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SOME MATRIX FACTORIZATION THEOREMS

ROBERT C. THOMPSON

The object of this paper is to make an exhaustive study
of the matrix equation

(1) C = ABA-'B-1

when A, B, and C are normal matrices. We shall specialize
these matrices in various ways by requiring that C, A, or B
lie in one or more of the well-known subclasses of the class
of normal matrices (Hermitian, unitary, real skew symmetric,
etc.). We shall also demand from time to time that C com-
mute with A, or B, or both.

In § 2 we present some notation. In § 3, we prove a number
of simple lemmas that will be frequently used. In § 4 we discuss (1)
when C is normal and A and B are Hermitian. In § 5, we discuss
(1) when C is real and normal and A and B are real and symmetric.
In § 6 we present one theorem that is used several times in § 7,
where we discuss (1) when C is normal, A is Hermitian, and B is
unitary. In § 8 we complete a discussion of (1) when A is Hermitian
and B unitary Hermitian that is partly presented in §§ 4, 5, and 7.
In §§ 4-7 cases are discussed in which C commutes with A or with
B, but not with both. In § 9 we analyse the situation when C com-
mutes with both A and B.

Commutators of normal matrices have been investigated by a
number of authors: Fan [1], Frobenius [2], Goto [3], Marcus and
Thompson [5], Taussky [7], Tδyama [9], Zassenhaus [10]. The
results obtained in this paper will partly overlap results obtained in
[5] but will, in the main, complement the results of [5]. Our prin-
cipal tools are two elegant tricks due to Ky Fan, both of which
appear in his paper [1].

As a consequence of our study of commutators of normal matrices,
we are able, through use of the polar factorization theorem, to
obtain factorization theorems for nonnormal matrices. It is interesting
that we can achieve sharper results for real matrices than for
nonreal matrices.

All matrices appearing in this paper, except for the zero matrix,
are assumed to be nonsingular.

2* Notation and terminology* The words symmetric, positive
definite symmetric, negative definite symmetric, skew symmetric,
orthogonal, will imply that the matrix in question possessing the
indicated property is a matrix of real numbers. We shall make use
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764 ROBERT C. THOMPSON

of skew symmetric matrices over the complex number field as well.
These will be called complex skew symmetric matrices. The letters
N, H, S, K, U, & (perhaps with subscripts attached) will denote a
matrix which is, respectively, normal, Hermitian, symmetric, skew
symmetric, unitary, orthogonal. We let /, /„ Iay etc., denote identity
matrices with an unspecified number of rows that will follow from
context. If the subscript attached to I is to indicate the number of
rows in /, this will be expressly stated.-

The matrices F(φ) and G(φ) are, by definition,

COS φ Sin φ

_ — Sin φ COS φ
G(φ) =

I Sin φ COS φ

COS φ — Sin φ_

The transpose of A is denoted by Aτ, the complex conjugate by
A, and A* = Άτ. We let

A + . + An = diag (A13 , An) = Σ Ai

denote the direct sum of matrices A19 •••, AΛ. We set

, Ak\k —

0 A, 0 0 0

0 0 A 0 . . . 0

0 0

o o
0

0 0

if k > 1, and [AL]L — AL. Here Alf , Ak are square matrices and 0
denotes a matrix of zeros of an appropriate number of dimensions.
The determinant of A is det A. If square A has n rows, we say A
is ^-square or degree A — n.

If complex number λ has polar form λ = reiφ, we call eiφ the
angular part of λ.

3. Some lemmas* The results contained in some of the lemmas
below are special cases of known results.

LEMMA 3.1. ( i ) Let A = H^ be a product of two Hermitian
"matrices. Then, whenever X is a nonreal eigenvalue of A, with
multiplicity m, it follows that λ is also an eigenvalue of A, with
multiplicity m.

(ii) // in (i) Hx is positive definite then all eigenvalues of A
are real.

(iii) // in (i) both H^ and H2 are positive definite then all
eigenvalues of A are positive.
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Proof. ( i ) From A = ΉJI2 follows A* = H2H,. Since H2HX

has the same eigenvalues (including multiplicities) as ΈLJI2, the result
follows.

(ii) Let Hx = XX*. Then X~ιAX = X*iΓ2X is Hermitian, hence
all eigenvalues are real.

(iii) If H2 is positive definite so also is X*H2X. The proof now
follows as in (ii).

LEMMA 3.2. Let A be real and nonsingular. Then, if A — SK
with S real symmetric and K real skew symmetric, it follows that
the eigenvalues of A partition into sets of the following types:

(2) a, —a with a real ,

{2') a, —a with a pure imaginary ,

(3) a, — a, α, —a, with a neither real nor pure imaginary .

Proof. If A = SK then Aτ - -KS. Thus A and -A have the
same eigenvalues. Hence, if a is a real eigenvalue of A with
multiplicity m then — a is also an eigenvalue with multiplicity m.
This also holds if a is a pure imaginary eigenvalue. If a is neither
real nor pure imaginary then — a Φ a, a Φ a, hence a, —a, a all
appear with multiplicity m, and thus — a also appears with multi-
plicity m.

LEMMA 3.3. ( i ) F{θ)F{φ) = F{θ + φ);
(ii) F(φ)G{θ) = G(φ + θ);
(iii) G(φ)G(θ) = F(φ-θ);
(IV) G(β)F(φ) = G(θ - φ).

Proof. Direct computation.

LEMMA 3.4. Let X and Y be real nonsingular matrices, both
square and of the same size. Let

ϋJΓ Γ° X

M =
[_Γ 0

Let the eigenvalues of XY be classified as follows: r\, r\, •• , r «
(positive reals); —s2

ly —s2

2, •••, — s2

θ (negative reals);

f2 T2 J.2 ψ2 4.2 T2
°ί> *Ί> ^21 f^2f f by, lγ

(all nonreal). Then the eigenvalues of M are:
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(4)

Proo/. Note that

s
0 s

I

_0

0 '

x_
ΓO

[y
XI

o J
"i oyrs OΊ-1

0 X 0 SI

0
SXYS-1

For a suitable S we may assume SXYS~ι is triangular with diagonal

elements r\, , rl, —sf , — s^, ί?, t\, , ί?, Suppose X and Y"
are ^-square. We make the same permutation of the rows and of
the columns of

0 I

SXYS-1 0.

This is a similarity transformation. We take the rows (and columns)
in the order 1, n + 1, 2, n + 2, 3, n + 3, •• ,n,2n. The effect of
this is to convert Mι into a block triangular form in which the main
block diagonal is

0

r\

4

ΊΛ- 4.
o j + - +

Γ° *•] Γ°
" U oj ~*~ [t

0

_ ' or

1

? o

1

0_ +
0

_ — ί

Ί
J "*• u

1

0.j + .
1 1 ,
oj +

. — 1 _

"0

0

.

