must show that F does not centralize either \mathfrak{U}_1 or \mathfrak{U}_2 . It is obvious that F does not centralize \mathfrak{U}_2 . If F centralizes \mathfrak{U}_1 , then $\langle \mathfrak{U}_1, F \rangle$ is elementary of order 27 and is contained in \mathfrak{M} , whereas we already know that S_3 -subgroups of \mathfrak{M} are nonabelian of order 27. So

 $|\mathfrak{P}^*: C_{\mathfrak{R}^*}(F)| = 9.$

Since $C_{\mathfrak{P}}(F)$ is of index 9 in \mathfrak{P}^* for every F in $\mathfrak{F}_0 - \mathfrak{F}_1$, it follows that $O_3(\mathbb{C})$ char \mathfrak{P}^* . Thus, $N(O_3(\mathbb{C}))$ contains a S_3 -subgroup of \mathbb{G} and $S_{2,3}$ -subgroup of $N(O_3(\mathbb{C}))$ are not 3-closed. This implies that if \mathfrak{F} is a S_3 -subgroup of $N(O_3(\mathbb{C}))$, then $O_3(\mathbb{C})$ is not characteristic in \mathfrak{F} . More explicitly, $N(O_3(\mathbb{C})) \cap N(\mathfrak{F})$ does not contain a noncyclic abelian subgroup of order 8, while $N(\mathfrak{F})$ does. Let \mathfrak{A} be an elementary subgroup of \mathfrak{P} of order \mathfrak{F} with $\mathfrak{A} \neq O_3(\mathbb{C})$. If $\mathfrak{A} \cap O_3(\mathbb{C})$ is of order 9, then $\mathfrak{F} = \mathfrak{A}O_3(\mathbb{C})$ and $Z(\mathfrak{F})$ is not cyclic. Hence, $\mathfrak{A} \cap O_3(\mathbb{C})$ is of order 27. Hence, $\mathfrak{F} = \mathfrak{P}^*\mathfrak{A}$, and it follows that $N(O_3(\mathbb{C})) \cap C(I)$ contains S_3 -subgroups of order \mathfrak{F} . Furthermore, every subgroup of \mathfrak{F} of order 3 centralizes an element of $\mathfrak{C}(\mathfrak{A})$. Since the width of $O_2(\mathfrak{M})$ is 3, it follows that a S_3 -subgroup of \mathfrak{M} is of the shape S_3 . But we have already shown that S_3 -subgroups of \mathfrak{M} are of order 27.

Suppose (9.19) holds and $O_3(\mathbb{C}) \cap C(I)$ is cyclic. Since S_3 -subgroups of \mathfrak{M} are of exponent 3 or 9, it follows that $|O_3(\mathbb{C}) \cap C(I)| = 3$ or 9. Hence, $|O_3(\mathbb{C})| \leq 3^4$, so $O_3(\mathbb{C})$ is abelian. Hence, $\mathfrak{P}^* = O_3(\mathbb{C})\mathfrak{F}_0$. Since elements of $\mathfrak{F}_0 - \mathfrak{F}_1$ have quadratic minimal polynomial of $O_3(\mathbb{C})$, it follows that $O_3(\mathbb{C}) = O_3(\mathbb{C}) = O_3(\mathbb{C}) = O_3(\mathbb{C}) = O_3(\mathbb{C})$. Hence, $O_3(\mathbb{C}) = O_3(\mathbb{C})$ is conjugate to $O_3(\mathbb{C}) = O_3(\mathbb{C})$. Hence, $O_3(\mathbb{C})$ is elementary of order 27.

Since $|O_3(\mathfrak{C})|=27$, we get $|\mathfrak{P}^*|=3^4$, $|\mathfrak{P}|=3^5$. Since (9.19) holds, \mathfrak{D} is of type (4, 2) and \mathfrak{D} normalizes \mathfrak{P} . Let $\mathfrak{D}=\tilde{\mathfrak{D}}\cap C(\mathfrak{F})$. Thus, $\tilde{\mathfrak{D}}$ is cyclic of order 4, by Lemma 9.12 (ii). Also, the involution Q of $\tilde{\mathfrak{D}}$ inverts $\mathfrak{F}/\mathfrak{F}/\mathfrak{F}$, so inverts $\mathfrak{P}/\mathfrak{F}/\mathfrak{F}$. Hence, $\mathfrak{P}/\mathfrak{F}/\mathfrak{F}$ is elementary of order 3^4 and is the direct sum of $\mathfrak{E}/\mathfrak{F}/\mathfrak{F}$ and another irreducible \mathfrak{D} -module. This implies that \mathfrak{P} is of exponent 3 and is extra special. Thus, for each P in \mathfrak{P} , \mathfrak{F} char $C_{\mathfrak{P}}(P)$. This implies that \mathfrak{F} is weakly closed in \mathfrak{P} . But turning back to \mathfrak{C} , it follows that \mathfrak{D}^* does not normalize \mathfrak{F} , so \mathfrak{F} is not weakly closed in \mathfrak{F} . This contradiction shows that (9.19) does not hold.

Suppose (9.20) holds. By (9.24) it follows that $\mathfrak{D}\mathfrak{F}_0 \subseteq \mathfrak{M}$. Hence, the width of $O_2(\mathfrak{M})$ is four. Hence, $C_{\mathfrak{P}_0}(I) = \mathfrak{F}_0$. Thus, $C_{\mathfrak{N}_1}(I)$ contains a S_3 -subgroup $\widetilde{\mathfrak{P}}$ which is a nonabelian group of order 27 and exponent 3. This is not the case, since $C(P) \cap O_2(\mathfrak{M})$ contains no four-subgroup for any element P of $\widetilde{\mathfrak{P}}^\sharp$.

Suppose (9.21) holds. By (9.24) and (9.21)', it follows that S_3 -subgroups of \mathfrak{M} are of order at least 3'. Hence, the width of $O_2(\mathfrak{M})$ is four, and $C(I) \cap \mathfrak{P}_0$ contains no subgroup of order 27 and exponent 3, and of course $C(I) \cap \mathfrak{P}_0$ is of exponent 9. This is absurd, since S_3 -subgroups of Aut $(O_2(\mathfrak{M}))$ contain subgroups of index and exponent 3. This completes the proof of this lemma.

LEMMA 9.14. $N(J(\mathfrak{P}))$ does not contain a noncyclic abelian subgroup

of order 8.

Proof. First, suppose that $J(\mathfrak{P})$ is not elementary. Then $\mathfrak{B} = Z(J(\mathfrak{P})) \cap D(J(\mathfrak{P})) \neq 1$. If \mathfrak{B} is cyclic, then $\Omega_1(\mathfrak{B}) = \mathfrak{F}$ char $N(J(\mathfrak{P}))$, so $N(J(\mathfrak{P})) \subseteq \mathfrak{R}$, and this lemma follows from Lemma 9.13. We may assume that \mathfrak{B} is noncyclic. Let \mathfrak{B}_1 be a noncyclic elementary subgroup of order 9. We will show that $\mathfrak{B}_1 \in \mathscr{E}(\mathfrak{F})$. Choose $\mathfrak{D} \in \mathsf{M}(\mathfrak{B}_1; \mathfrak{F})$, minimal subject to $[\mathfrak{D}, \mathfrak{B}_1] \neq 1$. Let $\mathfrak{B}_0 = C_{\mathfrak{B}_1}(\mathfrak{D})$ so that $|\mathfrak{B}_0| = 3$. Let $\mathfrak{E} = C(\mathfrak{B}_0)$, and let \mathfrak{P}^* be a S_3 -subgroup of \mathfrak{E} which contains $J(\mathfrak{P})$. Hence, $J(\mathfrak{P}) = J(\mathfrak{P}^*)$. Let $\mathfrak{P} = \mathfrak{P}^G$ be a S_3 -subgroup of \mathfrak{F} which contains \mathfrak{F}^* .

Since \mathfrak{C} contains an element of $\mathscr{S}_{\omega_3}(\mathfrak{P})$, it follows that $O_{\mathfrak{P}}(\mathfrak{C})=1$. Since $\mathfrak{W}_1\subseteq Z(J(\mathfrak{P}))=Z(J(\mathfrak{P}^*))$, we have $[O_{\mathfrak{P}}(\mathfrak{C}),\mathfrak{W}_1]\subseteq J(\mathfrak{P})$ and $[O_{\mathfrak{P}}(\mathfrak{C}),\mathfrak{W}_1]=1$. It follows that \mathfrak{D} is a quaternion group. Let $\mathfrak{V}=(\mathfrak{F}^{\sigma})^{\mathfrak{C}}$. Thus, \mathfrak{V} is a normal elementary 3-subgroup of \mathfrak{C} , and by Lemma 5.10, \mathfrak{V} is 3-reducible in \mathfrak{C} . It is a straightforward consequence of Lemma 5.2 that $\mathfrak{V}\subseteq J(\mathfrak{P}^*)$. Thus, \mathfrak{D} centralizes \mathfrak{V} , as \mathfrak{W}_1 centralizes \mathfrak{V} . Thus, it follows that $\mathfrak{W}_1\not\subseteq O_{\mathfrak{P}}(\mathfrak{N}_1)$, where \mathfrak{N}_1 is a $S_{2,\mathfrak{P}}$ -subgroup of \mathfrak{R}^{σ} which contains \mathfrak{P}^{σ} . By Lemma 9.12, $|\mathfrak{P}^{\sigma}:O_{\mathfrak{P}}(\mathfrak{N}_1)|\leq 3$. Thus, $\mathfrak{W}_1\not\subseteq D(\mathfrak{P}^{\sigma})$. This is absurd, since $\mathfrak{W}_1\subseteq D(J(\mathfrak{P}))$, and $J(\mathfrak{P})=J(\mathfrak{P}^*)=J(\mathfrak{P}^{\sigma})$.

It is an immediate consequence of the preceding argument and Lemmas 7.4 and 5.38 that if $D(J(\mathfrak{P})) \neq 1$, then this lemma holds.

Assume now that $J(\mathfrak{P})$ is elementary. To complete the proof of the lemma, it suffices to show that each subgroup of $J(\mathfrak{P})$ of order 9 is in $\mathscr{C}(3)$. Suppose false, and $\mathfrak{W} \subseteq J(\mathfrak{P})$, $|\mathfrak{W}| = 9$, $\mathfrak{W} \notin \mathscr{C}(3)$. Let \mathfrak{T} be an element of $\mathcal{M}(\mathfrak{W}; 3')$ minimal subject to $[\mathfrak{W}, \mathfrak{T}] \neq 1$. Let $\mathfrak{W}_0 = \mathfrak{W} \cap C(\mathfrak{T})$, so that $|\mathfrak{W}_0| = 3$.

Let $\mathfrak{C} = C(\mathfrak{B}_0) \supseteq \langle J(\mathfrak{P}), \mathfrak{T} \rangle$. Let \mathfrak{P}^* be a S_3 -subgroup of \mathfrak{C} which contains $J(\mathfrak{P})$, and let \mathfrak{P}^{σ} be a S_3 -subgroup of \mathfrak{G} which contains \mathfrak{P}^* . Hence, $J(\mathfrak{P}) = J(\mathfrak{P}^{\sigma})$. Since $J(\mathfrak{P}^{\sigma}) = J(\mathfrak{P})^{\sigma}$, we get that $G \in N(J(\mathfrak{P}))$. Replacing \mathfrak{B} by $\mathfrak{B}^{\sigma^{-1}}$ and \mathfrak{T} by $\mathfrak{T}^{\sigma^{-1}}$, we assume without loss of generality that $\mathfrak{P}^* \subseteq \mathfrak{P}$.

Since \mathfrak{P}^* contains an element of $\mathscr{SCN}_{\mathfrak{F}}(\mathfrak{P})$, it follows that $O_{\mathfrak{F}}(\mathfrak{C}) = 1$. Hence, $\mathfrak{F} \subseteq O_{\mathfrak{F}}(\mathfrak{C})$. Let $\mathfrak{B} = \mathfrak{F}_{\mathfrak{C}}$, so that \mathfrak{B} is a normal elementary subgroup of \mathfrak{C} . Since \mathfrak{B} is 3-reducible in \mathfrak{C} , it follows that $\mathfrak{B} \subseteq J(\mathfrak{P})$. Hence, \mathfrak{T} centralizes \mathfrak{B} . In particular, \mathfrak{T} centralizes \mathfrak{F} .

Let $\widetilde{\mathfrak{F}} = J(\mathfrak{P}) \cap O_{\mathfrak{F}}(\mathbb{C})$. Thus, $\mathfrak{B} \nsubseteq \widetilde{\mathfrak{F}}$, and $J(\mathfrak{P})/\widetilde{\mathfrak{F}}$ acts faithfully on $O_{3,3'}(\mathbb{C})/O_3(\mathbb{C})$. Let $\mathfrak{R} = [O_{3,3'}(\mathbb{C}), J(\mathfrak{P})]O_3(\mathbb{C})$. Since

$$[O_3(\mathbb{C}), J(\mathfrak{P}), J(\mathfrak{P})] = 1$$
,

it follows that $\overline{\Re} = \Re/O_3(\mathfrak{C})$ is a 2-group, and that $J(\mathfrak{P})$ centralizes every characteristic abelian subgroup of $\overline{\Re}$. Since $J(\mathfrak{P})$ centralizes \mathfrak{P} , so does \mathfrak{R} . By Lemma 9.12 (ii), \mathfrak{R} contains no four-group. So \mathfrak{R} is a quaternion group and $J(\mathfrak{P})/\widetilde{\mathfrak{P}}$ is of order 3, whence $J(\mathfrak{P}) = \widetilde{\mathfrak{P}}\mathfrak{P}$, and so $\mathfrak{R} =$

 $[O_{3,3'}(\mathbb{C}), \mathfrak{W}]O_3(\mathbb{C})$. Since $J(\mathfrak{P})O_3(\mathbb{C})/O_3(\mathbb{C})$ is of order 3, it follows that $J(\mathfrak{P}) \subseteq O_{3,3',3}(\mathbb{C})$, and so $\mathfrak{T} \subseteq O_{3,3'}(\mathbb{C})$, whence $\mathfrak{T} \subseteq \mathfrak{R}$, and so $\mathfrak{R} = \mathfrak{T}O_3(\mathbb{C})$, and $\mathfrak{T} \cong \overline{\mathfrak{R}}$ is a quaternion group. Note that \mathfrak{T} is permutable with \mathfrak{P}^* , as \mathfrak{P}^* normalizes $[O_{3,3'}(\mathbb{C}), J(\mathfrak{P})]$.

Enlarge $\mathfrak{P}^*\mathfrak{T}$ to a $S_{2,3}$ -subgroup \mathfrak{N}_0 of \mathfrak{N} , and let $\mathfrak{N}_1 = O^{\mathfrak{S}'}(\mathfrak{N}_0)$. Thus, $\mathfrak{N}_1 = \mathfrak{T}\tilde{\mathfrak{P}}$, where $\tilde{\mathfrak{P}} = \mathfrak{P}^N$ for some N in \mathfrak{N} . Since $J(\mathfrak{P}) = J(\mathfrak{P}^N) = J(\mathfrak{P})^N$, replacing \mathfrak{W} by \mathfrak{W}^{N-1} and \mathfrak{T} by \mathfrak{T}^{N-1} , we assume without loss of generality that $\tilde{\mathfrak{P}} = \mathfrak{P}$ is permutable with \mathfrak{T} .

Let \mathfrak{B}_1 be a subgroup of \mathfrak{B} of order 3 different from \mathfrak{B}_0 . Let $\mathfrak{P}_0 = O_3(\mathfrak{R}_1)$. Thus, $\mathfrak{P} = \mathfrak{P}_0\mathfrak{B}_1$ and $\mathfrak{B}_1\mathfrak{T}$ is a complement to \mathfrak{P}_0 in \mathfrak{R}_1 . Let I be the involution of \mathfrak{T} , let T be an element of \mathfrak{T} of order 4, let $\mathfrak{R} = J(\mathfrak{P}) \cap \mathfrak{P}_0$, and let $\mathfrak{L} = \langle \mathfrak{R}, \mathfrak{R}^T \rangle$. Since $T^2 = I$ normalizes \mathfrak{P} , and $J(\mathfrak{P})$ char \mathfrak{P} , it follows that T^2 normalizes \mathfrak{R} . Hence, T normalizes \mathfrak{L} . Of course, \mathfrak{B}_1 also normalizes \mathfrak{L} , since $[\mathfrak{B}_1, \mathfrak{L}] \subseteq \mathfrak{R} \subseteq \mathfrak{L}$. Since $\mathfrak{R} \triangleleft \mathfrak{P}_0$, it follows that $\mathfrak{L} \triangleleft \mathfrak{P}_0$, so $\mathfrak{L} \triangleleft \mathfrak{R}_1$. Since

$$\mathfrak{L}' = [\mathfrak{R}, \mathfrak{R}^T] \subseteq \mathfrak{R} \cap \mathfrak{R}^T \subseteq \mathfrak{R} \subseteq J(\mathfrak{P})$$
,

 $J(\mathfrak{P})$ centralizes \mathfrak{L}' . Since $\mathfrak{W}_1 \subseteq J(\mathfrak{P})$, it follows that \mathfrak{T} centralizes \mathfrak{L}' . Hence, $\mathfrak{L}' \subseteq \mathfrak{Z}$, as otherwise I centralizes an element of $\mathscr{U}(3)$.

