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SECTIONS AND SUBSETS OF SIMPLEXES

ALDO J. LAZAR

There is a locally convex space E and a compact simplex
S c E with the following property: for any metrizable com-
pact convex subset K of a locally convex space there is a
subspace M ' c E such that K is affinely homeomorphic toMnS.
One possible choice is E = h with the w* topology induced by
c and

S = ί(an): J£ α* = 1, α» ^ 0, w = 1, 2,
I W = l

If X is a Banach space and S c X is a compact simplex,
then for each s > 0 there is an operator T: X-^X with finite
dimensional range such that 11 T(x) — x |1 < ε for all x e S.
Every infinite dimensional Banach space X contains a compact
set K for which there is no bounded simplex S a X with
KczS.

In a recent paper Phelps [12] gave an example of a three dimen-
sional section of a compact simplex which is not a convex poly tope.
Our first result shows that this is not an exception: each metrizable
compact convex subset of a locally convex space can be represented
as the intersection of a certain compact simplex with a suitable linear
space. In §3 we pass from sections of simplexes to compact simplexes
in Banach spaces. The interest in their investigation is motivated
by the fact that the identity operator of a Banach space can be ap-
proximated on a compact simplex of the space by operators having
finite dimensional ranges (Theorem 3). Obviously the same property
is shared by any set contained in a compact simplex of a Banach
space. One says that a Banach space X has the approximation property
[6, p. 165] if for every compact KaX and every ε > 0 there is a
bounded linear operator T:X—*X with finite dimensional range such
that 11 T(x) — x 11 < ε for any xe K. It is an open problem if every
Banach space has the approximation property. Theorem 3 states that
such an operator T can always be found when K is a subset of a
compact simplex S g l However our result is probably very far
from leading to an affirmative solution of this problem of Grothendieck.
Indeed, in §4 we prove that every infinite dimensional Banach space
contains a compact set which is too large to be included in a bounded
simplex of the space (Corollary 6). At the end we mention some open
problems related to the material contained in this paper.

1. We shall consider only linear spaces over the real field R.
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Let S be a convex subset of a linear space E. Passing to E x R if
necessary, we may suppose that S is situated in a hyper plane of E
which misses the origin. S is called a simplex if the cone C with
the vertex at the origin generated by S induces a lattice order in
C -C.

For a compact convex subset if of a locally convex linear space
we denote by A{K) the Banach space of all continuous affine func-
tionals on K endowed with the supremum norm. A(K) has an order
structure too determined by the cone of the nonnegative functions.
A*(K) is an ordered Banach space with the dual order to that in
A(K). For ft eK define k*eA*(K) by k*(f) = /(ft), fe A(K). The
map k—>k* is an affine homeomorphism of K onto the positive face
of the unit ball in A*(K). If /* e A*(K), f* ^ 0 and /*(1*) = 1
(we denote by lκ the function identically equal to 1 on K), then
/* = ft* for a certain keK. The linear span of {k*:keK} is the
entire space A*(K). If K is a compact simplex then A*(K) is an L-
space (cf. [14]).

The space c consists of all the convergent real sequences x =
(x19 x2, , xn9 •) with 11 a? 11 = sup \xn\. Let Γ be a set. Then l^Γ)
denotes the space of all real functions x = (x(7))reΓ on Γ which satisfy
Σrerl#Cy)l < °°; the norm is ||α?|| = Σrer|^(7)|. The space of all
bounded real functions on Γ with the supremum norm is denoted
IJΓ)\ one has l*(Γ) = L(Γ). If Γ is countable we denote k(Γ) by
lί9 The dual of c is isometrically isomorphic to l^

2. For the following theorem S will denote the positive face of
the unit ball in ϊx, i.e.,

S = \(y*): Σ Vn = 1, 2/. ^ 0, π = 1, 2, ...} .

Obviously S is a simplex. With the w*-topology induced by c in lx S
is compact.

THEOREM 1. Consider lx — c* with the w*-topology. For any
metrίzable compact convex subset K of a locally convex space there
is a subspace MalL such that M f] S is affinely homeomorphic to K.