1

0

The eigenvalues of these 2-square matrices are easy to compute,
completing the proof.

LEMMA 3.5. Let A be a nonsingular real or complex n-square
matrix. Let the eigenvalues of AA* be λf, •••, λ^ with

λ, > 0, . . . , Xn > 0 .

Let Ύ be a nonzero number. Then the matrix

Γ0 ΎAΊ

U* oj
is similar to a diagonal matrix and its eigenvalues are

(5) T^λ,, - T 1 ' 2 ^ , , 71/2λ., ~Ύll2λn .

Proof. This proof is similar to the proof of Lemma 3.4.

LEMMA 3.6. Let R = diag (R19 R2, -- ,Rk), T= diag (T19 , Tk).
Suppose R{ and T3 do not have any common eigenvalue, whenever
i Φ j . Then if RX = XT, it follows that X = diag (X19 , Xk).
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Proof. Partition X = (XiS). Then R^ = Xi5Tό. Since R{ and
Tj do not have any common eigenvalue, it is known that this relation
implies Xi3 = 0; i Φ j .

The following result is due to Hua [4]. We given a short proof.

LEMMA 3.7. Let Z be a complex skew symmetric matrix. Then
a unitary matrix U exists such that

U T Z U = Σ Γ ° P i ] + 0 , P t > 0 f o r l ^ i ^ r .
i=ί I-pi o j

Proof. Since ZZ= —Z*Z, the matrix ZZ is negative semi-definite.
Let —pi (with ρλ > 0) be an eigenvalue of ZZ and let vλ be an
associated unit eigenvector:

— —ρ\vγ ,

Set v2 = -pT'Zv,. Then

-ρλvfv2 = vlZvx = (vfZ^) - 0

because Z is skew; also

p\vϊv2 - v[ZτZvγ = -vlZZv, = -(vf

= -(vΐi-pDvJ = pi.

Hence ^ and v2 are orthonormal unit vectors. We may therefore use
v1 and v2 as the first two columns of a unitary Ux. Let i;3, v4,
be the remaining columns of U^ Then for i > 2 we have vfi^ =
-piVΪv2 = 0 and ^ [ Z ^ - -vJZZv, = -vl(ZZvj = -vU-p^v, = 0.
Hence UξZUι is block triangular, and because UlZUι is skew, we get

where Z19 Z2 are skew and Zx is 2 x 2. Also vfift̂  = —p7ιv\ZZvι —
= -p-'vΐi-pDv, = ρλ. Hence

° "Ί
We may now carry on by inducting on the degree of Z.

4* The Commutator of two Hermitian matrices*

THEOREM 4.1. Let N be normal. Then

( 6 ) N=
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with Hx and H2 Hermitian if and only if N is unitarily similar
to a direct sum of the following five types (7), (8), (9), (10), (11) of
matrices:

<7)

( 8 )

( 9 )

(10)

(11)

diag (r, r~ι) ,

diag ( - r, - r~ι) ,

diag (r.e^, r^eiφ, r2e~iφ, r^e-iv) ,

diag (eiφ, e~ίp) ,

the identity matrix .

r > 0

r > 0

n > 0, r2 > 0, 9? real

9? reαϊ

THEOREM 4.2. Let N be normal.
( i ) If N is a commutator (6) of two Hermitian matrices such

that

(12) NH, = H,N

then N is unitarily similar to a direct sum of types (7), (8), and (11).
(ii) If N is unitarily similar to a direct sum of types (7),

(8), (11) then N can be expressed as a commutator (6) of two
Hermitian matrices, such that (12) holds, and such that H2 is also
unitary.

Proofs of Theorems 4.1 and 4.2. From (6) one obtains (compare
Fan [1])

(13) iV*-1 = (HzH^NiHzHJ .

Thus, if 7 is an eigenvalue of N with a certain multiplicity, so also
is 7"1, with the same multiplicity. Note that 7 = 7"1 if and only if

71 = 1. After a simultaneous unitary similarity of N, Hx, H2, we
may take N diagonal, so let

(14) N =
0

0

0

0 Lk.

+ ωk+1lk+1 + + o)J8 .

Here we choose our notation so t h a t ylf 7Γ\ •> 7*, 7AΓ\ a)k+1, , cos

are the distinct eigenvalues of N, with

I T j Φ 1, •••, 17,1 Φ 1 , I ω*+i I = 1, ••-, |ΰ>,| = 1 .

Then, writ ing (13) as

(15)
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we obtain

<i6> * * - & t]+- -
Taking the * of each side of (16), we get

HJSt =
Ό B*

A* 0

Ό

At

Bΐ

0

AS

+ At+1 + 4- Aΐ .

T h e equation N(H2H,) — H^ now yields Bf — ΎXAX, — ,Bt = ΊkAk,

<ok+ίAk+1 = At+u ••-, ωsAs = A*. Thus Ak+ι, , As are each normal.

If we make a simultaneous unitary similarity of N, Hx, H2 using a
U of the form U = diag (J1( I,, ••-, Ik, Ik, Uk+1, , U,), we can leave

Aιt Bu , Ak, Bk unchanged and diagonalize Ak+1, ,A,. Having
accomplished this, we now change notation, and let

(18)

(19)

0

0 771/

+ diag (ωk+ί,

"0 U"

A* o
+ diag (ξk+1,

+ +
o>,) ,

At

0

ΎkAkl

0 J

Here ωk+11 •••, α>s now denote the not necessarily distinct eigenvalues
of ΛΓ on the unit circle. We find

<20) ωj = £,./!,. , k <j <s .

Because of Lemma 3.5, the eigenvalues of (19) are positive
multiples of the numbers

/ 1 >
2 rγl/2

1 ' 1 1

ζk + 1 1 Ss

Lemma 3.1 (i) now asserts that the angular parts of numbers (21)
must be real or must appear in complex conjugate pairs.

We now change notation once more, and rewrite the eigenvalues
of JV as 7i, ΊT\ , 7*, ΊΪ\ ωk+ι, . ., ωs, where yl9 ΊT\ , 7*, 7Γ1 are
the eigenvalues of JV, not necessarily distinct, not on the unit circle,
and o)k+1, •••, o)s are the eigenvalues of N, not necessarily distinct,
on the unit circle. Thus we now know that the angular parts of
numbers 7ί/2, -7ί/ 2, , ΊT, ~Ύl12, f*+i, , ζ, are real or appear in
complex conjugate pairs. Moreover, (20) holds.