Clearly, $\mathfrak L$ is of exponent 3, being of class at most 2 and being generated by its elementary subgroups. The definition of $J(\mathfrak P)$ forces $\mathfrak R=C_{\mathfrak L}(\mathfrak R)$. Hence, $Z(\mathfrak L)=\mathfrak Z=\mathfrak L'$, so that $\mathfrak L$ is extra special, while $\mathfrak R\in \mathscr{S}_{\mathfrak{e}n}(\mathfrak L)$. The width of $\mathfrak L$ is at least 2, since otherwise, Hypothesis 9.1 would be satisfied.

Now I centralizes \mathfrak{Z} and normalizes \mathfrak{R} . We argue that I inverts $\mathfrak{R}/\mathfrak{Z}$. Suppose false and \mathfrak{F} is a subgroup of \mathfrak{R} of order 9 which contains \mathfrak{Z} and is centralized by I. Since $A_{\mathfrak{R}}(\widetilde{\mathscr{C}}) = A(\widetilde{\mathscr{C}})$, where $\widetilde{\mathscr{C}}: \mathfrak{R} \supset \mathfrak{Z} \supset 1$, it follows from Lemma 5.5 that $\mathfrak{F} \in \mathscr{C}(\mathfrak{Z})$. Thus, C(I) is nonsolvable by Lemmas 7.4 and 5.38. This contradiction shows that I inverts $\mathfrak{R}/\mathfrak{Z}$. Hence I inverts $\mathfrak{L}/\mathfrak{Z}$.

We next show that \mathfrak{T} centralizes $\mathfrak{P}_0/\mathfrak{L}$. This is clear, since $[\mathfrak{P}_0, \mathfrak{W}_1] \subseteq \mathfrak{K} \subseteq \mathfrak{L}$, so that \mathfrak{W}_1 centralizes $\mathfrak{P}_0/\mathfrak{L}$.

Since I inverts $\mathfrak{L}/\mathfrak{Z}$, it follows that if $\widetilde{\mathfrak{W}}$ is any subgroup of $J(\mathfrak{P})$ of order 9, and $\widetilde{\mathfrak{T}}$ is any element of $\mathsf{M}(\widetilde{\mathfrak{W}};\mathfrak{Z}')$ which is minimal subject to $[\widetilde{\mathfrak{W}},\widetilde{\mathfrak{T}}]\neq 1$, then $\widetilde{\mathfrak{T}}$ is a quaternion group and $\widetilde{\mathfrak{W}}\cap C(\widetilde{\mathfrak{T}})\sim \mathfrak{Z}$. In particular, $\mathfrak{W}\in \mathscr{D}$.

Let $\mathfrak M$ be the subgroup given by Lemma 7.5 which contains a S_2 -subgroup of C(I) and contains $\mathfrak M$. Then Lemma 9.12 (ii) implies that $O_2(\mathfrak M)$ is extra special, and that $\langle I \rangle = O_2(\mathfrak M)'$. Hence, $C_{\mathfrak N_1}(I) \subseteq \mathfrak M$.

If the width of $O_2(\mathfrak{M})$ is 2, then $\mathfrak{B} = C_{\mathfrak{P}}(I)$ is a S_3 -subgroup of $C_{\mathfrak{N}_1}(I)$ so $\mathfrak{L} = \mathfrak{P}_0$ is extra special. Since $\mathfrak{P}_0 = O_3(\mathfrak{N})$, it follows that Hypothesis 9.2 is satisfied, an excluded case. Hence, the width of $O_2(\mathfrak{M})$ is 3 or 4. On the other hand, every element of $(C(I) \cap O_3(\mathfrak{N}_1))\mathfrak{M}$ of order 3.

centralizes an element of $\mathscr{C}(3)$, so $C_{\mathfrak{R}_1}(I)$ contains no subgroup of exponent 3 and order 27. Hence, $C_{\mathfrak{P}_0}(I)$ is cyclic of order 3 or 9. If $C_{\mathfrak{P}_0}(I)=3$, Hypothesis 9.2 is satisfied, an excluded case. Hence, $C_{\mathfrak{P}_0}(I)$ is cyclic of order 9. This means that if \mathfrak{B}_1 is any subgroup of \mathfrak{B} of order 3 such that $C(\mathfrak{B}_1)\cap O_2(\mathfrak{M})\supset \langle I\rangle$, then $\mathfrak{B}_1=\langle P^3\rangle$ for some P in \mathfrak{M} . This is absurd, since we get that $\mathfrak{B}\subseteq \Omega^1(\tilde{\mathfrak{P}})$ for some S_3 -subgroup $\tilde{\mathfrak{P}}$ of \mathfrak{M} , while $\tilde{\mathfrak{P}}$ is isomorphic to a subgroup of $Z_3\times (Z_3\setminus Z_3)$. The proof is complete.

LEMMA 9.15. If $\mathfrak{A} \in \mathcal{E}(3)$ and \mathfrak{B} is a noncyclic abelian subgroup of order 8, then $\langle \mathfrak{A}, \mathfrak{B} \rangle$ is nonsolvable.

Proof. Suppose false. Let ${\mathscr S}$ be the set of all 2, 3-subgroups ${\mathfrak S}$ of ${\mathfrak S}$ such that

- (i) \otimes contains an element of $\mathscr{E}(3)$.
- (ii) $\mathfrak{S}/O_3(\mathfrak{S})$ satisfies the hypothesis of Lemma 5.41. Thus, $\mathscr{S} \neq \varnothing$.

If \mathfrak{S}_1 and \mathfrak{S}_2 are elements of \mathscr{S} , we say that $\mathfrak{S}_1 \ll \mathfrak{S}_2$ if and only if either $|\mathfrak{S}_1|_3 < |\mathfrak{S}_2|_3$ or $\mathfrak{S}_1 = \mathfrak{S}_2$.

Let $\mathfrak S$ be a maximal element of $\mathscr S$ under $\mathfrak S$. Let $\mathfrak S_p$ be a S_p -subgroup of $\mathfrak S$, p=2, 3. Since $\mathfrak S$ contains an element of $\mathscr S(3)$, it follows from Lemma 9.11 (ii) that $O_2(\mathfrak S)=1$.

Replacing \otimes by a conjugate if necessary, we assume that $\otimes_3 \subseteq \mathfrak{P}$. By Lemma 5.41, \otimes has 2-length 1. If $\otimes_2' = 1$, then

$$\mathfrak{S} = C_{\mathfrak{S}}(\mathbf{Z}(\mathfrak{S}_3)) \cdot N_{\mathfrak{S}}(\mathbf{J}(\mathfrak{S}_3))$$

by Theorem 1 of [43]. Since $Z(\mathfrak{P}) \subseteq Z(\mathfrak{S}_3)$, S_2 -subgroups of $C_{\mathfrak{S}}(Z(\mathfrak{S}_3))$ are cyclic. Thus, $C_{\mathfrak{S}}(Z(\mathfrak{S}_3)) \subseteq N_{\mathfrak{S}}(\mathfrak{S}_3) \subseteq N_{\mathfrak{S}}(J(\mathfrak{S}_3))$, so $J(\mathfrak{S}_3) \triangleleft \mathfrak{S}$. Maximality of \mathfrak{S} forces $\mathfrak{S}_3 = \mathfrak{P}$, against Lemma 9.14. Hence, $\mathfrak{S}_2' \neq 1$.

Suppose \mathfrak{S}_2 is extra special of width at least 2. By Lemma 5.52, it follows that $\mathfrak{S} = C_{\mathfrak{S}}(Z(O_3(\mathfrak{S})))N_{\mathfrak{S}}(J(\mathfrak{S}_3))$. Thus, maximality of \mathfrak{S} together with Lemmas 9.13 and 9.14 imply that neither $C_{\mathfrak{S}}(Z(O_3(\mathfrak{S})))$ nor $N_{\mathfrak{S}}(J(\mathfrak{S}_3))$ contains a noncyclic abelian subgroup of order 8. Let $\mathfrak{T}_0 = C_{\mathfrak{S}}(Z(O_3(\mathfrak{S}))) \cap \mathfrak{S}_2$, $\mathfrak{T}_1 = N(J(\mathfrak{S}_3)) \cap \mathfrak{S}_2$.

Since $\mathfrak{S}_2 = \mathfrak{T}_0 \mathfrak{T}_1$ and \mathfrak{T}_i has no noncyclic abelian subgroup of order 8, the width of \mathfrak{S}_2 is 2, and $4 \leq |\mathfrak{T}_i| \leq 8$, i = 0, 1.

Suppose $\mathfrak{S}_3 \cdot C_{\mathfrak{S}}(Z(O_3(\mathfrak{S})))$ is 3-closed. Then \mathfrak{T}_0 normalizes \mathfrak{S}_3 , so normalizes $J(\mathfrak{S}_3)$. This yields $\mathfrak{T}_0 \subseteq \mathfrak{T}_1$, which is not the case. Thus, $\mathfrak{S}_3 \cdot C_{\mathfrak{S}}(Z(O_3(\mathfrak{S})))$ is not 3-closed. Since $\mathfrak{T}_0 \triangleleft \mathfrak{S}_2$, it follows that \mathfrak{T}_0 is a quaternion group. Suppose $N_{\mathfrak{S}}(J(\mathfrak{S}_3))$ is 3-closed. Since $Z(\mathfrak{S}_3) \subseteq Z(O_3(\mathfrak{S}))$, it follows that $Z(\mathfrak{S}_3) \triangleleft \mathfrak{S}$. Maximality of $|\mathfrak{S}|_3$ forces $\mathfrak{S}_3 = \mathfrak{P}$. This violates Lemma 9.13. Thus, $N_{\mathfrak{S}}(J(\mathfrak{S}_3))$ is not 3-closed. Since $\mathfrak{S}_2' \subseteq N_{\mathfrak{S}}(\mathfrak{S}_3) \subseteq N_{\mathfrak{S}}(J(\mathfrak{S}_3))$, it follows that \mathfrak{T}_1 is also a quaternion group. Since $l_2(\mathfrak{S}) = 1$, \mathfrak{S}_2 is the central product of \mathfrak{T}_0 and \mathfrak{T}_1 .

Let $\mathfrak{P} = \mathfrak{P}_1, \dots, \mathfrak{P}_r$ be all the S_3 -subgroups of \mathfrak{B} which contain \mathfrak{S}_3 , and let $\mathfrak{Z}_i = \Omega_1(\mathbf{Z}(\mathfrak{P}_i))$. Thus, $\mathfrak{Z}_i \subseteq \mathbf{Z}(\mathbf{O}_3(\mathfrak{S}))$ for all i, so that \mathfrak{T}_0 centralizes each \mathfrak{Z}_i . Let $\langle T \rangle = \mathfrak{T}_0 \cap \mathfrak{T}_1$ so that T is an involution which centralizes each \mathfrak{Z}_i . Also, $\mathfrak{T}_0 \subseteq \mathbf{C}(\mathfrak{Z}_i)$ for each i, so for each i, $\mathfrak{T}_1 \not\subseteq \mathbf{C}(\mathfrak{Z}_i)$.

Suppose $\mathfrak{S}_3 = \mathfrak{P}$. Since $\mathfrak{S}_2' = \mathfrak{T}_3'$ centralizes $\mathbf{Z}(\mathbf{O}_3(\mathfrak{S}))$, it follows that $\mathfrak{Z} = \Omega_1(\mathbf{Z}(\mathbf{O}_3(\mathfrak{S})))$; otherwise, \mathfrak{S}_2' centralizes an element of $\mathscr{U}(3)$. Hence, $\mathfrak{Z} \triangleleft \mathfrak{S}$, against Lemma 9.13. We conclude that $\mathfrak{S}_3 \subseteq \mathfrak{P}$.

Enlarge $\mathfrak{S}_3\mathfrak{T}_1$ to a $S_{2,3}$ -subgroup of $N(J(\mathfrak{S}_3))$ and enlarge this subgroup to a maximal 2, 3-subgroup \mathfrak{L}_0 of \mathfrak{S} . Let $\mathfrak{L} = O^3(\mathfrak{L}_0)$. Since $|\mathfrak{L}|_3 > |\mathfrak{S}|_3$, it follows that \mathfrak{L} contains no noncyclic abelian subgroup of order 8. Since $\mathfrak{L} \supseteq O^3(\mathfrak{S}_3\mathfrak{T}_1) = \mathfrak{S}_3\mathfrak{T}_1$, it follows that \mathfrak{T}_1 is a S_2 -subgroup of \mathfrak{L} . Let \mathfrak{L}_3 be a S_3 -subgroup of \mathfrak{L} which contains \mathfrak{S}_3 . Thus, $\mathfrak{L}_3 \subseteq \mathfrak{P}_i$ for some i.

Let \mathfrak{W} be the normal closure of \mathfrak{Z}_i in \mathfrak{L} . Thus, $C_{\mathfrak{L}}(\mathfrak{W})$ contains T. Since $\mathfrak{T}_0 \subseteq C(\mathfrak{Z}_i)$, it follows that $C_{\mathfrak{L}}(\mathfrak{W}) \cap \mathfrak{T}_1 = \langle T \rangle$, so S_2 -subgroups of $A_{\mathfrak{L}}(\mathfrak{W})$ are four-groups. It follows that $J(\mathfrak{L}_3) \triangleleft \mathfrak{L}$. Hence, $\mathfrak{L}_3 = \mathfrak{P}_i$ and so T centralizes an element of $\mathscr{U}(\mathfrak{P}_i)$. Thus, by Lemmas 7.1 (i) and 7.4, C(T) is nonsolvable. This contradiction shows that \mathfrak{S}_2 is not extra special of width ≥ 2 .

Suppose \mathfrak{S}_2 is the central product of a quaternion group and a cyclic group of order 4. If $J(\mathfrak{S}_3) \subseteq O_3(\mathfrak{S})$, then again $\mathfrak{S}_3 = \mathfrak{P}$ and Lemma 9.14 is violated. Hence, $J(\mathfrak{S}_3) \not\subseteq O_3(\mathfrak{S})$. If \mathfrak{S}_2' centralizes $Z(O_3(\mathfrak{S}))$, then we get $\mathfrak{S} = C_{\mathfrak{S}}(Z(\mathfrak{S}_3))N_{\mathfrak{S}}(J(\mathfrak{S}_3))$, so that either $Z(\mathfrak{S}_3)$ or $J(\mathfrak{S}_2)$ is normal in \mathfrak{S} . Both these possibilities are excluded by Lemmas 9.13 and 9.14, so we may assume that $[\mathfrak{S}_2', Z(O_3(\mathfrak{S}))] = \mathfrak{W} \neq 1$. Let \mathfrak{X} be a minimal normal subgroup of \mathfrak{S} with $\mathfrak{X} \subseteq \mathfrak{W}$. Thus, \mathfrak{S}_2 is faithfully represented on \mathfrak{X} . Since $|\mathfrak{S}_3:O_3(\mathfrak{S})| = 3$ and $J(\mathfrak{S}_3) \not\subseteq O_3(\mathfrak{S})$, it follows that elements of $\mathfrak{S}_3 - O_3(\mathfrak{S})$ centralize a hyperplane of \mathfrak{X} . This is not the case, since $|\mathfrak{X}| = 3^4$. Thus, \mathfrak{S}_2 is not the central product of a quaternion group and a cyclic group of order 4.

By Lemma 5.41 and maximality of \mathfrak{S} under \ll , it follows that \mathfrak{S}_2 is either the direct product of a quaternion group and a group of order 2 or \mathfrak{S}_2 is special with $|\mathfrak{S}_2'| = 4$. Let $\mathfrak{B} = \mathbf{Z}(\mathfrak{S}_2)$, so that in both cases, \mathfrak{B} is a four-group. We will exploit \mathfrak{B} by showing that $\mathfrak{S}_3 = \mathfrak{P}$, that is, by showing that \mathfrak{S}_3 is a S_3 -subgroup of \mathfrak{S} . Suppose by way of contradiction that $\mathfrak{S}_3 \subset \mathfrak{P}$.

We argue that \mathfrak{V} normalizes $J(\mathfrak{S}_3)$. For if this is not the case, then \mathfrak{V} centralizes $Z(O_3(\mathfrak{S}))$, against Lemma 9.12 (ii).

Since \mathfrak{V} normalizes $J(\mathfrak{S}_3)$, we may enlarge $\mathfrak{S}_3\mathfrak{V}$ to a $S_{2,3}$ -subgroup \mathfrak{L} of $N(J(\mathfrak{S}_3))$. Since \mathfrak{S}_3 is not a S_3 -subgroup of \mathfrak{L} , \mathfrak{L} does not contain a noncyclic abelian subgroup of order 8.