Proof. Let {/»}Γ=i be a norm dense sequence in the positive cone
of A(K) such that fn Φ 0K1 n = 1, 2, . Denote

gn = 2-IIΛH-1, n = 1, 2, and flr0 = 1* - Σ 0 .

Def ine t h e o p e r a t o r T: c —> A ( i f ) a s f o l l o w s : if a? = (a?0, »„ • • • , # „ , « ) e c
t h e n ΪXaj) = Σ ~ = o a?»flr». W e s h a l l s h o w t h a t M = T*(A*(K)) c lx h a s
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the desired properties. Clearly it is enough to prove that T* is one
to one and that T* maps {fc*: keK} onto M f) S.

The first assertion about T* is a consequence of the fact that
T(c) is dense in A(K). We prove now the second claim. T is a
positive map of c into A(K) hence T*(&*) is nonnegative for every
keK. Put e = (1, 1, •• ) e c . Then we have

T*(fc*)(β) = k*(T(e)) = k*(lκ) = 1 ,

which implies that Γ*(fc*)eS. Assume now that T*(/*)eS for
f*eA*(K). Then

/*(£•) = /*(Γ(βw)) = Γ*(/*)(βn) ^ 0, ^ = 1, 2

where βTO is the %-th unit vector in c. By the choice of the functions
fn we conclude that / * ^ 0. Moreover, since

/*( !*) = /*(Γ(e)) = Γ*(/*)(β) = 1 ,

there is keK such that / * = k*.

REMARKS. If K is a finite dimensional set then the subspace M
of lx given by the preceding proof is finite dimensional hence i(;*-closed
in Z1# However in general M is not even norm closed. Indeed, if K
is the set of all probability measures in C*(0, 1) with the w*-topology
then A*(K) is not separable and by Banach's open mapping theorem
it cannot be mapped by a one-to-one bounded linear operator onto a
norm closed subspace of lλ. We do not know whether for any metri-
zable compact convex K one can find a norm closed subspace M of lx

such that K is affinely homeomorphic to S (Ί M.
The metrizability condition imposed on K is essential for the ex-

istence of an embedding into a compact simplex. There is a non-
metrizable compact convex set which is not affinely homeomorphic to
any subset of a compact simplex.

Let Γ be an uncountable set. It follows from [9, Th. 4.7] that
there is a compact convex subset K of a locally convex space such
that lL(Γ) — A(K). There is no compact simplex which contains a
subset affinely homeomorphic to K. Assume the contrary and let a
be an affine homeomorphism of K into the compact simplex S. Define
T: A(S)-> A(K) by T(f)(k) = f(a(k))9 fe A(S), keK. The adjoint map
T*: A*(K) —> A*(S) is an extension of a. Moreover, T* is one to
one. Indeed, let ki9 k\eK and Xi9 λ Ξ> 0, i = 1, 2 with

T*(\M - X2k*) = Γ*(λίΛί* - λjfcί*) .

Then

+ Ka(kί) = X[a(k')
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and by the well known property of the L-norm, \ + λ£ = X[ + λ2. It
follows then easily from (1) that Xfa + X'Jcr

2 = X[k[ + λ2fc2 hence
Xjtf — λ2fc2* = X[k[* — λjλ£*. Let HI ||| be a strictly convex norm on
Λ*(S) equivalent to the original one. The existence of such a norm
in an L-space is proved in [3]. Now the norm | |x*| | ' = \\x*\\ + || | TOB*)!!!

is a strictly convex norm on A*(K) equivalent to the || ||-norm. But
this is a contradiction since IJJΓ) = A*(K) is not isomorphic to any
strictly convex space [4].

3. The following lemma is due essentially to Namioka and Phelps
[10]. We include here its proof since we need a result which is a
bit different from that stated in [10].

LEMMA 2. Let X be a normed space and K c X a compact con-
vex set. If for any e > 0 there is a continuous affine map φ of K
onto a finite dimensional set of X such that \\φ{x) — x\\ < ε for any
x e K then for any e > 0 there is a bounded linear map T of X onto
a finite dimensional space of X such that || T(x) — x\\ < ε for all
xeK.