Let
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be the polar factorizations of the τ 5 and the ω5. Then (20) yields

ξ3- = p^e^12 , k < 3 ^ s f

where p > 0 and ε = ± 1 . Thus we get that the numbers

(22) e ^ / 2 , - e ^ ' 2 , . . . , e**12, -e*™12, ek+1e
ip*°+ii*, . . . , e\p*12

are real or appear in complex conjugate pairs. The argument now
splits into several cases.

Case 1. e%^12 = e^12 .

Then eiφit2 is real, hence τx = r19 and diag (Ti, 7Γ1) = diag (r19 i\ι)»
This yields type (7). Moreover, —eiφi12 is its own conjugate; hence
the numbers remaining in (22) after deleting ±e* 9 l / 2 are real or come
in conjugate pairs.

Case 2. e*vi12 = - e ^ l / 2 .

Then e i f l = —1, hence 7i = —n, and diag (τx, 7Γ1) = diag( — ? x, — r~ι).
This yields type (8). Moreover, the conjugate of —ei<ri12 is ei<fι12;
hence the remaining numbers (22) are real or appear in conjugate
pairs.

Case 3. e1^12 = e^/2 .

Hence, e^2 = e~^'κ Thus

diag (7i, 7ΓS 72? 72

-1) = diag (nβ'^'1, rr'e^"1, r2e-<F1, r^e~{^) .

This yields type (9). And here the conjugate of — ei<;i12 is —e^'*12,
hence the numbers remaining in (22) after deleting ±eiψι12, ±e < F 2 / 2 are
real or come in conjugate pairs.

Case 4. e*1'2 = -e1'^12 .

Hence again β' 2 = e~hΛ. This case again yields type (9). The con-
jugate of — ei(fllz is ei?2'2, so that the remaining numbers (22) are real
or come in conjugate pairs.

Case 5. The conjugate of eΊ'91'2 is not any of the numbers

± e ^ l / 2 , •••, ±e^12 .

Then, with suitable notation,
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It then easily follows that

diag (7W 7Γ\ ωk+1, ωk+2) = diag (r^\ n"V% er^\ e~^) ,

which falls into the form (9) with r2 = 1. Once again, after deleting
±ei<Pl12, ek+1e

ip^'\ εk+2e
ip*+*12 from (22), the remaining numbers in (22)

must be real or come in conjugate pairs.

Case 6. εk+1e
ίp^12 = εk+1e

ip^12 .

Then eipk^ = 1, hence ωfc+1 = 1. This yields (11).

Case 7. ε fc+1β~^+ l /2 = εk+2e
ipk+2'2 .

Then e~<Pfc+1 = eipk+κ Then ωfc+2 = ωk+ι. Thus we obtain type (10).

This completes the proof of half of Theorem 4.1. Before com-
pleting the proof of Theorem 4.1, we start the proof of Theorem
4.2. We prove that if (12) holds then N is Hermitian. Following
the part of the proof of Theorem 4.1 just given, we obtain (14) and
{17), where in (17) we have B* = yλA19 •••, Bk = ykAk, and we can
take Ak+1, •••, As diagonal. Condition (12) now implies that H1 parti-
tions in the form

(23) Hλ = diag (Γ,, Wlf Γ2, W2, , Tk, Wk1 Tk+ι, Tk+2, . ., Ts) .

Since Hγ is nonsingular and Hermitian, each diagonal block in (23) is
nonsingular and Hermitian. Then for HιH2 to have the form (17),
we must have

with

(25) T.P, = 7iA4, WiPf = Af, 1 ̂  i ^ k ,

and

(26) T,P, = A? , A; < i ^ s .

Thus At = PiΓt, for fc < i ^ s, is a product of two Hermitian matrices
Pi and Ti. To relieve the notation let us fix our attention on Ak+ι =
Pk+1Tk+1. We took Ak+1 diagonal, so let Ak+1 = diag (f̂  f2, •)• Then

(27) α>t+1 - 5,/ίi

Since ^4Λ+1 is a product of two Hermitian matrices, its eigenvalues
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are real or occur in conjugate pairs. If ξ± is real then (27) gives
ω1 — 1. If ξ! is not real, let ξ2 be the conjugate of £x; ξ2 = f x. Then
(27) yields ωfc+1 = α)fc+1, hence ωΛ + 1 is real.

Thus ωk+1, ωk+2, ••• are all real (and in fact ±1) . Next, from
(25) we obtain (using the fact that the W{ are Hermitian),

(28) Pr^P^TίTFi, l ^ ΐ ^ f c .

Equation (28) yields

(29) τ< (an eigenvalue of Wi) = an eigenvalue of T{ .

Since "PΓ, and T{ are nonsingular and Hermitian, we get from (29)
that Ji is a quotient of two reals, hence real.

Thus, we now know that all eigenvalues of N are real. There-
fore N is Hermitian. We already know from the established part
of Theorem 4.1 that N is unitarily similar to a direct sum of
the five types (7), (8), (9), (10), (11). In type (9), e*? = ± 1 , thus
type (9) can be reclassified into type (7) or type (8). Similarly type
(10) can be reclassified into types (7) or (8). This completes the
proof of half of Theorem 4.2.

To establish the converse parts of Theorems 4.1 and 4.2, we let
N be, in turn, each of the types (7), (8), (9), (10), (11).

In type (7) we have N = diag (r, r" 1). Set Hι = diag (r, 1) and

(30)
Ό 1

1 0

Then (6) and (12) hold, and moreover H2 is also unitary.
In type (8) we have N = diag ( —r, — r" 1). Set H1 = diag( — r, 1)

and define H by (30). Then again (6) and (12) hold, and again H2

is also unitary.
In type (11) N = I. Set H, = H2 = I. Then (6) and (12) hold,

and, once more, H2 is also unitary.
The proof of Theorem 4.2 is now complete.
In type (9) we have N = diag {r^, ττιeiφ, r2e~iφ, r7le~^). Set

Hy =

(31)

0

0
•e-if

0

0

0

0
rΓ-l/2

0

0

0

^2

0

0

1

0

r

0

1

0

0

0

0

0

r\ 2 r

0

0

0

0
r Γ l / 2

0

0
-1/2-
1

*
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Then

0 r['2ei(pl . Γ 0 rψe~

Γ1/2 0 J + Lr2-
1/2 0

Taking the * of each side of this expression for iϊjiϊ^Γwe compute
H2Hλ. Then it is easy to verify that N(H2H,) = HJH2.

In type (10) with N = diag (ei(ρ, e~iψ), note that N is unitarily
similar to F(φ). Set S, = G(^), S2 = G{θ2). Then S, and S2 are both
orthogonal symmetric. Moreover, using Lemma 3.3, we find that
F(φ)S2S1 = S :S2 if θ, - θ2 = φ/2.