Let \mathfrak{L}_p be a S_p -subgroup of \mathfrak{L} , p=2,3, with $\mathfrak{V} \subseteq \mathfrak{L}_2$, $\mathfrak{S}_3 \subset \mathfrak{L}_3$.

Case 1. $O_3(\mathfrak{S})\mathfrak{B}/O_3(\mathfrak{S}) \subseteq Z(\mathfrak{S}/O_3(\mathfrak{S}))$.

Let $\widetilde{\mathfrak{S}}_3$ be a maximal element of $\mathcal{N}_{\mathfrak{D}}(\mathfrak{B};3)$ with $\mathfrak{S}_3 \subseteq \widetilde{\mathfrak{S}}_3$. Suppose $\mathfrak{S}_3 \subset \widetilde{\mathfrak{S}}_3$. Choose \mathfrak{S}_3^* in $\mathcal{N}_{\mathfrak{D}}(\mathfrak{B};3)$ so that $|\mathfrak{S}_3^* \colon \mathfrak{S}_3| = 3$, and let $\mathfrak{B}_0 = C_{\mathfrak{B}}(\mathfrak{S}_3^*/\mathfrak{S}_3)$. Hence, $[\mathfrak{S}_3^*,\mathfrak{R}_0] = [\mathfrak{S}_3,\mathfrak{R}_0]$ is normal in \mathfrak{S} and in \mathfrak{S}_3^* . Maximality of \mathfrak{S} in \mathfrak{S} forces $[\mathfrak{S}_3,\mathfrak{R}_0] = 1$, against $O_2(\mathfrak{S}) = 1$. Thus, \mathfrak{S}_3 is a maximal element of $\mathcal{N}_{\mathfrak{D}}(\mathfrak{B};3)$. In particular, \mathfrak{B} is not 3-closed. Hence, $O_3(\mathfrak{B})$ is of index \mathfrak{B} in \mathfrak{L}_3 and $O_3(\mathfrak{B}) \subseteq \mathfrak{S}_3$. Hence, $O_3(\mathfrak{L}) = \mathfrak{S}_3$. If $\mathfrak{B} = \mathfrak{L}_2$, then $[\mathfrak{B},\mathfrak{S}_3] \triangleleft \mathfrak{B}$ so that $\mathfrak{L}_3 \mathfrak{D} \subseteq \mathfrak{L}_3 \mathfrak{D}$, since $[\mathfrak{B},\mathfrak{S}_3] = [\mathfrak{B},O_3(\mathfrak{S})] \neq 1$. This is impossible, so $\mathfrak{B} \subset \mathfrak{L}_2$.

Case 1a. \mathfrak{S}_2 is special.

Since $\mathfrak{V} \subseteq \mathbb{Z}(\mathfrak{S}_2)$, it follows that $\mathfrak{S}_3\mathfrak{V}$ is a maximal subgroup of \mathfrak{S} . Thus, $O_3(\mathfrak{S})\mathfrak{S}_2/O_3(\mathfrak{S})\mathfrak{V}$ is a chief factor of \mathfrak{S} . Let \mathfrak{V}_0 be a subgroup of \mathfrak{V} of order 2 and let $\mathfrak{S}_2^0 = \mathbb{Z}(\mathfrak{S}_2 \mod \mathfrak{V}_0)$. Since $O_3(S)\mathfrak{V}_0 \triangleleft \mathfrak{S}_1 \mathfrak{S}_2 \mathfrak{V}_2 \mathfrak{S}_2 \mathfrak{$

Case 1b. \mathfrak{S}_2 is the direct product of a quaternion group and a group of order 2.

Since \mathfrak{L}_2 has no noncyclic abelian subgroup of order 8, it follows that \mathfrak{L} is a self centralizing subgroup of \mathfrak{L}_2 . Hence, \mathfrak{L}_2 is of maximal class. Let $\widetilde{\mathfrak{L}}_2 = \mathfrak{L}_2 \cap O_{3,2}(\mathfrak{L})$. Thus, $\widetilde{\mathfrak{L}}_2$ has an automorphism of order 3. Being a subgroup of a group of maximal class, $\widetilde{\mathfrak{L}}_2$ is either a quaternion group or a four-group.

Suppose $\tilde{\mathfrak{L}}_2$ is a quaternion group. In this case, $\mathfrak{L}/O_3(\mathfrak{L}) \cong GL(2,3)$ and \mathfrak{L} normalizes a S_3 -subgroup of \mathfrak{L} , against our previous argument. we conclude that $\tilde{\mathfrak{L}}_2$ is a four-group.

If $\tilde{\mathfrak{L}}_2 = \mathfrak{V}$, then $[O_3(\mathfrak{L}), \mathfrak{V}] \triangleleft \mathfrak{L}$. But $O_3(\mathfrak{L}) = \mathfrak{S}_3$ and $[\mathfrak{S}_3, \mathfrak{V}] = [O_3(\mathfrak{S}), \mathfrak{V}] \triangleleft \mathfrak{S}$. Hence, $[O_3(\mathfrak{L}), \mathfrak{V}] \triangleleft \mathfrak{S}$, so that \mathfrak{L}_2 is a dihedral group of order 8 whose two four-subgroups are \mathfrak{V} and $\tilde{\mathfrak{L}}_2$.

Since $\widetilde{\mathfrak{L}}_{2}$ does not centralize $Z(O_{3}(\mathfrak{L}))$, it follows that $J(\mathfrak{L}_{3}) \triangleleft \mathfrak{L}_{0}$. Hence, $J(\mathfrak{L}_{3}) = J(\mathfrak{S}_{3})$, so by construction of \mathfrak{L} , we conclude that \mathfrak{L}_{3} is a S_{3} -subgroup of \mathfrak{S} . We may therefore assume without loss of generality that $\mathfrak{P} = \mathfrak{L}_{3}$. Hence, $|\mathfrak{P}:\mathfrak{S}_{3}| = 3$.

Let $\mathfrak{X}=\Omega_1(\mathbf{Z}(\mathfrak{S}_3))$. Recalling that $\mathfrak{S}_3=\mathbf{O}_3(\mathfrak{D})$, we get $\mathfrak{X} \triangleleft \mathfrak{D}$. Since $\tilde{\mathfrak{L}}_2$ does not centralize \mathfrak{Z} , we get $\mathfrak{Z} \subset \mathfrak{X}$. Since $\mathbf{Z}(\mathfrak{P})$ is cyclic and $|\mathfrak{P} \colon \mathfrak{S}_3|=3$, we get $|\mathfrak{X}| \leq 27$. Hence, $|\mathfrak{X}|=27$ and \mathfrak{X} is the only minimal normal subgroup of \mathfrak{D} .

Since $J(\mathfrak{P}) \triangleleft \mathfrak{D}$, we get $\mathfrak{X}_0 \triangleleft \mathfrak{D}$, where $\mathfrak{X}_0 = \Omega_1(\mathbf{Z}(J(\mathfrak{P})) \cap \mathbf{D}(J(\mathfrak{P})))$, if

 $D(J(\mathfrak{P})) \neq 1$, and $\mathfrak{X}_0 = J(\mathfrak{P})$ if $D(J(\mathfrak{P})) = 1$. If $|\mathfrak{X}_0| > 27$, then some element of \mathfrak{P}^* centralizes a noncyclic subgroup of \mathfrak{X}_0 . This was shown to be impossible in the proof of Lemma 9.14. Hence, $|\mathfrak{X}_0| \leq 27$. This implies that $\mathfrak{X}_0 = \mathfrak{X}$.

Suppose $A, B \in \mathfrak{X}_0$ and $A = B^B$ for some G in \mathfrak{G} . Thus, $\langle J(\mathfrak{P}), J(\mathfrak{P}^{G^{-1}}) \rangle \subseteq C(B)$, and we can choose C in C(B) such that $J(\mathfrak{P})^C = J(\mathfrak{P}^{G^{-1}})$. Hence, $CG = N \in N(J(\mathfrak{P}))$ and $A = B^C = B^{C^{-1}}N = B^N$. Thus, elements of \mathfrak{X} are \mathfrak{G} -conjugate only if they are $N(\mathfrak{X})$ -conjugate.

Let $\mathfrak{X}=\mathfrak{X}_1\times\mathfrak{X}_2\times\mathfrak{X}_3$, where $|\mathfrak{X}_i|=3$ and where \mathfrak{X}_i admits $\mathfrak{V},\ i=1,2,3$. Let $\mathfrak{V}_i=C(\mathfrak{X}_i)\cap\mathfrak{V}=\langle V_i\rangle$. Thus, $\mathfrak{X}_1,\mathfrak{X}_2,\mathfrak{X}_3$ are the only subgroups of \mathfrak{X} of order 3 which admit \mathfrak{V} . Let Z be a generator for \mathfrak{Z} . Then $Z=X_1X_2X_3$ with $X_i\in\mathfrak{X}_i$.

We argue that $\mathfrak{F} \nsim \mathfrak{X}_i$ for i=1,2,3. Namely, if $\mathfrak{F} \sim \mathfrak{X}_i$, there is $N \in N(\mathfrak{X})$ such that $\mathfrak{X}_i = \mathfrak{F}^N$. Let $\mathfrak{A} = A_{\mathfrak{F}}(\mathfrak{X})$. Thus, $|\mathfrak{A}|_{\mathfrak{F}} = \mathfrak{F}$, \mathfrak{A} is solvable, and $\mathfrak{A} \supseteq \mathfrak{B} = A_{\mathfrak{F}}(\mathfrak{X}) \cong \Sigma_4$. So $\mathfrak{A} = \mathfrak{B}$ or $\mathfrak{A} = \mathfrak{B} \times \mathfrak{A}_0$, where $\mathfrak{A}_0 = \langle A \rangle$ and A inverts \mathfrak{X} . In neither case are \mathfrak{F} and \mathfrak{X}_i in the same orbit under \mathfrak{A} .

We now return to our study of \mathfrak{S} . Let $\mathfrak{S}_2 = \mathfrak{Q} \times \langle V \rangle$, where \mathfrak{Q} is a quaternion group and $V \in \mathfrak{B}$. Let $\langle V_0 \rangle = \mathfrak{Q}'$. Since V_0 does not centralize $Z(O_3(\mathfrak{S}))$, there is a minimal normal subgroup \mathfrak{Y} of \mathfrak{S} such that \mathfrak{Q} is represented faithfully on \mathfrak{Y} . Let $\mathfrak{V}^* = C_{\mathfrak{Y}}(\mathfrak{Y})$ so that $|\mathfrak{V}^*| = 2$, $\mathfrak{S}_2 = \mathfrak{Q} \times \mathfrak{V}^*$. We see that $|\mathfrak{Y}| = 9$ and that $\mathfrak{Y}_0 = \mathfrak{Y} \cap Z(\mathfrak{S}_3)$ is of order 3 and admits \mathfrak{V} . Thus, $\mathfrak{Y}_0 \subset \mathfrak{X}$, so $\mathfrak{Y}_0 = \mathfrak{X}_i$ for some i = 1, 2, 3. Since $\mathfrak{X}_i \not\sim \mathfrak{Y}$, it follows that \mathfrak{S}_3 is a S_3 -subgroup of $C(\mathfrak{Y}_0)$. Since $[\mathfrak{Y},\mathfrak{S}_3] \subseteq \mathfrak{Y}_0$, it follows that $\mathfrak{Y} \subseteq O_3(C(\mathfrak{Y}_0))$. Since \mathfrak{Q} permutes transitively the subgroups of \mathfrak{Y} of order 3, it follows that $\mathfrak{Y} \subseteq O_3(C(\mathfrak{Y}^*))$ for every subgroup \mathfrak{Y}^* of \mathfrak{Y} of order 3. This implies that $\mathfrak{Y} \in \mathfrak{S}(\mathfrak{Z})$. Now $C(\mathfrak{V}^*)$ contains \mathfrak{Y} and also contains an element of $\mathfrak{Z}(\mathfrak{Z})$, so $C(\mathfrak{V}^*)$ is nonsolvable. This contradiction shows that this case does not arise.

Case 2. $O_3(\mathfrak{S})\mathfrak{V}/O_3(\mathfrak{S}) \nsubseteq Z(\mathfrak{S}/O_3(\mathfrak{S}))$.

We conclude that \mathfrak{S}_2 is special and that $\mathfrak{V} = \mathfrak{S}_2'$. Since $\mathfrak{V} = \mathbf{Z}(\mathfrak{S}_2)$, we get that $\mathfrak{S}_3\mathfrak{V}$ is a maximal subgroup of \mathfrak{S} . That is, $O_3(\mathfrak{S})\mathfrak{S}_2/O_3(\mathfrak{S})\mathfrak{V}$ is a chief factor of \mathfrak{S} .

Let \mathfrak{P}_0 be a maximal element of $\mathcal{N}_{\mathfrak{S}}(\mathfrak{B};3)$ with $\mathfrak{P}_0 \subset \mathfrak{S}_3$. Hence, \mathfrak{P}_0 is of index 3 in \mathfrak{S}_3 , and all involutions of \mathfrak{B} are fused in $\mathfrak{S}_3\mathfrak{B}$. Also, $[\mathfrak{P}_0, \mathfrak{P}_0] = [O_3(\mathfrak{S}), \mathfrak{P}_0]$ for every subgroup \mathfrak{P}_0 of \mathfrak{B} .

Suppose \mathfrak{P}_0 is not a maximal element of $\mathsf{M}_{\mathfrak{Q}}(\mathfrak{P};3)$. Choose \mathfrak{P}_1 in $\mathsf{M}_{\mathfrak{Q}}(\mathfrak{P};3)$ so that $|\mathfrak{P}_1:\mathfrak{P}_0|=3$, and let $\mathfrak{P}_0=C_{\mathfrak{P}}(\mathfrak{P}_1/\mathfrak{P}_0)$. Then \mathfrak{P}_1 and \mathfrak{S}_2 both normalize $[\mathfrak{P}_0,\mathfrak{P}_1]$. Let \mathfrak{L}^* be a $S_{2,3}$ -subgroup of $N([\mathfrak{P}_0,\mathfrak{P}_1])$ which contains $\mathfrak{P}\mathfrak{P}_1$, and let \mathfrak{L}_p^* be a S_p -subgroup of \mathfrak{L}^* with $\mathfrak{P}_1\subseteq\mathfrak{L}_3^*$, $\mathfrak{P}\subseteq\mathfrak{L}_2^*$. Note that \mathfrak{L}^* contains a conjugate of \mathfrak{S}_2 .

By maximality, $\mathfrak{S}_3 = N_{\mathfrak{P}}(\Omega_1(\mathbf{Z}(\mathbf{O}_3(\mathfrak{S}))))$. Hence, $\mathfrak{Z} \subset \mathfrak{S}_3$, and so $\mathfrak{Z} \subseteq \Omega_1(\mathbf{Z}(\mathbf{O}_3(\mathfrak{S})))$, since $\mathbf{O}_2(\mathfrak{S}) = 1$. If $\mathfrak{U} \in \mathcal{U}(\mathfrak{P})$, then $[\mathfrak{P}, \mathfrak{U}] \subseteq \mathfrak{Z}$, and so

 $\mathfrak{U} \subseteq \mathfrak{S}_3$. Since \mathfrak{V} is a 4-group and does not centralize $\Omega_1(\mathbf{Z}(\mathbf{O}_3(\mathfrak{S})))$, we conclude from $[\mathfrak{P}, \mathfrak{U}, \mathfrak{U}] = 1$ that \mathfrak{U} centralizes $\mathfrak{V}\mathbf{O}_3(\mathfrak{S})/\mathbf{O}_3(\mathfrak{S})$. That is, $\mathfrak{U} \subseteq \mathfrak{P}_0 \subseteq \mathfrak{L}^*$. Hence, \mathfrak{L}^* contains an element of \mathscr{S} so maximality of \mathfrak{S} guarantees that $\mathfrak{P}_1 = \mathfrak{L}_3^*$, since \mathfrak{P}_1 and \mathfrak{S}_3 are of the same order.

Let $\mathfrak{L}_{2}^{**} = \mathfrak{L}_{2}^{*} \cap O_{3,2}(\mathfrak{L}^{*})$. Thus, \mathfrak{L}_{2}^{**} contains a noncyclic abelian subgroup of order 8, since \mathfrak{L}^{*} contains a conjugate of \mathfrak{S}_{2} .

Suppose every subgroup of \mathfrak{L}_2^{**} which is characteristic and abelian is also cyclic. Let \mathfrak{L}_2^{***} be a subgroup of \mathfrak{L}_2^{**} which is minimal subject to (a) containing a noncyclic abelian subgroup of order 8 and (b) being permutable with \mathfrak{L}_3^* . Then since $D(\mathfrak{L}_2^{***}) \subseteq D(\mathfrak{L}_2^{**})$, it follows that \mathfrak{L}_2^{***} is not a special group with center of order 4. Since $\mathfrak{L}_3^*\mathfrak{L}_2^{***} \in \mathscr{S}$, our previous reduction excludes this possibility.