Proof. Let φ: K—+X be a continuous affine map. One can extend
φ to a continuous affine map of Kf = conv ({0] U K) into X. Indeed,
if 0 e K there is nothing to prove and if 0 g K but each ray emerging
from the origin meets K in at most one point we define <p(0) = 0 and
complete the definition of φ by linearity. Finally, if 0 ί K and for
some x Φ 0 one has Xx, x e K with 0 < λ < 1 then we define φ(0) =
(1 — xy^φiXx) — Xφ(x)) and again we can extend φ by linearity. It
is easy but tedious to check that φ is well defined in this manner
and it is continuous and affine. If φ{K) is finite dimensional so it is
φ(Kf). If \\φ(x) — x\\ < e for all xeK, we have the same inequality
for all the points of K' or

\\<p(x) - x\\ < (1 - λ)-L(l + λ)ε for xeK' ,

depending on how φ was defined.
It follows from the previous remarks that there is no loss of

generality in supposing 0 e K. From now on we follow [10]. Suppose
φ:K—>X is continuous, affine, with finite dimensional range and such
that \\φ(x) — x\\ < ε for xe K. Let x^ x2y •••, xn be a basis for the
space generated by φ(K). Then φ(x) = Σ?=ι <Pi(χ)χn Ψ% being real-
valued continuous affine functions on K. By [11, Proposition 4.5]
there are continuous affine functional φ19 ψ2, , ψn on X such that
\φAx) - Ψi(x)\ < e&UWXilD-'forxeK. Ύhus\\φ(x) - Σ?=i^(^<ll<e
so IIx - Σΐ=ι ΨiiΦiW < 2ε for xeK. In particular, 11Σ?=i ̂ (0)^11 < 2ε.
Defining
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T(x) = Σ (ΨM) - fi(0))%i, x e X ,
ΐ = i

we have on K: \\x — T{x)\\ < 4ε. Clearly T is a bounded linear map
and has finite dimensional range. The proof of the lemma is complete.

Extending a little a definition given by Grothendieck [6, p. 165]
we say that a pair (X, K) formed by a Banach space X and a com-
pact set KdX has the approximation property if for any ε > 0 there
is a bounded linear operator T: X —> X such that 11 x — T(x) 11 < ε for
any x e K and T(X) is finite dimensional.

THEOREM 3. Let X be a Banach space and S czX a compact
simplex. The pair (X, S) has the approximation property.

Proof. By Lemma 2 we have only to show that for any ε > 0
there is a continuous affine map φ of S into X with finite dimensional
range such that 11 φ(x) — x \ | < ε for any xeX. Since S is separable
we may suppose that X is separable too (if not, we consider the closed
subspace of X generated by S). Then by [1] there is a bounded linear
map T of I, onto X with || Γ| | = 1. The multivalued map T~ι from
S to the family of subsets of lt given by T~\x) = {y e k: T(y) — x]
is lower semicontinuous and affine in the sense of [8]. Moreover,
T~ι(x) is a nonvoid closed subset of lL for each xe S. According to
[8, Th. 3.1] T~ι admits a continuous affine selection, i.e., there is a
continuous affine function u: S~>lL such that T(u(x)) = x for each
x e S. Now, the pair (llf u(S)) has the approximation property since
lι has a basis. Let v = u(S) —> Z: be a continuous affine map with
finite dimensional range such that \\v(y) — y\\ < ε for each yeu(S).
Let <£> be the composite map T ° v o w. Clearly <p is continuous, affine,
maps S into X and £?(£) is finite dimensional. For any xe S we have

\\φ(x) - X\\ = \\φ(x) - T(U(X))\\ ̂  \\v(u(x)) - u(x)\

and this completes the proof of the theorem.

4. LEMMA 4. Let (&, Σ, μ) be a measure space and {gn}n=o &
sequence in L^-^g, Σ, μ). Suppose that there is a constant M such
that g0 ^ 0, g0 + Y,neNgn ^ 0 and

\ gndμ ^ M

for any finite set N of positive integers. Then Σ?=o \ \gn\dμ < °°.