The proof of Theorem 4.1 is now complete.

THEOREM 4.3. Let N be normal.
( i ) If N is a commutator (6) of two Hermitian matrices with

Hγ positive definite then N is positive definite Hermitian with the
eigenvalues y of N for which y Φ 1 occurring in reciprocal pairs
7, 7"1. (That is, N is unitarily similar to a direct sum of types
(7) and (11).)

(ii) // positive definite Hermitian N has its eigenvalues y for
which 7 Φ 1 occurring in reciprocal pairs 7, 7"1 then N is a com-
mutator (6) of two Hermitian matrices with Hγ positive definite
and commutative with N and H2 unitary Hermitian.

Proof. Suppose that (6) holds with Hγ positive definite. We
follow the proof of Theorem 4.1 until we reach the point where

(32) U f 0 J +

+ Aϊ+1 + + Af ,

with Ak+1, •••, As diagonal. By Lemma 3.1, the eigenvalues of HλH2

are real. Thus Ak+1, ••«, As are each real and diagonal. Then using
(20), we get that each ω3- = 1. By Lemma 3.5, the eigenvalues of

0 7 A

AT 0

are positive multiples of ±y{'\ Since the eigenvalues of HJI2 are
to be real, we must have yx > 0, , yk > 0. Hence each eigenvalue
of N is positive, therefore N is positive definite. In this case type
(8) must be absent in N, type (9) can be reclassified under type (7),
and type (10) under type (11). Thus the condition of Theorem 4.3 is
necessary. For the converse one need only note that if N = diag (r, r - 1)
with r > 0, then with Hγ = diag (r, 1) and H2 given by (30), we have
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(6) and (12) and here Hι is positive definite and H2 is unitary Hermitian,
as required.

The following Theorem 4.4 is a special case of Theorem 1 of [5].

THEOREM 4.4. Let N be normal, let H1 be positive definite
Hermitian, let H2 be Hermitian such that

(33) NH2 = H2N ,

and suppose that (6) holds. Then N = I.

Proof. We follow the proof of Theorem 4.1 until (14) and (32)
are obtained, with Ak+1, — -,AS diagonal. Then (33) yields

(34)

Then

But

(35)

_0

for HJIi to

H Γ°
1 \_Mΐ

AJ + '
be given

~ck
0

by (32),

"0

M

0
ck

cs

Mk~]
MS.

M,

0

is a direct summand of the positive definite matrix H19 hence is
positive definite, a contradiction since (35) has zero trace. Thus in
N no ii can appear and so the eigenvalues of N must lie on the
unit circle. Since A%+1 = Mk+1Ck+1, Ak+1 is a product of two Hermitian
matrices with one factor definite. Thus the eigenvalues of Ak+1 are
real. Owing to (20), this implies that each ω{ = 1. Hence N = I.

THEOREM 4.5. Let Hγ and H2 be positive definite. If N, given
by (6) is normal, then N = I.

Proof. We obtain as in the proof of Theorem 4.1 that (32)
holds. By Lemma 3.1, HJH2 has positive eigenvalues. Since

0

0

is a direct summand of HλH2 (hence has positive eigenvalues) and
has trace zero, it follows that all eigenvalues of N are on the unit
circle. Then each & is positive and so by (20) each ωt is 1.
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In the next few theorems, we give some more special results
that follow from Theorems 4.1 to 4.5 or from the proofs of these
theorems.

THEOREM 4.6. Let U be unitary.
( i ) If U is a commutator of two Hermitian matrices,

<36) U = H^HΓΉΪ1 ,

then U has real characteristic polynomial and det U = 1.
(ii) If U has real characteristic polynomial and det U = 1,

then U is a commutator (36) with both H1 and H2 unitary Hermitian.
(iii) If U is a commutator (36) of two Hermitian matrices

such that UH1 — HJJ then U is Hermitian and det U = 1. Con-
versely, if U is Hermitian and det U = 1, then U is a commutator
(36) of two unitary Hermitian matrices Hx, H2 with H1U = UHX and
H2U= UH2.

(iv) If (36) holds with Hλ definite then U = /.

Proof. ( i ) Suppose (36) holds. Then by Theorem 4.1 U is
unitarily similar to a direct sum of types (7)-(ll). Because U is
unitary, in types (7), (8), (9) we have r = n = r2 = 1. Thus the
nonreal eigenvalues of N occur in conjugate pairs and —1 occurs an
even number of times. This proves (i).

(ii) The conditions imply that the nonreal eigenvalues occur
in conjugate pairs and —1 occurs an even number of times. Thus N
is unitarily similar to a direct sum of types (10) and (11). The
proof of Theorem 4.1 showed how to express each type (10), (11) as
a commutator of two unitary Hermitian matrices.

(iii) If (36) holds with UH, = HJJ, then Theorem 4.2 shows U
is Hermitian and det U = 1. Conversely, it suffices to consider U =
diag( —1, —1). This U = F(π) is known from the proof of Theorem
4.1 to be a commutator of two unitary Hermitian matrices, both of
which must commute with diag( —1, —1).

(iv) By Theorem 4.3, U is positive definite. Hence U = I.

THEOREM 4.7. Let H be Hermitian. Then H is a commutator,

{37) H - HJI2HτγH2

ι

of two Hermitian matrices if and only if the eigenvalues 7 of H
other than one come in reciprocal pairs y, 7"1. (That is, H is
unitarily similar to a direct sum of types (7) and (11).) // this
condition is satisfied then Hγ may always be chosen to commute with
H and H2 to be both Hermitian and unitary.
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REMARK. Theorem 4.7 is contained in [1].

Proof. If (37) holds, then H is unitarily similar to a direct
sum of types (7), (8), (9), (10), (11). As H is Hermitian, in types
(9) and (10) we must have eiφ = ± 1 . Thus, in fact, H is unitarily
similar to a direct sum of types (7), (8), (11). For the converse
observe that in the proof of Theorems 4.1 and 4.2, types (7), (8) and
(11) were each expressed as a commutator HιH2HτιH^1 commuting
with H1 and with H2 unitary and Hermitian.

THEOREM 4.8. Let θ be a nonreal number on the unit circle:
I θ I = 1. Let H be Hermitian. If

(38) ΘH = HJKJITΉΪ1

is a commutator of two Hermitian matrices then θ = ±i and H is
unitarily similar to a direct sum of copies of the following two
types:

(39) diag(l, -1) ,

(40) diag (rx, rτ\ - r 2 , -r2

ι) n > 0, r2 > 0 .

Conversely, if H is unitarily similar to a direct sum of copies of
(39) or (40), then

(41) iH = H&HΓΉΪ1

is a commutator of two Hermitian matrices. In (41) H and Hλ

never commute and H1 is never definite. Similar results hold
for -iH.