Let $\tilde{\mathfrak{L}}_2$ be a noncyclic characteristic abelian subgroup of \mathfrak{L}_2^{**} . If $|\tilde{\mathfrak{L}}_2| > 4$, then $\mathfrak{P}_1\tilde{\mathfrak{L}}_2$ contains an element of \mathscr{S} , against our previous reduction. We may assume that $\tilde{\mathfrak{L}}_2$ is a four-group. If $\tilde{\mathfrak{L}}_2 \cap \mathfrak{B} \neq 1$, then $O_3(\mathfrak{L}^*)\tilde{\mathfrak{L}}_2/O_3(\mathfrak{L}^*)$ is centralized by \mathfrak{P}_1 , since \mathfrak{B} normalizes \mathfrak{P}_1 . But in this case, there are maximal elements of \mathscr{S} which do not satisfy our previous reduction. If $\tilde{\mathfrak{L}}_2 \cap \mathfrak{B} = 1$, then $\mathfrak{P}_1\mathfrak{B}\tilde{\mathfrak{L}}_2$ contains an element of \mathfrak{S} which also violates our previous reduction. Hence, \mathfrak{P}_0 is a maximal element of $N_2(\mathfrak{B};3)$.

Since $O_3(\mathfrak{L}) \in N_{\mathfrak{L}}(\mathfrak{L};3)$, we have $O_3(\mathfrak{L}) \subseteq \mathfrak{P}_0$. Maximality of \mathfrak{S} in \mathscr{S} implies that \mathfrak{L} contains no noncyclic abelian subgroup of order 8. Since the involutions of \mathfrak{L} are fused in $\mathfrak{S}_3\mathfrak{L}$, it follows that $O_{3,2}(\mathfrak{L}) = O_3(\mathfrak{L})\mathfrak{L}$. Hence, $\mathfrak{P}_0 = O_3(\mathfrak{L})$ is of index 3 in \mathfrak{L}_3 . This violates $|\mathfrak{L}_3| > |\mathfrak{S}_3| = 3 |\mathfrak{P}_0|$.

Thus, in all cases, we have shown that $\mathfrak{S}_3 = \mathfrak{P}$.

Suppose that $\mathfrak V$ normalizes $\mathfrak S_3$. Let $\mathfrak W$ be a minimal normal subgroup of $\mathfrak S$. Clearly, $\mathfrak W \supset \mathfrak Z$. Since $\mathfrak VO_3(\mathfrak S)/O_3(\mathfrak S)$ is a central factor of $\mathfrak S$, some involution of $\mathfrak V$ centralizes $\mathfrak W$. But $\mathfrak W$ contains an element of $\mathscr U(\mathfrak V)$, so Lemmas 7.4 and 5.38 imply that C(V) is nonsolvable for some involution V of $\mathfrak V$. Thus, $\mathfrak V$ does not normalize $\mathfrak V$. In particular, $\mathfrak S_2$ is special.

Let \mathfrak{P}_0 be the largest subgroup of \mathfrak{P} normalized by \mathfrak{V} . Thus, $|\mathfrak{P}:\mathfrak{P}_0|=3$ and $N_{\mathfrak{P}}(\mathfrak{S}_2)$ permutes transitively the involutions of \mathfrak{V} .

Let $\mathfrak B$ be a minimal normal subgroup of $\mathfrak S$. Clearly, $\mathfrak B \supset \mathfrak Z$, so $\mathfrak B$ is faithfully represented on $\mathfrak B$. Hence, $\mathfrak S_2$ is faithfully represented on $\mathfrak B$, so $C_{\mathfrak S}(\mathfrak B) = O_3(\mathfrak B)$. Let $\mathfrak B = \mathfrak B_1 \times \mathfrak B_2 \times \mathfrak B_3$, where $\mathfrak B_i = C_{\mathfrak B}(\mathfrak B_i)$ and V_1, V_2, V_3 are the involutions of $\mathfrak B$. Thus, $\mathfrak S_2\mathfrak P_0$ normalizes each $\mathfrak B_i$, and $\mathfrak S$ permutes $\mathfrak B_1, \mathfrak B_2, \mathfrak B_3$ transitively. Obviously each $\mathfrak B_i$ is an irreducible $\mathfrak P_0\mathfrak S_2$ -module.

Let $\Re_i = C_{\mathfrak{P}_0\mathfrak{S}_2}(\mathfrak{W}_i)$, and $\mathfrak{S}_{2i} = \{S \in \mathfrak{S}_2 \mid [S,\mathfrak{S}_2] \sqsubseteq \langle V_i \rangle \}$, for i = 1, 2, 3. Then $N_{\mathfrak{S}}(\mathfrak{S}_2)$ permutes $\{\mathfrak{S}_{21}, \mathfrak{S}_{22}, \mathfrak{S}_{23}\}$ transitively, and so one of the following holds:

- (a) $\mathfrak{S}_{2i} = \mathfrak{B}, i = 1, 2, 3,$
- (b) $\mathfrak{S}_{2i} \supset \mathfrak{B}, i = 1, 2, 3.$

If (a) holds, then $\mathfrak{S}_2/\langle V_i \rangle$ is extra special, and since V_j inverts \mathfrak{B}_i for $j \neq i$, it follows that $\mathfrak{R}_i \cap \mathfrak{S}_2 = \langle V_i \rangle$, whence $\mathfrak{R}_i = O_3(\mathfrak{S}) \langle V_i \rangle$. The proof of Lemma 5.52 now shows that $O_3(\mathfrak{S}) \supseteq J(\mathfrak{S}_3)$, the desired contradiction.

Suppose (b) holds. The group $O_3(\circledcirc) \otimes_{21} \otimes_{22} \otimes_{23}$ is clearly \otimes_3 -invariant, and since $O_3(\circledcirc) \otimes_2/O_3(\circledcirc) \mathfrak{B}$ is a chief factor of \mathfrak{S} , we have $\mathfrak{S}_2 = \mathfrak{S}_{21} \otimes_{22} \mathfrak{S}_{23}$. Obviously, $[\mathfrak{S}_{2i}, \mathfrak{S}_{2j}] \subseteq \langle V_i \rangle \cap \langle V_j \rangle = 1$ for $i \neq j$. Because \mathfrak{S}_2 is special, we conclude that $\mathfrak{S}_{2i'} = \langle V_i \rangle$ and hence that $\mathfrak{S}_{2j}/\langle V_i \rangle$ is extra special for $i \neq j$. If the width of $\mathfrak{S}_{2j}/\langle V_i \rangle$ is greater than 1, then since $J(\mathfrak{S}_3) \not\subseteq O_3(\mathfrak{S})$, and since $\mathfrak{S}_{2j}/\langle V_i \rangle$ acts faithfully on \mathfrak{W}_i , it follows that $J(\mathfrak{S}_3) \subseteq O_3(\mathfrak{S})$, and since $\mathfrak{S}_{2j}/O_3(\mathfrak{S})\langle V_i \rangle$. But $J(\mathfrak{S}_3) \subset \mathfrak{S}_3$, and so $J(\mathfrak{S}_3)$ centralizes $O_3(S)\mathfrak{S}_2/O_3(\mathfrak{S})\mathfrak{B}$, that is, $J(\mathfrak{S}_3) \subseteq O_3(\mathfrak{S})$. We may assume that if $i \neq j$, then $\mathfrak{S}_{2i}/\langle V_i \rangle$ is of width 1. But then $\mathfrak{S}_{2i}\mathfrak{S}_{2i}/\langle V_3 \rangle$ is the central product of $\mathfrak{S}_{2i}/\langle V_i \rangle$ and $\mathfrak{S}_{2i}/\langle V_i \rangle$, so is extra special of width 2, acts faithfully on \mathfrak{W}_3 , and $\mathfrak{S}_3(\mathfrak{S})\mathfrak{S}_{2i}/\mathfrak{S}_{2i}$ admits $J(\mathfrak{S}_3)$. By Lemma 5.52, $J(\mathfrak{S}_3)$ centralizes $O_3(\mathfrak{S})\mathfrak{S}_{2i}\mathfrak{S}_{2i}/O_3(\mathfrak{S})$, so again we get the contradiction $J(\mathfrak{S}_3) \subseteq O_3(\mathfrak{S})$. The proof is complete.

Lemma 9.16. If $\mathfrak A$ is a subgroup of $\mathfrak B$ of type (3,3) and each element of $\mathfrak A$ centralizes an element of $\mathscr U(3)$, then

- (i) $\mathfrak{A} \in \mathscr{D}$.
- (ii) $4 \nmid |C(\mathfrak{A})|$.

Proof. (i) Suppose false, and \mathfrak{T} is a four-group normalized but not centralized by \mathfrak{A} . Let $\mathfrak{A}_0 = C_{\mathfrak{A}}(\mathfrak{T})$, so that $|\mathfrak{A}_0| = 3$. Let \mathfrak{L}_0 be a maximal 2, 3-subgroup of \mathfrak{G} which contains a $S_{2,3}$ -subgroup of $C(\mathfrak{A}_0)$ containing $\mathfrak{A}\mathfrak{T}$. Let $\mathfrak{L} = O^{\mathfrak{I}}(\mathfrak{L}_0)$. Since \mathfrak{L} contains an element of $\mathcal{L}(\mathfrak{L}_0)$, Lemma 9.15 implies that \mathfrak{L} contains no noncyclic abelian subgroup of order 8. Hence, \mathfrak{L} is a S_2 -subgroup of \mathfrak{L} and $\mathfrak{L}/O_3(\mathfrak{L}) \cong A_4$. Let \mathfrak{L}_3 be a S_3 -subgroup of \mathfrak{L} . Since \mathfrak{L} does not centralize $\mathbf{Z}(O_3(\mathfrak{L}))$, it follows that $\mathbf{J}(\mathfrak{L}_3) \triangleleft \mathfrak{L}$. Hence, \mathfrak{L}_3 is a S_3 -subgroup of \mathfrak{L} , and we may assume that $\mathfrak{L}_3 = \mathfrak{P}$.

Let $\mathfrak X$ be a minimal normal subgroup of $\mathfrak S$ with $\mathfrak X \subseteq Z(J(\mathfrak P))$. Thus, $\mathfrak X$ is elementary of order 27 and $C_{\mathfrak X}(\mathfrak Z)=1$. Choose T in $\mathfrak T^*$ so that $\mathfrak X_1=C_{\mathfrak X}(T)$ is of order 3 and is inverted by the generator of $\mathfrak Z/\!\!< T > 1$. Hence, $\langle \mathfrak X_0, \mathfrak X_1 \rangle = \mathfrak X^*$ is elementary of order 9 and is normalized by $\mathfrak Z$, and every element of $\mathfrak X^*$ centralizes an element of $\mathscr U(\mathfrak P)$.

Let \mathfrak{C} be a $S_{2,3}$ -subgroup of C(T) which contains $\mathfrak{A}^*\mathfrak{T}$. By Lemma 5.38, \mathfrak{C} contains an element of $\mathcal{U}(2)$, so $|O_3(\mathfrak{C})| \leq 3$, and $O_3(\mathfrak{C}) \cap \mathfrak{A}^* = 1$. Hence, \mathfrak{A}^* is faithfully represented on $O_2(\mathfrak{C})$. Let \mathfrak{C}_0 be a characteristic abelian subgroup of $O_2(\mathfrak{C})$. Suppose \mathfrak{A}^* does not centralize \mathfrak{C}_0 . Hence, there is an element A in \mathfrak{A}^{**} such that C(A) contains an elementary subgroup of order 8. This is not the case, so \mathfrak{A}^* centralizes \mathfrak{C}_0 . If $|\mathfrak{C}_0| > 2$, then some element A of \mathfrak{A}^{**} centralizes a noncyclic

abelian subgroup of $O_2(\mathbb{C})$ of order 8. This is not the case, by Lemma 9.15. Hence, $O_2(\mathbb{C})$ is extra special of width at least 2 and $\langle T \rangle = O_2(\mathbb{C})'$. Hence, \mathbb{C} contains a S_2 -subgroup of \mathbb{G} .

By Lemma 9.15, no element of \mathfrak{A}^{**} centralizes any noncyclic abelian subgroup of order 8. Hence, $\langle T \rangle = O_2(\mathbb{C}) \cap C(\mathfrak{A}^*)$. For each A in \mathfrak{A}^{**} , $O_2(\mathbb{C}) \cap C(A)$ is either $\langle T \rangle$ or is extra special. Thus, $O_2(\mathbb{C}) \cap C(A)$ is either $\langle T \rangle$ or is a quaternion group, so no element of \mathfrak{A}^{**} centralizes any four-subgroup of $O_2(\mathbb{C})$. Thus, the width of $O_2(\mathbb{C})$ is at most 4. Since $O_2(\mathbb{C}) \cap C(\mathfrak{A}_0)$ is centralized by \mathfrak{A}^* , it follows that $O_2(\mathbb{C}) \cap C(\mathfrak{A}_0) = \langle T \rangle$, and so the width of $O_2(\mathbb{C})$ is at most 3.

Consider $C^*(\mathfrak{X}_1) = \{G \in \mathfrak{G}, G \text{ either centralizes or inverts } \mathfrak{X}_1\}$. By construction, $|C_{\mathfrak{L}}(\mathfrak{X}_1)|_3 = |\mathfrak{P}|/3$. Also, $\mathfrak{T} \subseteq C^*(\mathfrak{X}_1)$, and $C^*(\mathfrak{X}_1)$ contains no noncyclic abelian subgroup of order 8. Suppose $\mathfrak{A}_0 \not\subseteq O_3(\widetilde{\mathfrak{L}})$, where $\widetilde{\mathfrak{L}}$ is a $S_{2,3}$ -subgroup of $C^*(\mathfrak{X}_1)$ which contains $C^*_{\mathfrak{L}}(\mathfrak{X}_1)$. Then $\widetilde{\mathfrak{L}}/O_3(\widetilde{\mathfrak{L}})$ contains a subgroup isomorphic to $\mathfrak{A}_0 \times \mathfrak{T}$. This is obviously impossible, since S_2 -subgroups of $\widetilde{\mathfrak{L}}/O_3(\widetilde{\mathfrak{L}})$ are of maximal class. Hence, $\mathfrak{A}_0 \subseteq O_3(\widetilde{\mathfrak{L}})$. This implies that \mathfrak{A}_0 centralizes $O_2(\mathfrak{C}) \cap C(\mathfrak{X}_1)$, so the width of $O_2(\mathfrak{C})$ is 2. Hence, $\mathfrak{X}_1 \times \mathfrak{A}_0$ is a S_3 -subgroup of $C_2(T)$. By a formula of Wielandt [40],

$$|O_3(\mathfrak{D})| = |O_3(\mathfrak{D}) \cap C(T)|^3/|O_3(\mathfrak{D}) \cap C(\mathfrak{T})|^2$$
.

Hence, $|O_3(\mathfrak{D})| = 3^6/3^2 = 3^4$, so that $O_3(L) = \mathfrak{A}_0 \times \mathfrak{X}$. This implies that $\mathbb{Z}(\mathfrak{P})$ is noncyclic, since $|\mathfrak{P}:O_3(\mathfrak{D})| = 3$. The proof of (i) is complete.

As for (ii), suppose $\mathfrak T$ is a subgroup of $C(\mathfrak A)$ of order 4. Then C(T) contains an element of $\mathscr U(2)$, T being an involution of $\mathfrak T$. Thus, by Lemma 7.5, there is a subgroup $\mathfrak M$ in $\mathscr{MS}(\mathfrak S)$ which contains $\mathfrak A\mathfrak T$ and satisfies $O_2(\mathfrak M)=1$, while $O_2(\mathfrak M)$ is of symplectic type. Since $\mathfrak A$ acts faithfully on $O_2(\mathfrak M)\cap C(\mathfrak T)$, we can therefore choose A in $\mathfrak A^*$ such that $\mathfrak A$ does not centralize $O_2(\mathfrak S)\cap C(\mathfrak A)\cap C(\mathfrak A)$. Thus, C(A) contains a noncyclic abelian subgroup of order 8, against Lemma 9.15. The proof of (ii) is complete.

LEMMA 9.17. Suppose

- (a) R is a maximal 2, 3-subgroup of S.
- (b) R contains an element of D.
- (c) \Re contains a noncyclic abelian subgroup of order 8. Then $O_2(\Re) \neq 1$.

Proof. Let \Re_p be a S_p -subgroup of \Re , p=2,3. We assume without loss of generality that $\Re_3 \subseteq \Re$. Suppose by way of contradiction that $O_2(\Re) = 1$. Then $O_3(\Re) \neq 1$, so by maximality of \Re , $\Re_3 = N_{\Re}(O_3(\Re))$. Hence, $\Im \subseteq \Re_3$. Since $O_2(\Re) = 1$, we get $\Im \subseteq Z(O_3(\Re))$. Hence, \Re_3 contains every element of $\mathscr{U}(\Re)$. This contradicts Lemma 9.15 and completes the proof.