Proof. Since
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+ ΊLΰn

for any finite set N of natural numbers, it follows from [4, p. 60]
and the weak completeness of Lγ(&, Σ, μ) that the series Σ~=o gn is
weakly (unconditionally) convergent. Denote g = Σ»=o 9n- For m an
arbitrary natural number let {E^fί^ be a partition of & in disjoint
measurable sets such that each gn, 1 <̂  n ̂  m has constant sign on
2 ,̂ 1 <; i ^ p(m). For a fixed i denote:

-Pi = {n: gn\Ei^0,l^n^m} ,

Q{ = {1,2, . . . , m } - P * .

We have

and

Hence

Σ ( l0n |d j "= ί < \ Qdμ

I k J ^ = - I ( Σ 9n)dμ ^ f godμ
{ JE{ jEi\neQί J J Ei

m r r

Σ \ \9n\dμ ̂  \
»=1 J £ { Jl

and from this we infer

ΣΪ k J ^ ^ ί (Σ

The next theorem gives a necessary condition for a bounded subset
of a locally convex space to be contained in a bounded simplex of the
space.

THEOREM 5. Let S be a bounded simplex of a locally convex
space E. If {xn}ζ=0 is a sequence in S such that x0 + Σ^e^O*^ — #o) e S
for any set N of positive integers then Σ~=i (χn — χo) converges
absolutely.

Proof. Consider in E x R the cone C generated by S x 1 =
{(a;, l):xe S}. The space F = C — C is a linear lattice with the order
induced by C. The Minkowski functional corresponding to the absolute
convex hull of S x 1 is a norm in F. It is readily seen that the
order and this norm of F are related by the following two properties:
(1) if xΛy = 0 then \\x + y\\ = \\x - y\\; (2) if x ̂  0, y ̂  0 then
\\x + y\\ = ||a;|| + ||τ/| |. It follows from [4, pp. 98-100] that the com-
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pletion of the normed lattice F is an L-space (the order being that
determined by the closure of C).

Let T be the restriction to F of the natural projection from
E x R onto E. From the boundedness of S we infer that T is a
continuous linear mapping from the normed space F into the locally
convex space E. Put yn = (xn, 1), n = 0, 1, 2, . Clearly yoe S x 1,
Vo + Σ»eΛτ(2/n — Vo)£S x 1 for any set AT of natural numbers. Now
S x 1 is part of the positive face of the unit ball in an L-space. By
Lemma 4 we have Σ~=i \\Vn — 2/oll < °° Since Γ(i/n) = α?Λ it results
from this and the continuity of T that Σ~=i (#» — #<>) is absolutely
convergent.

COROLLARY 6. Le£ E be a metrizable locally convex space such
that each totally bounded subset of E is contained in a bounded
simplex of E. Then E is a nuclear space. In particular, in every
infinite dimensional Banach space there is a compact set which is
contained in no bounded simplex of the space.

Proof. By [13, p. 75] the second statement of the corollary is
a consequence of the first. Let Σ»=i χn be an unconditionally Cauchy
series in E. It is easy to see that the set

K = I Σ χn N a set of positive integers^ U {0}

is totally bounded. Since by the hypothesis there is a bounded simplex
in E which contains K it follows from Theorem 5 that Σ~=i %n is an
absolutely convergent series. Thus in E every unconditionally Cauchy
series converges absolutely. By [13, p. 66] E is a nuclear space.

REMARK. Using the Dvoretzky-Rogers theorem [5] one can prove
a stronger version of the second part of the corollary: in every in-
finite dimensional Banach space X there is a compact subset K such
that in any Banach space Z, Zz) X, there is no bounded simplex con-
taining K.

Finally, we would like to mention some open problems:
1. Is every compact subset of a (metrizable) nuclear space con-

tained in a compact simplex of the space?
2. Suppose that a compact (or bounded) subset if of a locally con-

vex space E has the following property: if xoe X and

%o + Σ fa - O e K
ne N

for each finite set of natural numbers then Σn=i (#» — #o) converges
absolutely. Is K contained in a compact (respectively, bounded)
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simplex of El
3. How can be characterized those compact subsets of the common

Banach spaces which are contained in a compact simplex of the space?
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