Proof. If ΘH is a commutator of two Hermitian matrices then,
as ΘH has no real eigenvalues, ΘH must be unitarily similar to a
direct sum of types (9) and (10). If either type appears then for
two eigenvalues τx and 72 of H we have ΘΎ1 = μeiφ, θy2 = ve~iv, with
μ, v real. Thus θ/θ is real, hence θ — ±i. Thus in either event
θ = ±i. Thus type (10) takes the form diag (i, — i), and type (9)
the form i diag (rly rτ\ — r2, - r^1) with n > 0 and r2 > 0. The
converse follows from Theorem 4.1. The additional assertions follow
from Theorems 4.2 and 4.3.

THEOREM 4.9. Let H be positive definite.
( i ) Let θ be real or nonreal, with \ θ | = 1. // ΘH is a com-

mutator (38) of two Hermitian matrices then θ = ± 1 .
(ii) —H is a commutator of two Hermitian matrices,
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(42) -H

if and only if all eigenvalues 7 of H (including 1) appear in
reciprocal pairs 7, 7"1 {that is, H is unitarίly similar to a direct
sum of type (7)). If this condition is satisfied then in (42) H1 may
always be chosen to commute with H and H2 may always be chosen
to be unitary and Hermitian. It is never possible to choose H1

definite.

Proof. ( i ) Suppose (38) holds. By Theorem 4.8, θ = ±i or
β = ±1. lί θ = ±ί then Theorem 4.8 shows that H is not definite.
Hence θ = ±1.

(ii) If (42) holds, Theorem 4.7 shows that all eigenvalues 7 of
H appear in reciprocal pairs. Conversely, in the proof of Theorem
4.1 it was shown how to express diag( — r, —r*1) = HJIJI^ΐlϊ1 such
that the commutator commutes with Hι and H2 is unitary Hermitian.

For 2-square matrices, the conclusion of Theorem 4.3 is valid
under a weaker hypothesis.

THEOREM 4.10. Let N be a normal 2-square matrix such that

(43) N = HLH-'L-1

where H is positive definite. (No assumptions are made about L
other than that it is nonsingular.) Then N is positive definite.

Proof. We may assume N = diag (λ, λ"1). Let

if-1 - -V
I Λ 2 h22w

From H^N = LΉrγIrι we get by taking traces,

(44) Xhn + X"ιh22 = hn + h22 .

Let α = hn(hn + ft22)"S 1 - a = h22(hn + h22)~\ and let λ = rei(f be the
polar factorization of λ. Then 0 <£ α: ̂  1, and (44) yields

(45) rα cos 9 + r~\l — a) cos φ = 1 ,

(46) rα' sin 95 — ?^-1(l — a) sin <ρ = 0 .

From (45) follows cos φ > 0. If sin φ Φ 0, (46) gives α: = r-ι(?« + r'ι)~\
Then from (45) we get

cos φ — (r + 7̂ ~x)/2 .

Since r + r~x ̂  2, and cos φ ^ 1, we get cos<p = 1. Thus φ — 0,
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contradicting sin φ Φ 0. Hence sin φ == 0, and therefore λ > 0.
We now introduce a trick of Professor Fan. Let

with det N —

where

(47)

1.

N

Set N,

N2

= diag (λi, λ2,

= diag (μlf μ2,

= diag (vlf v2,

Λ = (jπ\

yi = ίπλ.,

•• , λ ,

• ••, y r

r

ί») and

if i is

if

if 3

odd 1

j is odd ,

is even

: is even ,

Then JV = JSΓ^. We have μ2j = μ^L, for all j ^ w/2 and /iΛ = 1 for
odd n. We have v2j+1 = v£ for all j ^ (n - l)/2, v: = 1, and vn = 1
if w is even. Thus JV has its eigenvalues μ in reciprocal pairs μ, μ~ι

together with possibly μ = 1 as an eigenvalue. Furthermore N2 also
has its eigenvalues v in reciprocal pairs v, v-1 together with j ; = 1
as an eigenvalue. We shall refer to this factorization of N as Fan's
factorization.

THEOREM 4.11. Let U be unitary with det U = 1.

(48) U =

is a product of two commutators of Hermitian matrices. In fact
we may have Hlf H21 i73, H4 all unitary Hermitian.

Proof. By Fan's factorization, U ~ UJJ2 where XI{ is unitary
with its eigenvalues in reciprocal pairs; i = 1, 2. By Theorem 4.6,
U1 and U2 each may be written as a commutator of Hermitian
unitary matrices.

THEOREM 4.12 (Fan). Let H be Hermitian ivith det H = 1. Then

(49) H - (H1HJIτ1Hτ1)(HzHJITιHτ1)

is a product of two commutators of Hermitian matrices, with Hx

and Hd commutative with H and H2 and H^ unitary Hermitian. If
H is positive definite we may, in addition, choose H1 and Hs to be
definite.
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Proof. The proof is the same as the proof of Theorem 4.11,
except that one appeals to Theorem 4.7.

THEOREM 4.12. Let A be any matrix with det A = 1. Then

(50) A = (Hι

is a product of four commutators of Hermitian matrices. In (50),
Hδ and H7 may be taken positive definite, and Hv H2, H3, if4, H6, Hs

may all be taken to be unitary Hermitian.

Proof. Let A = UH be the polar factorization of A. Since
H2 = A*A, we get det H = 1. Then det U = 1 also. Now use
Theorems 4.11 and 4.12.

For 2-square matrices, the number of commutators required in
(50) may be reduced from four to two; in (48) and (49) from two to
one.

THEOREM 4.14. ( i ) Any unitary 2-square U with det U = 1
is a commutator (36) of Hermitian unitary matrices.

(ii) Any Hermitian 2-square H with det H = 1 is a commutator
(37) of Hermitian matrices. In (37), H2 may be chosen Hermitian
unitary, and H1 may be chosen to commute with H and also may
be chosen to be definite if H is positive definite.

(iii) An 2-square A with det A = 1 is a product

(51) A = (H1H2Hr1Hi1)(H3H4HΓ1Hz1)

of two commutators of Hermitian matrices, with H3 definite and
Hly H2, Hi unitary Hermitian.

Proof. ( i ), (ii). If U or H is 2-square and det U = 1 or det H =
1, then the eigenvalues of U or H must be reciprocal pairs.

(iii) As in Theorem 4.13, write A = UH and use (i) and (ii) of
this theorem.

5. The real analogues of the theorems of §4* For certain
of the theorems of § 4, the analogues over the real number field are
essentially the same. For others, however, this is not so. More-
over, factorization theorems involving real skew symmetric matrices
do not always immediately follow from the real symmetric or Hermitian
cases by inserting a factor i. In § 5 we therefore will also discuss
commutators involving real symmetric or skew symmetric matrices.