We now begin the construction of the final configuration.

By hypothesis, $2 \sim 3$. Let \mathfrak{A} be a noncyclic abelian subgroup of \mathfrak{B} of order 8 and let \mathfrak{B} be an elementary subgroup of order 9 each of whose elements centralizes an element of $\mathscr{U}(3)$, chosen so that $\langle \mathfrak{A}, \mathfrak{B} \rangle$ is solvable. We assume without loss of generality that $\langle \mathfrak{A}, \mathfrak{B} \rangle$ is a 2, 3-group. Let \mathfrak{A} be a maximal 2, 3-subgroup of \mathfrak{B} which contains $\langle \mathfrak{A}, \mathfrak{B} \rangle$.

Let \mathfrak{L}_p be a S_p -subgroup of \mathfrak{L} , p=2, 3, with $\mathfrak{B} \subseteq \mathfrak{L}_3$. By Lemma 9.17, $O_2(\mathfrak{L}) \neq 1$.

Let J be an involution in $Z(\mathfrak{L}_2) \cap O_2(\mathfrak{L})$. Since $\mathfrak{B} \in \mathcal{D}$, by Lemma 9.16, \mathfrak{B} centralizes $Z(O_2(\mathfrak{L}))$. Hence, C(J) is a solvable subgroup containing \mathfrak{B} , \mathfrak{L}_2 , and an element of $\mathcal{U}(2)$.

Since $\mathfrak{B} \in \mathscr{D}$, we may apply Lemma 7.5. Let \mathfrak{M} be an element of $\mathscr{MS}(\mathfrak{S})$ which contains \mathfrak{B} and \mathfrak{L}_2 and which satisfies all the conclusions of Lemma 7.5. Let \mathfrak{R} be a $S_{2,3}$ -subgroup of \mathfrak{M} and let $\mathfrak{R}_0 = O_2(\mathfrak{R})$. Since $O_{2'}(\mathfrak{M}) = 1$, so also $O_3(\mathfrak{R}) = 1$. Since no element of \mathfrak{B}^* centralizes any noncyclic abelian subgroup of order 8, it follows that \mathfrak{R}_0 is extra special of width 2, 3 or 4, and $C_{\mathfrak{R}_0}(\mathfrak{B}) = \mathfrak{R}_0' = \langle I \rangle$, the last equality serving to define I. Hence, $\mathfrak{R}_0 = O_2(\mathfrak{M})$. Let \mathfrak{R}_p be a S_p -subgroup of \mathfrak{R} , p = 2, 3, with $\mathfrak{B} \subseteq \mathfrak{R}_3$. Let $\mathfrak{R}_3^* = \mathfrak{R}_3 \cap O_{2,3}(\mathfrak{R})$, $\mathfrak{R}^* = N_{\mathfrak{R}}(\mathfrak{R}_3^*)$. Thus, $\mathfrak{R} = \mathfrak{R}_0\mathfrak{R}^*$ and $\mathfrak{R}_0 \cap \mathfrak{R}^* = C_{\mathfrak{R}_0}(\mathfrak{R}_3^*)$. Let $\mathfrak{R}_2^* = \mathfrak{R}^* \cap \mathfrak{R}_2$ so that $\mathfrak{R}^* = \mathfrak{R}_3\mathfrak{R}_2^*$. We assume without loss of generality that $\mathfrak{R}_3 \subseteq \mathfrak{P}$.

We argue that

Namely, choose $\mathfrak U$ in $\mathscr U(\mathfrak P)$ and suppose $C(\mathfrak U)\cap\mathfrak R_3^*$ is noncyclic. Then by Lemma 9.16 (ii), no noncyclic abelian subgroup of $C(\mathfrak U)\cap\mathfrak R_3^*$ centralizes any subgroup of order 4, so (9.25) is clear. Suppose $C(\mathfrak U)\cap\mathfrak R_3^*$ is cyclic. Hence, $\mathfrak R_3^*$ has a cyclic subgroup of index 3. Assume that (9.25) does not hold. Then $\mathfrak P \nsubseteq \mathfrak R_3^*$, so the 3-length of $\mathfrak R$ is at least 2. Hence, $\mathfrak R_3^*$ is elementary of order 9 and all elements of $\mathfrak R_3^{**}$ are fused in $\mathfrak R$. But then every element of $\mathfrak R_3^*$ centralizes an element of $\mathscr U(3)$, so again (9.25) holds. Thus, (9.25) holds.

LEMMA 9.18. If \Re is any 2, 3-subgroup of \Im which contains \Im , I, and also contains a noncyclic abelian subgroup of order \Im , then $\Re \subseteq \Im$.

Proof. We may assume that \Re is a maximal 2, 3-subgroup of \Im . By Lemma 9.17, we have $O_2(\Re) \neq 1$. Since $\Im \in \mathscr{D}$, \Im centralizes $Z(O_2(\Re))$. Since $\langle I \rangle$ is a S_2 -subgroup of $C(\Im)$, by Lemma 9.16 (ii), it follows that $\langle I \rangle = Z(O_2(\Re))$, so $\Re \subseteq C(I) = \Re$.

Lemma 9.19. \Re_2^* contains no noncyclic abelian subgroup of order 8.

Proof. Suppose false. In this case, \Re^* is a $S_{2,3}$ -subgroup of $N(\Re_3^*)$, by the preceding paragraph. Hence, the 3-length of \Re^* is at least 2. But in this case, $\Im \subset \Re_3^*$, so \Re_3 contains every element of $\mathscr{U}(\Im)$, against Lemma 7.4. The proof is complete.

LEMMA 9.20. If $\tilde{\Re}_3$ is a S_3 -subgroup of $N(\hat{\Re}_3)$, then

$$\tilde{\Re}_3 = \Re_3 \cdot C_{\tilde{\Re}_2}(\Re_3)$$
.

Proof. Let $\mathbb{C}_1 = C(\mathfrak{R}_3)\mathfrak{R}_3$, $\mathfrak{R}_1 = N(\mathfrak{R}_3)$. Since $\mathfrak{B} \subseteq \mathfrak{R}_3$, it follows that $\langle I \rangle$ is a S_2 -subgroup of \mathbb{C}_1 , by Lemma 9.16 (ii). Hence, \mathfrak{M} covers $\mathfrak{R}_1/\mathbb{C}_1$, so \mathbb{C}_1 contains \mathfrak{R}_3 , which is equivalent to our assertion.

LEMMA 9.21.

- (a) If \tilde{X} is any 3-subgroup of M, then no S_3 -subgroup of $N(\tilde{X})$ is contained in any conjugate of M.
- (b) If P is an element of \mathfrak{M} of order 3, then C(P) contains a subgroup \mathfrak{A}^* of type (3,3) such that C(A) contains an element of $\mathscr{U}(3)$ for each A in \mathfrak{A}^* .
- (c) If $\widetilde{\mathfrak{P}}$ is any nonidentity 3-subgroup of \mathfrak{M} , then $N(\widetilde{\mathfrak{P}})$ contains no noncyclic abelian group of order 8.
 - (d) \Re_3 contains no abelian subgroup of order 27.
 - (e) \Re_3 is isomorphic to one of the following groups:
 - (i) an elementary group of order 9.
 - (ii) a nonabelian group of order 27.

Proof. Let \mathfrak{P}^* be a S_3 -subgroup of $N(\tilde{\mathfrak{P}})$. Suppose $\mathfrak{P}^* \subseteq \mathfrak{M}^{\sigma}$. Since $\tilde{\mathfrak{P}} \subseteq \mathfrak{P}^*$, we get $\tilde{\mathfrak{P}} \subseteq \mathfrak{M}^{\sigma}$. Let $\mathfrak{P}_0 = \tilde{\mathfrak{P}}^{\sigma^{-1}}$, $\mathfrak{P}_1 = \mathfrak{P}^{*\sigma^{-1}}$. Then \mathfrak{P}_0 is a 3-subgroup of \mathfrak{M} and \mathfrak{P}_1 is a S_3 -subgroup of $N(\mathfrak{P}_0)$ which is contained in \mathfrak{M} . This violates Lemma 9.20, since $\mathfrak{R}_3 \subset \tilde{\mathfrak{R}}_3$. Hence, (a) holds.

Since $\mathfrak{B} \subseteq \mathfrak{R}_3$, it follows from Lemma 9.16 (ii) that $\langle I \rangle$ is a S_2 -subgroup of $\mathfrak{R}_3C(\mathfrak{R}_3)$. Thus, $\mathfrak{R}_3C(\mathfrak{R}_3)$ has a normal 2-complement. We assume without loss of generality that I normalizes $\widetilde{\mathfrak{R}}_3$. Let $\widehat{\mathfrak{R}}_3/\mathfrak{R}_3$ be a chief factor of $\widetilde{\mathfrak{R}}_3\langle I \rangle$. Hence, $\widehat{\mathfrak{R}}_3=\mathfrak{R}_3\times\overline{\mathfrak{R}}_3$, where $|\overline{\mathfrak{R}}_3|=3$. This implies that $C_{\widehat{\mathfrak{R}}_3}(P)$ contains an elementary subgroup of order 27. Let \mathfrak{P}^G be a S_3 -subgroup of \mathfrak{B} containing $\widetilde{\mathfrak{R}}_3$, and let $\mathfrak{U}\in \mathscr{U}(\mathfrak{P}^G)$. Then $C(\mathfrak{U})\cap C_{\widetilde{\mathfrak{R}}_3}(P)$ is noncyclic, and any noncyclic subgroup of $C(\mathfrak{U})\cap C_{\widetilde{\mathfrak{R}}_3}(P)$ of order 9 may play the role of \mathfrak{U}^* in (b).

Let \Re be a maximal 2, 3-subgroup of \Im which contains a $S_{2,3}$ -subgroup of $N(\overline{\Re})$. By (b), \Re contains an element of \Im . Assume that \Re contains a noncyclic abelian subgroup of order 8. Then by Lemma 9.17, $O_2(\Re) \neq 1$. By Lemma 9.16 (ii), we get $|Z(O_2(\Re))| = 2$. Clearly, \Re is a $S_{2,3}$ -subgroup of $C(Z(O_2(\Re)))$, and so it contains an

element \mathfrak{D} of \mathscr{D} and one of $\mathscr{U}(2)$. Applying Lemma 7.5, we get a conjugate \mathfrak{M}^c of \mathfrak{M} containing \mathfrak{D} and a S_2 -subgroup of \mathfrak{R} . By Lemma 7.5 (f), $\mathbf{Z}(O_2(\mathfrak{R})) \subseteq \mathbf{C}(\mathfrak{D}) \cap O_2(\mathfrak{M}^c)$. By Lemma 9.16 (ii), the last group is of order 2, and so equals $\mathbf{Z}(O_2(\mathfrak{R}))$. Hence, $\mathbf{Z}(O_2(\mathfrak{R})) = \mathbf{Z}(O_2(\mathfrak{M}^c))$, and so $\mathfrak{R} \subseteq \mathfrak{M}^c$. This violates (a).

Suppose \mathfrak{E} is an abelian subgroup of \mathfrak{R}_3 of order 27. Then there is an element E in \mathfrak{E}^\sharp of order 3 such that $C(E) \cap O_2(\mathfrak{R})$ contains a noncyclic abelian subgroup of order 8. This violates (c) and establishes (d).

(e) is an immediate consequence of (d).

Lemma 9.22. $\Re_2 - \Re_0$ contains an involution.

Proof. Suppose false. By a result of Glauberman [16], \Re_2 contains an involution J such that $J=I^g\neq I$. Since the lemma is false, $J\in\Re_0$. Let $\mathfrak{T}=C_{\Re_0}(J)$. Then \mathfrak{T} is generated by involutions, and $\mathfrak{T}\subseteq \mathfrak{M}^g=C(J)$. Since the lemma is false, $\mathfrak{T}\subseteq \Re_0^g$. In particular, $I\in(\Re_0^g)'$. Hence, $(\Re_0^g)'=\langle J\rangle=\langle I\rangle$, a contradiction.

Lemma 9.23. The 3-length of \mathfrak{M} is 1.

Proof. Suppose false. By Lemma 9.21 (e), it follows that \Re_3^* is elementary of order 9. Consider $\Re^*/\langle I \rangle$. Since $\Re^* \cap \Re_0 = \langle I \rangle$ by (9.25), it follows that $\Re_3^*\langle I \rangle/\langle I \rangle = F(\Re^*/\langle I \rangle)$. This implies that $\Re^*/\langle I \rangle$ contains a quaternion subgroup $\Im/\langle I \rangle$. Thus, \Im is not of maximal class, since no group of maximal class and order 16 has a quaternion factor group. Hence, \Im contains a noncyclic abelian subgroup of order 8. This violates Lemma 9.21 (c) with \Re_3^* in the role of \Im .

Lemma 9.24. Each involution J of $\Re_2 - \Re_0$ normalizes a S_3 -subgroup of \Re .

Proof. Since $J \in \Re_0$, Lemma 5.36 implies that J inverts an element P of \Re of order 3. Let $\mathbb{C} = C_{\widehat{\Re}}(\mathfrak{P})$. Suppose $\mathbb{C} \cap \Re_0 = \langle I \rangle$. Then since $\Re_3 \Re_0 < |\Re_0|$, it follows that \mathbb{C} is 3-closed. Let \mathbb{C}_3 be the S_3 -subgroup of \mathbb{C} . Thus, C_3 is noncyclic. Since $N(\mathbb{C}_3) \cap \Re_0 = \langle I \rangle$, $N_{\widehat{\Re}}(\mathbb{C}_3)$ contains a S_3 -subgroup of \Re as a normal subgroup. Since $J \in N(C_3)$, we are done.

We may assume that $\mathfrak{C} \cap \mathfrak{R}_0 \supset \langle I \rangle$. Hence, $\mathfrak{C} \cap \mathfrak{R}_0 = \mathfrak{Q}$ is a quaternion group. Let $\widetilde{\mathfrak{P}}$ be a S_3 -subgroup of \mathfrak{C} . Thus, $\widetilde{\mathfrak{P}}\mathfrak{Q} = O^3$ (\mathfrak{C}) char \mathfrak{C} , so $\langle J \rangle \widetilde{\mathfrak{P}}\mathfrak{Q}$ is a group. Let $\widetilde{\mathfrak{P}}_0 = O_3(\widetilde{\mathfrak{P}}\mathfrak{Q})$. Thus, $\widetilde{\mathfrak{P}}\mathfrak{Q}/\widetilde{\mathfrak{P}}_0 \cong SL(2,3)$, and J stabilizes $\widetilde{\mathfrak{P}}\mathfrak{Q}/\widetilde{\mathfrak{P}}_0$. If J does not centralize $\mathfrak{Q}\widetilde{\mathfrak{P}}/\mathfrak{Q}\widetilde{\mathfrak{P}}_0$, it follows from Lemma 5.36 that J normalizes a S_3 -subgroup of $\mathfrak{Q}\widetilde{\mathfrak{P}}$. Suppose J centralizes $\widetilde{\mathfrak{P}}\mathfrak{Q}/\mathfrak{Q}\widetilde{\mathfrak{P}}_0$. Then $\langle J \rangle \widetilde{\mathfrak{P}}\mathfrak{Q}/\mathfrak{Q}\widetilde{\mathfrak{P}}_0$ is a cyclic group of order 6, so J centralizes $\mathfrak{Q}/\mathfrak{Q}'$. This implies that $|C(J) \cap \mathfrak{Q}| \geq 4$, so that $\langle J, \mathfrak{Q} \rangle$ contains a noncyclic abelian subgroup of order 8. Since $\langle J, \mathfrak{Q} \rangle \subseteq N(\langle P \rangle)$, Lemma 9.21 (c) is violated. We conclude that J

normalizes a S_3 -subgroup of $\widetilde{\mathfrak{P}}\mathfrak{D}$. We assume without loss of generality that J normalizes $\widetilde{\mathfrak{P}}$. Since $N(\widetilde{\mathfrak{P}}) \cap \mathfrak{R}_0 = \langle I \rangle$, it follows that $N_{\mathfrak{R}}(\widetilde{\mathfrak{P}})$ contains a S_3 -subgroup of \mathfrak{R} as a normal subgroup. The proof is complete.

Lemma 9.25. (a) If T is an involution of \mathfrak{G} , C(T) contains a noncyclic abelian subgroup of order 8.

(b) If the width of \Re_0 is 2, then for each involution T of \Im , $|C(T)|_3 \leq 9$.