THEOREM 5.1. Let N be a real normal matrix. If N is a
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commutator of two real symmetric matrices,

(52) N = S&Sr'S;1 ,

then the eigenvalues 7 of N, excluding 7 = 1, occur in reciprocal
pairs 7, 7"1. Conversely, if this condition is satisfied, N can be
expressed as a commutator (52) of two real symmetric matrices, with
S2 both symmetric and orthogonal.

Proof. Suppose (52) holds. Then

Thus, if 7 is an eigenvalue of N with a certain multiplicity, so also
is 7*"1 with the same multiplicity. Now 7 = 7"1 if and only if 7 =
± 1 . Thus the eigenvalues 7 of N for which 7 Φ ± 1 appear in
reciprocal pairs. Since det N = 1, the eigenvalue 7 = — 1 must appear
an even number of times, hence also appears in reciprocal pairs.
Thus the condition of the theorem is necessary.

Suppose now that the condition of Theorem 5.1 is satisfied. Then
N is orthogonally similar to a direct sum of blocks of type (7), (8),
(11), (53), or (54), where (53) and (54) are given by

(53) rF(φ) + r-'Fiφ) , r > 0, φ real ,

(54) F(φ) , φ real .

In the proof of Theorem 4.1 and 4.2, it is demonstrated that if N is
given by (7), (8), or (11), then N is a commutator (52) of two real
symmetric matrices with >S2 symmetric and orthogonal, and S1 com-
mutative with N. It was also shown that if N = F(φ), then N is
a commutator of two real symmetric orthogonal matrices. So let N
be given by (53).

Let θ and Ψ be any angles. Set S, = diag (rG(2θ + φ - Ψ), G(Ψ))
and

S 2 ~ 'G(Θ) 0 J

Then using Lemma 3.3 one easily checks that NS2Sί = SλS2. More-
over Sx is symmetric and S2 symmetric orthogonal as required. This
completes the proof.

THEOREM 5.2. The conclusions of Theorem 4.2 remain valid if
all matrices in Theorem 4.2 are required to have real entries.

THEOREM 5.3. The conclusions of Theorem 4.3 remain valid if
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all matrices in Theorem 4.3 are required to have real entries.

The real analogues of Theorem 4.4 and 4.5 are special cases of
these theorems. We next consider the real counterpart of Theorem 4.6.

THEOREM 5.4. The conclusions of Theorem 4.6 remain valid if
all matrices in Theorem 4.6 are required to have real entries. In
particular, a proper orthogonal έ? may always be expressed as

<55) 6? = S&Sϊ'S?

where Sλ and S2 are symmetric orthogonal.

Proof. Let έ? be proper orthogonal. Then έ? is orthogonally
similar to a direct sum of 2-square blocks of the type F(φ) and
(perhaps) an identity matrix. In the proof of Theorem 4.1, F(φ)
was expressed as a commutator of two symmetric orthogonal matrices.

If we take N to be symmetric in Theorems 5.1, 5.2, and 5.3 we
obtain necessary and sufficient conditions for a symmetric matrix to
be a commutator of symmetric matrices, subject to various side
•condition. In Theorem 5.5 we establish the real analogue of Theorem
4.12.

THEOREM 5.5. Let A be symmetric with det S = 1. Then

S - (S&ST'SΪ^S&S^ST1)

is a product of two commutators of symmetric matrices, with S2 and S4

symmetric orthogonal, and SL, S5 commutative with S. If S is
positive definite, we may in addition require that Sλ and S3 be
definite.

Proof. Use Fan's factorization to express S as a product of two
symmetric matrices, each of which has its eigenvalues 7 (other than
7 = 1) in inverse pairs 7, 7"1. Then use the proofs of Theorem 4.1
or 5.1.

THEOREM 5.6. Let A be real with det A = 1. Then

A = (S&ST'SϊWSβJSϊ'ST'HS&SΐST1)

is a product of three commutators of real symmetric matrices, with
Sly S2, Siy S6 symmetric orthogonal, and S3, S5 definite. If A is
2-square, two commutators suffice,

A -
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with S19 S2, S4 symmetric orthogonal and S3 definite.

Proof. Write A = &S, by the polar factorization theorem. Then
apply Theorem 5.4 to έ? and Theorem 5.5 to S.

In the next theorems we investigate commutators of the form

THEOREM 5.7. Let N be real normal. If N is a commutator of
a real symmetric S and a real skew symmetric K,

\OΌ) IV — oilo il ,

then N is orthogonally similar to a direct sum of blocks of types
(7), (8), and (53). Conversely, if N is orthogonally similar to a
direct sum of blocks (7), (8), and (53), then N can be expressed as a
commutator (56) with K both skew symmetric and orthogonal.

Proof. In this proof, a subscript on a matrix will always indicate
the degree of the matrix. We introduce some additional notation:

(57) Ω2m(r) = rlm + r^Im ,

(58) Φ2m{φ) - F(φ) + + F(φ) ,

(59) Wim(r, φ) = rΦ2m(φ) + r~'Φ2m{φ) .

In (58) there are m direct summands F{φ).
Suppose that (56) holds. From Theorem 4.1 we can conclude a

good deal about the structure of N. The major hurdle to be over-
come is to show that if a not diagonal block of type F(φ) occurs in
N, it does so with even multiplicity. We have

(60) N~1T = (KSy'NiKS) .

Thus the eigenvalues of N appear in reciprocal pairs. Thus, after a
simultaneous orthogonal similarity of N, K, S, we may assume that

U V

(61) " aX~ β + h t'Ίmi^+άί 2jfct(-s( )
+ Σ Φ*P%(φi) + Σ ; s^CR* θ<).

In (61) we have separated the various types of blocks according to
the character of their eigenvalues, as follows: Ia has eigenvalue + 1 ;
— Iβ has eigenvalue — 1 ; each r* > 1 and ^Φ rά if i Φ j , 1 ^ i,
j ^ u; each Si > 1 and s{ Φ S3- if i Φ j , 1 <£ i, j ^ v; each Φ2Ί>i{φ%) has
nonreal eigenvalues on the unit circle and Φ2Pi(φi), Φ2Pj(φj) do not
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have a common eigenvalue for i Φ j, 1 ^ i, i ^ w; each WAq.(Ri9 θά)
has nonreal eigenvalues not on the unit circle and ¥4q.(Rif #;), Ψ4q.{Rά, θό)
do not have a common eigenvalue for i Φ j, 1 ^ i, i ^ £. Thus in
(61) distinct direct summands do not have a common eigenvalue.
From (61) follows

(62)
+ Σ

From (60), we get (KS)N~1T = N(KS), and then (61) and (62) force
a partitioning on KS, as follows:

(63)

) c m ,
Γm. 0

Σ I ° Dki~

0

where we also have

(64) E2PiΦ2p.(φi) = Φ2p.(φi)E2p. ,

Taking the transpose of each side of (63) yields

< i ^ w

(65)
0 -//L

• + Σ -
0

-Fίn 0

The equation NKS = SiΓ now yields a number of equations, of which
we single out the following:

(66)

(67)

(68)

A — — Aτ

Φ2Pi{Ψi)E2Pi = -Eln , 1 < i < w .

Because of (66), the eigenvalues of Aa occur in pure imaginary
pairs ± r i , r real. By Lemma 3.4, each of the blocks

o -rι:
Cί. 0 :•}•o r I-FL 0

has its eigenvalues in sets of the types: ±r (r real); +ri (r real);
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λ, λ, —λ, — λ, (λ neither real nor pure imaginary). By Lemma 3.2
the eigenvalues of SK partition into sets of these three types. Hence
the eigenvalues of

w

(69) - 5 ? + Σ -Eξ9i
i = l

must also partition into sets of these three types.
Because of (67), the eigenvalues of — Bτ

β are real.
We wish now to discuss the eigenvalues of E2P.. To relieve the

notation let

E2P = E2P. , Φ2p(φ) = Φ2Pi(φi) , i fixed .

Because of (64) and (68), we have

(70) E2pΦ2p(φ) = Φ2p(φ)E2p ,

(71) Φ^Ψ)E2P = -ElP .

We may make a simultaneous unitary similarity of E2P and Φ2p(φ) so
that Φ2p(φ) is converted to eiψlp + e~iφIp. Because of (70), E2P becomes
Ep + Er;. Owing to (71), we have

(72) e^Ep = -E'p* ,

(73) e-^E'i = -£?;'* .

Because of (72) and (73), Ep and E" are normal. Unitary simi-
larities of (72) and (73) render E'p and E'J diagonal. Using (72) and
(73) again, we find

Ep = diag (ε[p{ie-iφl\ , ε'pp'pierW*) ,

E'p' = diag (e[fp[rie^'\ , ep'pp'ie^12) ,

where each ε is ± 1 and each p > 0. Restoring subscripts, we have
that E2Pj is unitarily similar to EPj + EPj, where

(74) E'Pj - diag (ej^ΐβ-^i^, , ^.fa.ie-W) ,

(75) Ef;. = diag ( ε ^ e ^ /2, , ε^fa.ie^12) .

We ask: can it happen that E2p. has a real eigenvalue? If so, for
some choice of the ± signs,

hence
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This is not so owing to the classification of eigenvalues made in (61).
We ask: can it happen that E2Pj has a pure imaginary eigenvalue?
If so

v3ϊ2 = ±i ,

hence

eiφ>' = 1 .

Again, this is not so because of the choices made in (61). We ask:
if λ is an eigenvalue of E2Pj, can any of λ, — λ, λ, — λ be an eigen-
value of E2Ps, for s Φ i ? If so

hence

This means that Φ2P.(<Pj) and Φ2Ps(φs) have a common eigenvalue,
which is not so.

Now we know that the eigenvalues of (69) partition into sets of
the three types: ±r (r real); ±ri (r real); λ, λ, — λ, — λ (λ not
real or pure imaginary). But — Bτ

β can have only real eigenvalues
and the E2p. can have only eigenvalues not on the real or imaginary
axes. Thus each of the direct sums in (69) must have its eigenvalues
classify into sets of the three types, with only the type ±r (r real)
possible for — Bτ

β, and only the type λ, — λ, λ, — λ (λ not real or
pure imaginary) possible for each E2Pj. Thus degree Bβ is even and
degree E2P. = 0 (mod 4). Hence each Pi is even.

Thus we know in (61) that β is even and each Pi is even.
Since degree N is even, it follows that a is even also.

Now, in (61), the direct summands Ia and i22w<(r€), 1 ^ ί ^ u,
can be classified under type (7) (possibly r = 1 in type (7)). The
direct summands —Iβ and Ω2ki( — si)9 1 ^ i ^ v, can be classified under
type (8) (possibly r = 1 in type (8)). Because pt in even, the direct
summand Φ2Pi{φϊ) can be classified as pJ2 copies of the type (53) (with
r = 1 in (53)); 1 fg i ^ w. And the direct summand Ψ4q.(Riy φ{) can
also be classified as a direct sum of q{ copies of type (53); 1 ^ i ^ t.
We have thus established that the condition of the theorem is
necessary.

To establish the converse, it suffices to assume that N is (7), or
(8), or (53). If N = diag (r, r" 1), set S = diag (r, 1) and

< 7 6 ) *
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Then (56) holds, N and S are commutative, and K is orthogonal and
skew symmetric. If N — diag ( —r, — r"1), set S = diag ( —r, 1), define
K by (76). Then again (56) holds, S is symmetric and commutative
with N, and K is orthogonal and skew. If N is given by (53) set
S = diag (G(ψ), τ~ιG(φ + 2Θ - φ)), and put

0 J "

Using Lemma 3.3 one easily computes that for any choice of the
angles ψ and θ, we have NKS = SK. This S is symmetric (and
also orthogonal if r = 1) and this K is skew orthogonal. The proof
is complete.

THEOREM 5.8. Let N be real and normal. If N is a commutator
(56) of a symmetric S and a skew symmetric K with

(77) NS = SN

then N is symmetric with all eigenvalues (including 1) occurring
as reciprocal pairs 7,7"1. Conversely, this condition is satisfied
then N can be expressed as a commutator (56) such that (77) holds
and such that K is orthogonal and skew.

Proof. Suppose that (56) and (77) hold. If we write N =
S(iK)S~1(iKy1 then we may deduce from Theorem 4.2 that N is a
direct sum of types (7) and (8). The converse was established in
the proof of Theorem 5.7.

THEOREM 5.9. Let N be real and normal. Then N is a com-
mutator (56) of a symmetric S and a skew symmetric K such that

(78) NK = KN

if and only if N is orthogonally similar to a direct sum of the
following three types (79), (80), (81):

(79) diag (1, 1) ,

(80) d iag(- l , - 1 ) ,

(81) diag (r, r, r~\ r~ι) , r Φ 0, 1, - 1 .

If this condition is satisfied, S may always be taken orthogonal
symmetric.