Proof. (a) By Lemma 5.38, C(T) contains an element \mathfrak{U} of $\mathcal{U}(2)$. If $T \notin \mathfrak{U}$, then $\langle \mathfrak{U}, T \rangle$ is a noncyclic abelian subgroup of order 8 which is contained in C(T). Suppose $T \in \mathfrak{U}$. Since $\mathscr{S}_{eng}(2) \neq \emptyset$, C(T) contains an element of $\mathscr{S}_{eng}(2)$ by Lemma 0.8.9.

Suppose (b) is false, and T is an involution of $\mathfrak S$ with $|C(T)|_3 \ge 27$. Let $\mathfrak S$ be a maximal 2, 3-subgroup of $\mathfrak S$ which contains a $S_{2,3}$ -subgroup of C(T). By Lemma 5.38, $\mathfrak S$ contains an element $\mathfrak U$ of $\mathscr U(2)$. Let $\mathfrak S_p$ be a S_p -subgroup of $\mathfrak S$, p=2, 3. We assume without loss of generality that $\mathfrak S_2 \subseteq \mathfrak R_2$.

Case 1. $O_3(\mathfrak{S}) \neq 1$.

Since $\mathfrak{U} \in \mathscr{C}(2)$, \mathfrak{U} centralizes $O_3(\mathfrak{S})$. Since \mathfrak{U} contains a conjugate of I, it follows that $|O_3(\mathfrak{S})| \leq 9$. Suppose $|O_3(\mathfrak{S})| = 9$. Then $O_3(\mathfrak{S})$ is conjugate to \mathfrak{B} , since \mathfrak{B} is a S_3 -subgroup of \mathfrak{M} . But then Lemma 9.16 (ii) is violated. Hence, $|O_3(\mathfrak{S})| = 3$.

Since $\mathfrak U$ centralizes $O_3(\otimes)$, $O_3(\otimes)$ is conjugate to a subgroup of $\mathfrak B$. By Lemma 9.21 (b), $C(O_3(\otimes))$ contains an elementary subgroup $\mathfrak U^*$ such that C(A) contains an element of $\mathscr U(3)$ for each A in $\mathfrak U^*$. Since \otimes is a $S_{2,3}$ -subgroup of $N(O_3(\otimes))$, we assume without loss of generality that $\mathfrak U^* \subseteq \otimes$. By Lemma 9.16 (i), $\mathfrak U^* \in \mathscr D$. Now Lemma 9.17 yields $O_2(\otimes) \neq 1$. Since $\mathfrak U^* \subseteq \otimes$, Lemma 9.16 (ii) forces $|Z(O_2(\otimes))| = 2$, and forces $Z(O_2(\otimes))$ to be a maximal characteristic abelian subgroup of $O_2(\otimes)$. Since $|O_3(\otimes)| = 3$, it follows that $|O_2(\otimes)| > 2$. Hence, $O_2(\otimes)$ is extra special. Thus, $O_2(\otimes)'$ is of order 2 and is normalized by every element of $\mathscr U(\mathfrak R_2)$. Hence, every element of $\mathscr U(\mathfrak R_2)$ is contained in $\mathfrak S_2$. Thus, I centralizes $O_3(\otimes)$. Since $I \in Z(\mathfrak S_2)$, we get $I \in O_2(\otimes)$, so that $\langle I \rangle = O_2(\otimes)'$. Hence, $\mathfrak S \subseteq \mathfrak M$, against $|\mathfrak S|_3 \ge 27$ and $|\mathfrak M|_3 = 9$.

Case 2. $O_3(\mathfrak{S}) = 1$.

Since $|\mathfrak{S}|_3 \geq 27$, it follows that $m(O_2(\mathfrak{S})) \geq 6$. Since the width of \mathfrak{R}_0 is 2, it follows that \mathfrak{R}_2 has no elementary subgroup of order 2^6 . Thus, $O_2(\mathfrak{S})$ is not elementary.

Now \mathfrak{S} is clearly not contained in any conjugate of \mathfrak{M} , since $|\mathfrak{S}|_3 > |\mathfrak{M}|_3$. Since $\langle I \rangle = \mathbf{Z}(\mathfrak{R}_2)$, it follows that \mathfrak{S} is not 2-closed.

Since $|\Re_2| \leq 2^8$, we get $|O_2(\mathfrak{S})| = 2^7$. Hence, $|O_2(\mathfrak{S})| = 2^7$, so that $D(O_2(\mathfrak{S}))$ is a subgroup of order 2 and \mathfrak{S}_2 is of order 2^8 . Hence, $\mathfrak{S}_2 = \mathfrak{R}_2$ and $D(O_2(\mathfrak{S})) = \langle I \rangle$. This shows that $\mathfrak{S} \subseteq \mathfrak{M}$. This contradiction completes the proof.

LEMMA 9.26. If $\tilde{\mathfrak{P}}$ is any subgroup of \Re_3 of order 3, then

- (a) $\Re_0 \cap C(\tilde{\mathfrak{P}})$ is either $\langle I \rangle$ or a quaternion group;
- (b) if $\tilde{\mathfrak{P}} \nsubseteq Z(\mathfrak{R}_3)$, then $\mathfrak{R}_0 \cap C(\tilde{\mathfrak{P}})$ is quaternion.
- Proof. (a) Suppose $\Re_0 \cap C(\widetilde{\Re}) \supset \langle I \rangle$. Then $\Re_0 \cap C(\widetilde{\Re})$ is extra special and does not contain a noncyclic abelian subgroup of order 8. Thus, $\Re_0 \cap C(\widetilde{\Re})$ is either dihedral or quaternion. Now $C_{\Re_3}(\widetilde{\Re})$ contains an elementary subgroup $\mathfrak E$ of order 9 with $\widetilde{\Re} \subset \mathfrak E$. Hence, $\Re_0 \cap C(\widetilde{\Re})$ admits $\mathfrak E$. Since no element of $\mathfrak E^*$ centralizes a noncyclic abelian subgroup of \Re_0 of order 8, $\Re_0 \cap C(\widetilde{\Re})$ is quaternion.
- (b) Let $\mathfrak{E} = \langle \widetilde{\mathfrak{P}}, \mathbf{Z}(\mathfrak{R}_3) \rangle$, so that by Lemma 9.21 (e), \mathfrak{E} is elementary of order 9 and $\mathfrak{E} \triangleleft \mathfrak{R}_3$. It follows that the three subgroups of \mathfrak{E} of order 3 which are distinct from $\mathbf{Z}(\mathfrak{R}_3)$ are conjugate in \mathfrak{R}_3 . We can choose E in \mathfrak{E}^* such that $\mathfrak{R}_0 \cap \mathbf{C}(E)$ is not centralized by $\mathbf{Z}(\mathfrak{R}_3)$. By (a), $\mathfrak{R}_0 \cap \mathbf{C}(E)$ is a quaternion group; so (b) holds.

LEMMA 9.27. \Re_2^* is a four-group.

Proof. Suppose false. By Lemma 9.22, $\Re_2 - \Re_0$ contains an involution J. By Lemma 9.24, J normalizes a S_3 -subgroup of \Re . Thus, we can choose M in \Re such that $J^M = T_0$ normalizes \Re_3 . Since \Re_3 permutes transitively by conjugation the S_2 -subgroups of \Re , we may choose K in \Re_3 such that $T = T_0^K$ lies in \Re_2 . Thus, $T \in N(\Re_3) \cap \Re_2$.

By Lemma 9.23, $\Re_3^* = \Re_3$. Thus, $T \in \Re_2^*$. If $\langle T, I \rangle = \Re_2^*$, we are done, so suppose $\langle T, I \rangle \subset \Re_2^*$. Let \mathfrak{F} be a subgroup of \Re_2^* of order 8 which contains $\langle T, I \rangle$. By Lemma 9.19, \mathfrak{F} is dihedral of order 8. Let \mathfrak{F}_0 , \mathfrak{F}_1 be the four-subgroups in \mathfrak{F} .

Suppose $\mathfrak X$ is a subgroup of $\mathfrak R_3$ of order 3 which admits $\mathfrak F$ and that $C(\mathfrak X)\cap \mathfrak R_0$ is a quaternion group. Hence, $C_{\mathfrak M}(\mathfrak X)$ contains a normal quaternion subgroup and S_2 -subgroups of $N_{\mathfrak M}(\mathfrak X)$ are of order at least 2^5 . Thus, $N_{\mathfrak M}(\mathfrak X)$ contains a noncyclic abelian subgroup of order 8. This is impossible, by Lemma 9.21 (c). Hence, $C_{\mathfrak R_0}(\mathfrak X)=\langle I\rangle$, by Lemma 9.26 (a).

By Lemma 9.26 (b) and the preceding paragraph, it follows that \mathfrak{F} normalizes no noncentral subgroup of \mathfrak{R}_3 of order 3.

Suppose \Re_3 is nonabelian. Then \Im normalizes $\Omega_1(\Re_3)$, a group of exponent 3. Since $\langle I \rangle$ centralizes \Re_3 , it follows that $\Omega_1(\Re_3)\Im$ is supersolvable. Thus, $\Omega_1(\Re_3)\Im$ contains a normal subgroup of order 9, so \Im normalizes a noncentral subgroup of \Re_3 of order 3. This contradicts the preceding paragraph, so we conclude that \Re_3 is abelian, $\Re_3 = \Im$.

Let $\mathfrak{F}_i = \langle J_i, I \rangle$, i = 0, 1. If both J_0 and J_1 invert \mathfrak{R}_3 , then J_0J_1 centralizes \mathfrak{R}_3 , so $J_0J_1 \in \langle I \rangle$. This is not the case, since $\mathfrak{E}_0\mathfrak{E}_1$ is of order 8. Thus, we may assume notation is chosen so that J_0 centralizes \mathfrak{X}_0 and inverts \mathfrak{X}_1 . Here, $|\mathfrak{X}_i| = 3$, and $\mathfrak{R}_3 = \mathfrak{X}_0 \times \mathfrak{X}_1$. Since $\mathfrak{R}_0 \cap C(\mathfrak{X}_i) = \langle I \rangle$, for i = 0, 1, the width of \mathfrak{R}_0 is 2.

Let \mathfrak{E} be a $S_{2,3}$ -subgroup of $N(\mathfrak{R}_3)$ which contains \mathfrak{R}_2^* . Since $\mathfrak{R}_3 \subset \mathfrak{P}$, we get $|\mathfrak{R}_3| = 9 < |\mathfrak{E}|_3$. By Lemma 9.16 (ii), $|C(\mathfrak{R}_3)|_2 = 2$. By Lemma 9.20, we get that \mathfrak{E} is 3-closed. Let $\mathfrak{E}_3 = O_3(\mathfrak{E}) \supset \mathfrak{R}_3$.

Let F_0 , F_1 , F_2 be the three involutions of \mathfrak{F}_0 , and set

$$3^{f_i} = |\mathfrak{C}_3 \cap C(F_i)|, i = 0, 1, 2$$
.

By Lemma 9.25 (b), we have $f_i \leq 2$. Since $\mathfrak{E}_3 \cap C(\mathfrak{F}_0) = \mathfrak{X}_0$, a formula of Wielandt [44] yields

$$|\mathfrak{G}_3| = 3^{f_0 + f_1 + f_2 - 2} \leq 3^4$$
.

Since the dihedral group $\mathfrak F$ is faithfully represented on $\mathfrak S_3/\mathfrak R_3$, it follows that $|\mathfrak S_3|=3^4$.

Let \mathfrak{D} be a $S_{2,3}$ -subgroup of $N(\mathfrak{C}_3)$. Let \mathfrak{D}_p be a S_p -subgroup of \mathfrak{D} , with $\mathfrak{R}_2^* \subseteq \mathfrak{D}_2$. By the formula of Wielandt [44] applied to \mathfrak{F}_0 acting on $O_3(\mathfrak{D})$, we get $O_3(\mathfrak{D}) = \mathfrak{C}_3$. If $\mathfrak{D}_3 = \mathfrak{C}_3$, then \mathfrak{C}_3 is a S_3 -subgroup of \mathfrak{G} . But the center of \mathfrak{C}_3 contains $\mathfrak{R}_3 = \mathfrak{B}$ by Lemma 9.20, and hence is noncyclic. This contradicts hypothesis (iii) of Theorem 9.1. Therefore $\mathfrak{D}_3 \supset \mathfrak{C}_3$ and \mathfrak{D} is not 3-closed.

By Lemma 9.25 (b), we get $O_2(\mathfrak{D}) = 1$. Since \mathfrak{D} is quite obviously contained in no conjugate of \mathfrak{M} , Lemma 9.18 implies that \mathfrak{D} contains no noncyclic abelian subgroups of order 8. Thus, \mathfrak{D}_2 is of maximal class. Hence, $\langle I \rangle = \mathbf{Z}(\mathfrak{D}_2)$, so $\mathfrak{D}_2 = \mathfrak{R}_2^*$ is of order at most 16. Suppose $|\mathfrak{D}_2| = 16$. Since $O_2(\mathfrak{D}) = 1$, and \mathfrak{D} is not 3-closed, it follows that $O_{3,2}(\mathfrak{D}) \cap \mathfrak{D}_2$ is a quaternion group. But then \mathfrak{M} covers $\mathfrak{D}/O_3(\mathfrak{D})$. This is not the case, since $O_3(\mathfrak{D})$ contains a S_3 -subgroup of \mathfrak{M} , and since $O_3(\mathfrak{D}) = O_3(\mathfrak{D})$. Hence, $\mathfrak{D}_2 = \mathfrak{F}$ is dihedral of order 8. Let $\mathfrak{D}_2 = O_3(\mathfrak{D}) \cap \mathfrak{D}_2$. Thus, \mathfrak{D}_2 is a four-group and $\mathfrak{D}/O_3(\mathfrak{D}) \cong \Sigma_4$.

Since $\mathfrak{D}/O_3(\mathfrak{D})\cong \Sigma_4$, some chief factor of \mathfrak{D} is of order 3^3 . Thus, $O_3(\mathfrak{D})$ is necessarily elementary, and elements of $\mathfrak{D}_3-O_3(\mathfrak{D})$ induce automorphisms of $O_3(\mathfrak{D})$ with minimal polynomial $(x-1)^3$. Hence, $O_3(\mathfrak{D})=J(\mathfrak{D}_3)$ $O_3(\mathfrak{D})=J(\mathfrak{D}_3)$ char \mathfrak{D}_3 , so \mathfrak{D}_3 is a S_3 -subgroup of \mathfrak{G} . This is not the case, since $Z(\mathfrak{D}_3)$ is noncyclic. The proof is complete.

LEMMA 9.28. If the width of \Re_0 exceeds 2, then I is the only conjugate of I in \Re_0 .

Proof. Suppose $T=I^{\scriptscriptstyle G}
eq I$, $T\in \Re_0$. Then $C(T)\cap \Re_0\subseteq C(T)=\mathfrak{M}^{\scriptscriptstyle G}.$ By Lemma 9.27, $C(T)\cap \Re_0\cap \Re_0^{\scriptscriptstyle G}$ is of index at most 2 in $C(T)\cap \Re_0.$

Since $C_{\Re_0}(T)$ is of index 2 in \Re_0 , we get $|\Re_0: C(T) \cap \Re_0 \cap \Re_0^{G}| \leq 4$. Since the width of \Re_0 is at least 3, it follows that $C(T) \cap \Re_0 \cap \Re_0^{G}$ is nonabelian. Hence, $\langle I \rangle = (C(T) \cap \Re_0 \cap \Re_0^{G})' = \langle T \rangle$. This contradiction completes the proof.

LEMMA 9.29. $\Re_3 = \Re$ is of order 9.

Proof. Suppose false. By Lemma 9.21 (e), \Re_3 is nonabelian of order 27. Since \Re_3 is faithfully represented on \Re_0 , the width of \Re_0 is at least 3. By a result of Glauberman [14], \Re_2 contains a conjugate T of I distinct from I, $T = I^G \neq I$. By Lemma 9.28, $T \in \Re_2 - \Re_0$, so by Lemma 9.24, we may assume that $T \in \Re_2^*$. Thus, by Lemma 9.27, $\Re_2^* = \langle I, T \rangle$.

Since \Re_3 is nonabelian, it follows that $\mathfrak{X}_1 = \Re_3 \cap C(T)$ is of order 3. By Lemma 1.3 of [17], \Re_3 has a subgroup \mathfrak{X}_0 of order 3 which centralizes \mathfrak{X}_1 and is inverted by T. Let $\mathfrak{X} = \mathfrak{X}_0 \times \mathfrak{X}_1$ and let \mathfrak{X}_2 , \mathfrak{X}_3 be the remaining subgroups of \mathfrak{X} of order 3.

Suppose $C(\mathfrak{X}_0) \cap \mathfrak{R}_0 \supset \langle I \rangle$. By Lemma 9.26 (a), $C(\mathfrak{X}_0) \cap \mathfrak{R}_0 = \mathfrak{Q}$ is a quaternion group. Since $C(\mathfrak{X}) \cap \mathfrak{R}_0 = \langle I \rangle$, it follows that \mathfrak{X}_1 is faithfully represented on \mathfrak{Q} . Since Aut (\mathfrak{Q}) has no element of order 6, T centralizes \mathfrak{Q} . But then $\langle Q, T \rangle = \mathfrak{Q} \times \langle T \rangle$ contains a noncyclic abelian subgroup of order 8. This violates Lemma 9.21 (c) with \mathfrak{X}_0 in the role of \mathfrak{P} . Hence, $C(\mathfrak{X}_0) \cap \mathfrak{R}_0 = \langle I \rangle$.

Since $C(\mathfrak{X}_0)\cap\mathfrak{R}_0=\langle I\rangle$, the width of \mathfrak{R}_0 is at most 3. By Lemma 9.26 (b), we get $\mathfrak{X}_0=Z(\mathfrak{R}_3)$. Thus, if we set $\mathfrak{D}_i=\mathfrak{R}_0\cap C(\mathfrak{X}_i)$, i=1,2,3, then by Lemma 9.26, it follows that each \mathfrak{D}_i is quaternion. Hence, \mathfrak{R}_0 is the central product of $\mathfrak{D}_1,\,\mathfrak{D}_2,\,\mathfrak{D}_3$. Since T centralizes \mathfrak{X}_1 and interchanges \mathfrak{X}_2 and \mathfrak{X}_3 , it follows that T normalizes \mathfrak{D}_1 and interchanges \mathfrak{D}_2 and \mathfrak{D}_3 . Since \mathfrak{X}_0 is faithfully represented on \mathfrak{D}_1 , it follows that $\mathfrak{D}_1\mathfrak{X}_0\langle T\rangle\cong GL(2,3)$. Thus, we can choose generators A_i,B_i for \mathfrak{D}_i such that $A_1^T=B_1,\,A_2^T=A_3,\,B_2^T=B_3$. It follows that $C(T)\cap\mathfrak{R}_0=\langle A_2A_2,\,B_2B_3,\,I\rangle$, an elementary group of order 8. Let $\mathfrak{F}=C(T)\cap\mathfrak{R}_2=\langle T\rangle\times C(T)\cap\mathfrak{R}_0$. It now follows that $\widetilde{\mathfrak{R}}_2=N_{\widehat{\mathfrak{R}}_2}(\mathfrak{F})=\langle \mathfrak{D}_2,\,\mathfrak{D}_3,\,A_1B_1,\,T\rangle$, a group of index 2 in \mathfrak{R}_2 . Since $Z(\widetilde{\mathfrak{R}}_2)=\langle I\rangle$, it follows that $\widetilde{\mathfrak{R}}_2$ is a S_2 -subgroup of $N(\mathfrak{F})$.

Now $T=I^c$, so $\mathfrak{F}\subseteq \mathfrak{M}^c$. By symmetry, $N(\mathfrak{F})\cap \mathfrak{M}^c$ contains a S_2 -subgroup of $N(\mathfrak{F})$. This implies that $O_2(N(\mathfrak{F}))$ centralizes both T and I. Hence, $O_2(N(\mathfrak{F}))=\mathfrak{F}$.

Now $\widetilde{\Re}_2$ permutes transitively the elements of $(\mathfrak{F} \cap \mathfrak{R}_0)T$, so $\mathfrak{S} = \{(\mathfrak{F} \cap \mathfrak{R}_0)T, I\}$ is the set of all the elements of \mathfrak{F} which are conjugate to I in \mathfrak{S} . Since $N(\mathfrak{F}) \cap \mathfrak{M}^c$ normalizes \mathfrak{S} but does not centralize I, it follows that $N(\mathfrak{F})$ permutes \mathfrak{S} transitively.

Since $N(\mathfrak{F})$ is transitive on \mathfrak{S} , it follows that $N(\mathfrak{F}) = 9 \cdot |N(\mathfrak{F}) \cap \mathfrak{M}|$. Since $C(\mathfrak{F}) = C_{\mathfrak{M}}(\mathfrak{F})$, it follows that $\mathfrak{F} = C(\mathfrak{F})$. Since T centralizes \mathfrak{X}_1 ,

it follows that \mathfrak{X}_1 normalizes $\mathfrak{R}_0 \cap C(T)$, so normalizes $\mathfrak{F} = \langle T \rangle \times \mathfrak{R}_0 \cap C(T)$. But it now follows that $27 \mid \mid N(\mathfrak{F}) \mid$. Since \mathfrak{F} is elementary of order 2^4 , Aut (\mathfrak{F}) has no subgroup of order 27. This violates the equality $\mathfrak{F} = C(\mathfrak{F})$, and the proof is complete.

LEMMA 9.30. If T is any involution of \mathfrak{G} , then $|C(T)|_3 \leq 9$.

Proof. Since $|\Re_2:\Re_0|=2$, Lemma 5.38 implies that every involution of \Im is conjugate to an involution of \Re_0 . Thus, we may assume that $T\in\Re_0$. If $T\sim I$, we are done by Lemma 9.29, so from now on we suppose $T\not\sim I$.

Let $\mathfrak{U} \in \mathcal{U}(\mathfrak{R}_2)$, and let $\widetilde{\mathfrak{R}}_0 = \mathfrak{R}_0 \cap C(\mathfrak{U})$. Thus, $\widetilde{\mathfrak{R}}_0$ is of index 2 in \mathfrak{R}_0 . Since \mathfrak{R}_3 has no fixed points on $\mathfrak{R}_0/\langle I \rangle$, Lemma 5.38 implies that for some X in \mathfrak{R}_3 , $T^X \in \widetilde{\mathfrak{R}}_0$. Thus, we assume without loss of generality that $T \in \widetilde{\mathfrak{R}}_0$.

We argue that $C_{\mathfrak{M}}(T)$ contains a S_z -subgroup of C(T). This is clear if $|\mathfrak{M}: C_{\mathfrak{M}}(T)|_z=2$, since $T \not\sim I$. So suppose $|\mathfrak{M}: C_{\mathfrak{M}}(T)|_z=4$. In this case, $C_{\mathfrak{N}_0}(T)$ is a S_z -subgroup of $C_{\mathfrak{M}}(T)$. Since $\langle I \rangle = C_{\mathfrak{N}_0}(T)'$ char $C_{\mathfrak{N}_0}(T)$, it follows that $C_{\mathfrak{N}_0}(T)$ is a S_z -subgroup of C(T).

Let \Re be a $S_{2,3}$ -subgroup of C(T) which contains $C_{\Re}(T)$. Suppose $O_3(\Re) \neq 1$. Since $\mathfrak{U} \subseteq \Re$, \mathfrak{U} centralizes $O_3(\Re)$, so $O_3(\Re) \subseteq \mathfrak{M}$. Since no element of \Re_3^* centralizes a four-subgroup of \Re_0 by Lemma 9.26 (a), we conclude that $O_3(\Re) = 1$.

Since $O_3(\Re) = 1$ and since $\Re \cap \Re$ contains a S_2 -subgroup of C(T), it follows that $I \in \mathbf{Z}(O_2(\Re))$. Suppose X is a 3-element of \Re and \Re centralizes I. Then $X \in C(\langle T, I \rangle)$, so X = 1 by Lemma 9.26 (a). Thus, a S_3 -subgroup \Re_3 of \Re is faithfully represented on $\mathbf{Z}(O_2(\Re))$.

Let $\Omega_1(\boldsymbol{Z}(O_2(\Re))) = \mathfrak{Y}_1 \times \mathfrak{Y}_2$, where $\mathfrak{Y}_1 = \Omega_1(\boldsymbol{Z}(O_2(\Re))) \cap C(\Re_3)$, and $\mathfrak{Y}_2 = [\Omega_1(\boldsymbol{Z}(O_2(\Re))), \Re_3]$. Thus, $T \in \mathfrak{Y}_1$ and \Re_3 is faithfully represented on \mathfrak{Y}_2 . Hence, $m(\boldsymbol{Z}(O_2(\Re))) = m(\mathfrak{Y}_1) + m(\mathfrak{Y}_2) \geq 7$. Thus, \Re_0 has an elementary subgroup of order 2^6 , by Lemma 9.27. This is impossible, since the width of \Re_0 is at most 4. The proof is complete.

LEMMA 9.31. $|\mathfrak{G}|_3 > 3^4$.

Proof. Let \mathfrak{X} be a subgroup of \mathfrak{R}_3 of order 3 such that $\mathfrak{R}_0 \cap C(\mathfrak{X}) = \mathfrak{D}$ is quaternion. Let \mathfrak{C} be a $S_{2,3}$ -subgroup of $C(\mathfrak{X})$ which contains $\mathfrak{R}_3\mathfrak{D}$. Since $\mathfrak{R}_3 = \mathfrak{B} \in \mathscr{D}$, it follows that \mathfrak{R}_3 centralizes $Z(O_2(\mathfrak{C}))$. Since $\langle I \rangle$ is a S_2 -subgroup of $C(\mathfrak{R}_3)$, it follows that $O_2(\mathfrak{C}) = 1$, by Lemma 9.21(a).

Since $O_2(\mathbb{C}) = 1$, \mathbb{D} is faithfully represented on $O_3(\mathbb{C})$, so is faithfully represented on $O_3(\mathbb{C})/\mathfrak{X}$. Hence, $|O_3(\mathbb{C}):\mathfrak{X}| \geq 9$. Since $[\mathfrak{R}_3 \cap O_3(\mathbb{C}), \mathfrak{D}] \subseteq O_3(\mathbb{C}) \cap \mathfrak{D} = 1$, it follows that $\mathfrak{R}_3 \cap O_3(\mathbb{C}) = \mathfrak{X}$. Hence, $|\mathbb{C}|_3 \geq 3^4$. Suppose the lemma is false. Then \mathbb{C} contains a S_3 -subgroup of \mathbb{G} , and $O_3(\mathbb{C})$ is of order 3^3 , while $\mathfrak{X} \sim \mathfrak{Z}$. If $O_3(\mathbb{C})$ is nonabelian, then Hypothesis 9.1 is satisfied. This is not the case, so $O_3(\mathbb{C})$ is elementary. Hence, $O_3(\mathbb{C}) = \mathfrak{X} \times [O_3(\mathbb{C}), \mathfrak{D}]$. Hence, the center of a S_3 -subgroup of

S is noncyclic. This is not the case. The proof is complete.

LEMMA 9.32. Choose J in $\Re_2^* - \langle I \rangle$. If J inverts \Re_3 , then $A_{(5)}(\Re_2^*) = \operatorname{Aut}(\Re_2^*)$.

Proof. Let $\mathfrak X$ be any four-subgroup of $\mathfrak M$ which contains I. We will show that

$$(9.25) |A_{99}(\mathfrak{X})| = 2.$$

This is clear if $\mathfrak{X} \subseteq \mathfrak{R}_0$. If $\mathfrak{X} \nsubseteq \mathfrak{R}_0$, then by Lemmas 9.27 and 9.24, we see that \mathfrak{X} is conjugate to \mathfrak{R}_2^* in \mathfrak{M} . Let \mathfrak{Y} be a subgroup of \mathfrak{R}_3 such that $\mathfrak{D} = \mathfrak{R}_0 \cap C(\mathfrak{Y})$ is quaternion. Since J inverts \mathfrak{R}_3 , \mathfrak{D} admits $\langle J \rangle \mathfrak{R}_3/\mathfrak{Y}$ as a group of automorphisms. Hence, J inverts an element Q of \mathfrak{D} of order 4. Then $JQJ = Q^{-1}$, that is, $Q^{-1}JQ = JI$, so $Q \in N_{\mathfrak{M}}(\mathfrak{R}_2^*)$. Thus, (9.25) holds.

Suppose that $\mathfrak{R}_2^* - \langle I \rangle$ contains a conjugate J of I. By (9.25), we can choose M in $\mathfrak{M} \cap N(\mathfrak{R}_2^*)$ such that $M^{-1}JM = JI$. By (9.25) again, this time applied to the group C(J), we can choose M_0 in C(J) with $M_0^{-1}IM_0 = IJ$. Thus, the lemma follows in this case.

We may now assume that

(9.26) I is the only conjugate of I in
$$\Re_2^*$$
.

By a result of Glauberman [16], \Re_2 contains a conjugate T of I with $T \neq I$. If the width of \Re_0 exceeds 2, then by Lemma 9.28, $T \notin \Re_0$, so by Lemma 9.24, (9.26) is violated. So suppose the width of \Re_0 is 2. In this case, \Re_0 has exactly 18 noncentral involutions and they are permuted transitively in \Re . Since T lies in no \Re -conjugate of \Re_2^* , Lemma 9.24 implies that $T \in \Re_0$. Thus, every involution of \Re_0 is conjugate to I in \Im . But by Lemma 5.38, every involution of \Im is conjugate to an element of \Re_0 . The proof is complete.

Lemma 9.33. There is a S_3 -subgroup of \mathfrak{G} which contains \mathfrak{R}_3 and is normalized by \mathfrak{R}_2^* .

Proof. Let $\widetilde{\mathfrak{P}}$ be a maximal element of $N(\mathfrak{R}_2^*;3)$ which contains \mathfrak{R}_3 . Suppose by way of contradiction that $|\widetilde{\mathfrak{P}}| < |\mathfrak{G}|_3$. Let \mathfrak{C} be a $S_{2,3}$ -subgroup of $N(\widetilde{\mathfrak{P}})$ which contains \mathfrak{R}_2^* . Let \mathfrak{C}_p be a S_p -subgroup of \mathfrak{C} , p=2,3, with $\mathfrak{R}_2^* \subseteq \mathfrak{C}_2$.

Suppose $O_2(\mathbb{C}) \neq 1$. Then since $\Re_3 \in \mathcal{D}$, we get $Z(O_2(\mathbb{C})) \sim \langle I \rangle$, so \mathbb{C} is in a conjugate of \mathfrak{M} . This is not the case, by Lemma 9.21(a). Clearly, the maximality of $\tilde{\mathbb{F}}$ forces $\tilde{\mathbb{F}} = O_3(\mathbb{C})$. Since $O_2(\mathbb{C}) = 1$, the proof of Lemma 9.17 implies that \mathbb{C} has no noncyclic abelian subgroup of order 8. Thus, $\tilde{\mathbb{C}} = \mathbb{C}/O_3(\mathbb{C})$ is a 2,3-group of order divisible by 3

such that

- (a) $O_3(\overline{\mathbb{C}}) = 1$.
- (b) © contains a four-group.
- (c) $\overline{\mathbb{C}}$ contains no noncyclic abelian subgroup of order 8. It is routine to verify that $\overline{\mathbb{C}} \cong GL(2,3)$ or $\overline{\mathbb{C}} \cong \Sigma_4$ or $\overline{\mathbb{C}} \cong A_4$. If $GL(2,3) \cong \overline{\mathbb{C}}$, then every four-subgroup of $\overline{\mathbb{C}}$ normalizes a S_3 -subgroup of $\overline{\mathbb{C}}$, against the maximality of $\overline{\mathfrak{P}}$. Hence,

$$\mathbb{C}/O_3(\mathbb{C})\cong\Sigma_4$$
 or A_4 .

Let $\Re_2^* = \langle I, J \rangle$.

Case 1. J does not invert \Re_3 . Let $\mathfrak{X}=C(J)\cap \Re_3$, so that $\mathfrak{X}=C(\Re_2^*)\cap \Re_3=O_3(\mathbb{C})\cap C(\Re_2^*)$ is of order 3. By a formula of Wielandt [40], together with Lemma 9.30, we get $|O_3(\mathbb{C})| \leq 3^4$. Since $O_3(\mathbb{C})=F(\mathbb{C})$, it follows from (B) that $m(O_3(\mathbb{C})) \geq 3$. Hence, $O_3(\mathbb{C})$ is elementary of order 3^3 or 3^4 . If $|O_3(\mathbb{C})|=3^3$, then $O_3(\mathbb{C})$ char \mathbb{C}_3 , and so \mathbb{C}_3 is a S_3 -subgroup of \mathbb{G} , against Lemma 9.31. Hence, $O_3(\mathbb{C})$ is elementary of order 3^4 . This implies that $O_3(\mathbb{C})$ char \mathbb{C}_3 . Hence, \mathbb{C}_3 is a S_3 -subgroup of \mathbb{G} . This is not the case, since $Z(\mathbb{C}_3)$ is noneyclic.

Case 2. J inverts \Re_3 and $\bar{\mathbb{G}} \cong \Sigma_4$.

Let $\mathfrak{B} = \mathfrak{C}_2 \cap O_{3,2}(\mathfrak{C})$. Thus, \mathfrak{B} is a four-group. Suppose $\mathfrak{B} = \mathfrak{R}_2^*$. Let $\mathfrak{S} = \mathfrak{M} \cap \mathfrak{C}$. Then $|\mathfrak{S}| = 8.9$, and $\mathfrak{R}_3 \triangle \mathfrak{S}$. This is not the case, since \mathfrak{R}_2^* is a four-group, by Lemma 9.27.

Since $\mathfrak{B} \neq \mathfrak{R}_2^*$, it follows that \mathfrak{B} and \mathfrak{R}_2^* are the four-subgroups of \mathfrak{C}_2 By Lemma 9.32, $A_{\mathfrak{G}}(\mathfrak{R}_2^*) = \operatorname{Aut}(\mathfrak{R}_2^*)$. Thus, $\mathfrak{B} \cap \mathfrak{R}_2^* = \langle V \rangle$ with $V \sim I$. Hence, all involutions of \mathfrak{B} are conjugate to I in \mathfrak{G} .

Choose V in \mathfrak{B}^{\sharp} . Suppose $|C(V) \cap O_{\mathfrak{I}}(\mathfrak{C})| > 3$. Then $C(V) \cap O_{\mathfrak{I}}(\mathfrak{C})$ is a $S_{\mathfrak{I}}$ -subgroup of C(V), by Lemma 9.29, together with $V \sim I$. Hence, $|C_{\mathfrak{C}}(V)| = 8.9$, and $C_{\mathfrak{C}}(V)$ is 3-closed. This violates Lemma 9.27 applied to C(V). Hence, $|O_{\mathfrak{I}}(\mathfrak{C}) \cap (V)| \leq 3$.

Since $N(\mathfrak{V})\cap \mathfrak{C}$ permutes transitively the involutions of \mathfrak{V} , we get $|C(V)\cap O_3(\mathfrak{C})|=3$ for all V in \mathfrak{V}^{\sharp} . Hence, $|O_3(\mathfrak{V})|=27$ and $O_3(\mathfrak{C})=J(\mathfrak{C}_3)$ char \mathfrak{C}_3 . But then $|\mathfrak{C}|_3=|\mathfrak{G}|_3$, against Lemma 9.31.

Case 3. J inverts \Re_3 and $\bar{\mathbb{C}} \cong A_4$.

Let $\mathfrak{C}_0 = O_3(\mathfrak{C})$. Then $\mathfrak{R}_3 = C_{\mathfrak{C}_0}(I)$ is elementary of order 3^2 and inverts by each element of $\mathfrak{R}_2^* - \langle I \rangle$. Since the involutions of \mathfrak{R}_2^* are fused in \mathfrak{C} , we conclude

- (a) for each $K \in (\Re_2^*)^\sharp$, the group $C_{\mathfrak{C}_0}(K)$ is elementary of order 3^2 and is inverted by each element of $\Re_2^* \langle K \rangle$. It follows that
 - (b) \mathbb{C}_0 contains two chief factors of \mathbb{C} , each of order 3^3 .

Suppose that \mathfrak{C}_0 is abelian. By (a) and (b), it is elementary of order 3^6 and each element of $\mathfrak{C}_3 - \mathfrak{C}_0$ has minimal polynomial $(x-1)^3$ on \mathfrak{C}_0 . Hence, \mathfrak{C}_0 char \mathfrak{C}_3 . So \mathfrak{C}_3 is a S_3 -subgroup of \mathfrak{G} . But $\mathbf{Z}(\mathfrak{C}_3) = [\mathfrak{C}_0, \mathfrak{C}_3, \mathfrak{C}_3]$ is not cyclic, against hypothesis (iii) of Theorem 9.1. Therefore, \mathfrak{C}_0 is not abelian. So (a) and (b) imply:

- (c1) \mathbb{C}_0 is special of order 36 and exponent 3,
- (c2) $D(\mathfrak{C}_0) = Z(\mathfrak{C}_0)$ is a chief factor of \mathfrak{C} of order 3^3 ,
- (c3) $\mathbb{C}_0/\mathbf{D}(\mathbb{C}_0)$ is a chief factor of \mathbb{C} of order 3^3 ,
- (c4) every element of $\mathbb{C}_3 \mathbb{C}_0$ has minimal polynomial $(x-1)^3$ on both $D(\mathbb{C}_0)$ and $\mathbb{C}_0/D(\mathbb{C}_0)$,
- (c5) if $P \in \mathbb{C}_3 \mathbb{C}_0$, then $|C_{\mathfrak{C}_3}(P)| \leq 3^3$. This implies
 - (d) \mathbb{C}_0 char \mathbb{C}_3 .

Indeed, if \mathbb{C}_1 is any subgroup of index 3 in \mathbb{C}_3 different from \mathbb{C}_0 , then $\mathbb{C}_1 \cap \mathbb{C}_0 \supseteq \mathbf{D}(\mathbb{C}_0)$. Hence, (c4) implies that the exponent of \mathbb{C}_1 is 9. This proves (d), and gives

(e) \mathbb{G}_3 is a S_3 -subgroup of \mathbb{G} .

Now let \mathfrak{A}_0 be a subgroup of \mathfrak{R}_3 of order 3 such that $C_{\mathfrak{R}_0}(\mathfrak{A}_0) = \mathfrak{D} \supset \langle I \rangle$. Let $\mathfrak{C}_3 = A_0 \times A_1$. Thus, \mathfrak{D} is a quaternion group and $\mathfrak{D}\mathfrak{A}_1\langle J \rangle \cong GL(2,3)$. Let \mathfrak{L} be a $S_{2,3}$ -subgroup of $C_{\mathfrak{B}}^*(\mathfrak{A}_0)$ with $\mathfrak{D}\mathfrak{R}_3\langle J \rangle \cong L$. Let $\mathfrak{L}_0 = O_3(\mathfrak{L})$. Since $D(\mathfrak{C}_0)\mathfrak{R}_3$ is elementary of order 3^4 and contains an element of $\mathscr{U}(3)$, it follows that $O_{3'}(\mathfrak{L}) = 1$. Since \mathfrak{L} contains no noncyclic abelian subgroup of order 8, we get that $\mathfrak{D}\mathfrak{A}_1\langle J \rangle$ is a complement to \mathfrak{L}_0 in \mathfrak{L} . Since I inverts $\mathfrak{L}_0/\mathfrak{A}_0$, it follows that $|\mathfrak{L}_0:\mathfrak{A}_1|=3^{2d}$ for some integer $d \geq 1$. If d=1, then $D(\mathfrak{C}_0)\mathfrak{R}_3$ is a S_3 -subgroup of $C(\mathfrak{A}_0)$ and so S_3 -subgroups of \mathfrak{L} are abelian. This is absurd, so $d \geq 2$. Since $|\mathfrak{G}|_3 = 3^7$ by (e), and since $|\mathfrak{L}|_3 = 3^{2d+2}$, we get d=2.

Let \mathfrak{L}_3 be a S_3 -subgroup of \mathfrak{L} containing \mathfrak{R}_3 . Since \mathfrak{L}_3 is not a S_3 -subgroup of \mathfrak{G} , and since $\mathfrak{U}_0 \triangle \mathfrak{L}$, it follows that $\mathbf{Z}(\mathfrak{L}_3)$ is noncyclic. In particular, $\mathbf{Z}(\mathfrak{L}_0) \supseteq \mathbf{Z}(\mathfrak{L}_3)$, so that $\mathbf{Z}(\mathfrak{L}_0)$ is not cyclic. Hence, $|\mathbf{Z}(\mathfrak{L}_0)| \ge 3^3$. This implies that if $L \in \mathfrak{L}_0$, then $|\mathbf{C}_{\mathfrak{L}_0}(L)| \ge 3^4$. Choose \mathbf{G} in \mathfrak{G} so that $\mathfrak{L}_3 \subseteq \mathfrak{G}_3^{\mathbf{G}}$, which is possible by (e). By (c5), we get $\mathfrak{L}_0 \subseteq \mathfrak{G}_0^{\mathbf{G}}$. Hence, $\mathfrak{L}_0 = \mathfrak{L}_{00} \times \mathfrak{L}_{01}$, where \mathfrak{L}_{00} , \mathfrak{L}_{01} admit \mathfrak{L} , \mathfrak{L}_{00} is nonabelian of exponent 3 and order 3^3 and \mathfrak{L}_{01} is elementary of order 3^2 . Now $\mathfrak{U}_1 \subseteq \mathfrak{L}_3$ and $|\mathbf{C}_{\mathfrak{L}_3}(\mathfrak{U}_1) \ge 3^4$, so we get that $\mathfrak{U}_1 \subseteq \mathfrak{G}_0^{\mathbf{G}}$. Hence, $\mathfrak{L}_3 = \mathfrak{L}_0 \mathfrak{V}_1 \subseteq \mathfrak{G}_0^{\mathbf{G}}$, and so $\mathfrak{L}_3 = \mathfrak{G}_0^{\mathbf{G}}$. This is impossible, since $|\mathbf{Z}(\mathfrak{L}_3)| = 3^2$, $|\mathbf{Z}(\mathfrak{G}_0)| = 3^3$.

LEMMA 9.34. Each involution of $\Re_2^* - \langle I \rangle$ inverts \Re_3 .

Proof. Let \mathfrak{P}^* be a S_2 -subgroup of \mathfrak{P} which contains \mathfrak{R}_3 and is normalized by \mathfrak{R}_2^* , set $\mathfrak{X}=\mathfrak{R}_3\cap C(\mathfrak{R}_2^*)$. Suppose $\mathfrak{X}\neq 1$. Then $|\mathfrak{X}|=3$, so by a formula of Wielandt [44], $|\mathfrak{P}^*|\leq 3^4$. This contradicts Lemma 9.31. Hence, $\mathfrak{X}=1$. As $\mathfrak{R}_2^*=\langle I,J\rangle$ for some involution J, the proof is complete.

LEMMA 9.35. (a) If \mathfrak{X} is a subgroup of \mathfrak{R}_3 of order 3 and $C(\mathfrak{X}) \cap \mathfrak{R}_0$ is quaternion, then $|C(\mathfrak{X})|_3 = 3^4$.

(b)
$$|C(\Re)|_3 = 3^3$$
.

Proof. (a) Set $\mathfrak{Q} = C(\mathfrak{X}) \cap \mathfrak{R}_0$, and let \mathfrak{Y} be a subgroup of \mathfrak{R}_3 of order 3 distinct from \mathfrak{X} . Let J be an involution of $\mathfrak{R}_2^* - \langle I \rangle$. Thus, J inverts \mathfrak{R}_3 by Lemma 9.34. Also, $\langle J \rangle \mathfrak{Y} \mathfrak{Q} \cong GL(2,3)$.

$$[O_3(\mathbb{C})\cap \Re_3, \Im]\subseteq O_3(\mathbb{C})\cap \Im=1$$
,

it follows that $O_3(\mathfrak{C}) \cap \mathfrak{R}_3 = \mathfrak{X}$. Hence, I inverts $O_3(\mathfrak{C})/\mathfrak{X}$. Hence, $O_3(\mathfrak{C})/\mathfrak{X}$ is the direct sum of a certain number, say k, of modules each isomorphic to the faithful irreducible $F_3\mathfrak{D}$ -module, so that $|O_3(\mathfrak{C}):\mathfrak{X}|=3^{2k}$. Hence, $|\mathfrak{C}|_3=|C(\mathfrak{R})|_3=3^{2(k+1)}$. Suppose $k\geq 2$. Then by Lemma 9.33, we get $|\mathfrak{C}|_3=|\mathfrak{G}|_3=3^6$.

We argue that $Z(O_3(\mathbb{C})) = \mathfrak{X}$. Suppose false. We get $Z(O_3(\mathbb{C})) = (Z(O_3(\mathbb{C})) \cap C(I)) \times [Z(O_3(\mathbb{C})), I]$. Since $\Re_3 \cap O_3(\mathbb{C}) = 1$, we get

$$Z(O_3(\mathfrak{C})) \cap C(I) = \mathfrak{X};$$

also $[Z(O_3(\mathbb{C})), I]$ is normalized by \mathfrak{Y} , so if $[Z(O_3(\mathbb{C})), I] \neq 1$, then a S_3 -subgroup of \mathfrak{V} has a noncyclic center. We conclude that $\mathfrak{X} = Z(O_3(\mathbb{C}))$. This implies that $O_3(\mathbb{C})$ is extra special of width 2. Since $\mathbb{C} \langle J \rangle$ is a S_2 -subgroup of $N(\mathfrak{X})$, it follows that $O_3(\mathbb{C}) = O_3(N(\mathfrak{X}))$. Thus, Hypothesis 9.2 is satisfied. Since this is not the case, we get k = 1. Thus (a) holds.

By Lemma 9.20, we have $|C(\Re_3)|_3 \ge 27$. Since \Re_3 is not central in a S_3 -subgroup of \mathfrak{C} , (b) follows.

LEMMA 9.36. Let \mathfrak{P} be a S_3 -subgroup of \mathfrak{G} . Then

- (a) $|\mathfrak{P}| = 3^5$.
- (b) $\mathfrak{P}/\mathbf{Z}(\mathfrak{P})$ is of maximal class and order 3^4 .

Proof. By Lemma 9.33, there is a conjugate $\mathfrak V$ of $\mathfrak R_2^*$ which normalizes $\mathfrak V$. By Lemma 9.32, all involutions of $\mathfrak V$ are conjugate to I. Let $V_1,\ V_2,\ V_3$ be the involutions of $\mathfrak V$. By Lemma 9.34, $C_{\mathfrak P}(\mathfrak V)=1$. By Lemma 9.29, $|C_{\mathfrak P}(V_i)|\leq 9$ for i=1,2,3. Then by Wielandt [44], $|\mathfrak V|\leq 3^6$.

Set $\beta = \mathbb{Z}(\mathfrak{P})$. Since β is cyclic, $C(\beta) \cap \mathfrak{B} \neq 1$. We may assume notation is chosen so that V_1 is a generator for $C(\beta) \cap \mathfrak{B}$. Thus, $|\beta| = 3$. Suppose V_1 inverts \mathfrak{P}/β . Then, $|\mathfrak{P}| \leq 3^5$, so by Lemma 9.31, $|\mathfrak{P}| = 3^5$. In this case, since \mathfrak{P} is generated by elements of order 3, we get that $\beta = \mathfrak{P}' = D(\mathfrak{P})$. Since $O_{\mathfrak{P}}(N(\beta) = 1$, so also $O_{\mathfrak{P}}(\beta)/\beta = 1$.

Hence, $\mathfrak{P} \triangleleft N(\mathfrak{Z})$. Thus, Hypothesis 9.2 is satisfied. Since this is not the case, we conclude that V_1 does not invert $\mathfrak{P}/\mathfrak{Z}$.

Let $\mathfrak U$ be a subgroup of $C_{\mathfrak P}(V_{\scriptscriptstyle 1})$ of order 3 distinct from $\mathfrak Z.$ Thus, $C_{\mathfrak R}(V_{\scriptscriptstyle 1})=\mathfrak Z\mathfrak U.$

By Lemma 9.35(b), we get $|C_{\mathfrak{P}}(\mathfrak{JU})| \leq 27$. Since $N_{\mathfrak{P}}(\mathfrak{JU}) = C_{\mathfrak{P}}(\mathfrak{JU})$, we have $|C_{\mathfrak{P}}(\mathfrak{JU})| = 27$. Again, since $N_{\mathfrak{P}}(\mathfrak{JU}) = C_{\mathfrak{P}}(\mathfrak{JU})$, if follows that $|N_{\mathfrak{P}/\mathfrak{J}}(\mathfrak{JU}/\mathfrak{J})| = 9$. Thus, $\mathfrak{P}/\mathfrak{J}$ is of maximal class, and $\mathfrak{U}\mathfrak{J}/\mathfrak{J} \not\subseteq (\mathfrak{P}/\mathfrak{J})'$. Since $\mathfrak{U}\mathfrak{J}/\mathfrak{J}$ is the set of fixed points of V_1 on $\mathfrak{P}/\mathfrak{J}$, it follows that $\mathfrak{P}/\mathfrak{J}$ has a subgroup $\mathfrak{P}_0/\mathfrak{J}$ of index 3 which is inverted by \mathfrak{P}_1 . Since $\mathfrak{P}_0/\mathfrak{J}$ is generated by elements of order 3, $\mathfrak{P}_0/\mathfrak{J}$ is elementary. If $|\mathfrak{P}_0/\mathfrak{J}| \geq 3^4$, then $\mathfrak{P}/\mathfrak{J}$ is not of maximal class. Hence, $|\mathfrak{P}_0/\mathfrak{J}| \leq 27$, so by Lemma 9.31, we have $|\mathfrak{P}_0:\mathfrak{J}| = 27$. This establishes both (a) and (b).

We may now complete the proof of Theorem 9.1. Let $\mathfrak{P}, \mathfrak{P}_0, \mathfrak{F}, \mathfrak{F}_0, \mathfrak{F}$

Theorems 8.1 and 9.1 provide a proof of Theorem ES.

A substantial number of simplifications and corrections have been supplied by E. C. Dade.

Received October 23, 1964, and in revised form August 8, 1969. Research supported by a National Science Foundation Grant, GN-530, to the American Mathematical Society. The author also thanks the Sloan Foundation for its extended support.

UNIVERSITY OF CHICAGO CAMBRIDGE UNIVERSITY