Proof. Suppose (56) and (78) hold. Then we have N =.
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(iK)-1 and N(iK) = (iK)N, so that by Theorem 4.2 N is
symmetric. Thus by Theorem 5.7 we may assume

U V

where the r{ are distinct, each r{ > 1, the s{ are distinct, and each
Si > 1. Then NK = KN yields

o Tk. 0

0 TV.

Since if is skew each Qm{ and each Tk. is skew and nonsingular,
hence has even degree. Thus each mf and each &» is even. Thus
the conditions of the theorem are necessary.

For the converse it suffices to consider two cases: N =
diag (— 1, — 1) and N — diag (x, x, x~\ a;"1) with x positive or negative.
Now

(82) diag(- l , - 1 ) =
0 1

1 0

0 1

- 1 0

and diag (it*, x, x~ι, x*1) = SKS^K'1 where

S =

0 0 1 0 "

0 0 0 1

1 0 0 0

0 1 0 0

Ύζ

Ό 1'
1 0

0 1

-1 0

0 0

0 I T 1

- 1 0

0 0

0 0

0 x

0 0 -x 0

This completes the proof.

THEOREM 5.10. Let N be real and normal. If N is a com-
mutator (56) of a definite S and a skew K then N is positive
definite with its eigenvalues (including 1) occurring in pairs 7, 7"1.
Conversely, is N satisfies these conditions then N is a commutator
(56) of a definite S commutative with N and a skew orthogonal K.

Proof. Suppose (56) holds. Then from N = S(iK)S~1(iK)-1 one
deduces from Theorem 4.3 that N is positive definite with the eigen-
values 7 of N for which y Φ 1 occurring in pairs 7, 7~ Since
degree N is even, the multiplicity of the eigenvalue y — 1 is even,
hence this eigenvalue also occurs in reciprocal pairs. For the con-
verse it suffices to observe that

r 0 -I

0 r-'J
1 0
0 r~

0 11 Γl 0

- 1 0 0 r
0 I]"1

- i o
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THEOREM 5.11. Let N be real and normal. Then if N is a
commutator (56) of a definite S and a skew K such that N and K
commute, then N = I.

Proof. This follows from Theorem 4.4 or Theorem 1 of [5].

THEOREM 5.12. Let έ? be proper orthogonal. Then if & is a
commutator of a symmetric S and a skew K,

(83) <? = SKS^K-1 ,

it follows that each eigenvalue of έ? has even multiplicity. If S
commutes with έ? or if K commutes with έ? then & is also
symmetric. If S is definite then έ? = I. Conversely, if each
eigenvalue of έ? has even multiplicity, έ? is a commutator (83)
with S symmetric orthogonal and K shew orthogonal, and if έ? is
symmetric we may also make both S and K commutative with & *

Proof. Suppose (83) holds. Then by Theorem 5.7 έ? is orthogo-
nally similar to a direct sum of blocks of type (7), (8), (53). Since
& is orthogonal, in blocks (7), (8), (53) we have r = 1. This shows
that each eigenvalue of & has even multiplicity. The second result
in the theorem follows from Theorems 5.8 and 5.9. The third result
follows from Theorem 5.10. For the converse note that if each
eigenvalue of & has even multiplicity then <? is orthogonally similar
to a direct sum of blocks of the type diag(l, 1), diag( — 1, — 1),
F(φ) + F(φ). In the proof of Theorem 5.7 it was shown how to
express each of these three matrices in the form (83) with both S
and K orthogonal. Moreover, if & is symmetric then & is orthogo-
nally similar to a direct sum of the types diag (1, 1) and diag ( — 1, —1),
and one need only observe (82).

THEOREM 5.13. Let K be real skew. Then K is a commutator

(84) K = SKS~ιK-1

of a symmetric S and a skew K if and only if K is orthogonally
similar to a direct sum of skew matrices of the type

(85)
• 0 rΊ . Γ 0 r

- r 0 + -r-1 0

Here S is never definite and never commutative with K, and K is
never commutative with K. We may, however, make K orthogonal
skew.
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Proof. These results follow from Theorems 5.7, 5.8, 5.9, and

5.10.

REMARK. Since any skew orthogonal K with degree K = 0
(mod 4) is orthogonally similar to a direct sum of copies of

0 1

- 1 0

0 1

- 1 0

one can apply Theorems 5.12 or 5.13 to K and so build up elaborate
iterated commutators of symmetric orthogonal and skew orthogonal
matrices.

THEOREM 5.14. Let S be real symmetric with det S = 1 and
degree S = 0 (mod 2). Then

S = (S^SΓ'KΓ'KSJC^KΓ1)

is a product of two commutators with St and S2 symmetric and Kt

and K2 skew orthogonal. If S is positive definite we may also make
Sι and S2 definite.

Proof. Use Fan's factorization to write S as a product of two
symmetric matrices, each of which has its eigenvalues in reciprocal
pairs. Apply Theorems 5.7 and 5.10 to the two factors.

We now present a sequence of lemmas which will prepare the
way for the proofs of the next theorems.

LEMMA 5.1. Any 2-square real A with positive determinant can
be written as

(86) A = Sβ2S3S4

where £„ S2, S3, S4 are real symmetric matrices, each with positive
determinant.

REMARK. It is known that any real (square) matrix is a product
of two real symmetric matrices. However, it will appear below that
the two factors cannot always be chosen to have positive determinant.

Proof. From (86) follows

EAR-1 = (RS1R
T)(R'1TS2R'1)(RSZR

T)(R-1TS,R-1) .

Thus it suffices to establish the lemma for some similarity transform
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(over the reals) of A. If A is scalar, A = al, then take St = al,
S2 = S3 = S4 = I. If A is not scalar it is nonderogatory, hence we
may suppose

0 1
A =

-a
a > 0 .

First let p Φ 0. Put x = ρ(2a)-112. Put X = diag (α?, or1). Then Y =
AX has characteristic polynomial λ2 — 2px~ιX + α, for which the
roots are α1/2(21/2 ± 1). Call these roots δt and δ2. Both δ, and δ2

are positive, and δ1 Φ δ2. Moreover, diag (δl9 δ2) is similar to Y.
Hence Y = Q diag (δx, S^Q-1. Therefore

is a product of two symmetric matrices, each of which has positive
determinant. The A — YX~ιI is a product of four symmetric matrices,
each with positive determinant.

Now let p = 0. Note that

Tl/2
2 0

0 2-1

- 1 - 5

1 4
= α1/2l

- 2 -10

- 2 - 0

Here diag (2α1/2, 2-1α1/2) is a product of two symmetric matrices, each
with positive determinant. And

B =
- 1 - 5

1 4

has characteristic polynomial λ2 — 3λ + 1, hence is similar to a
diagonal matrix B1 with positive diagonal entries, say B = RBJRr1 =
(RBιR

τ){R~ιτR~ι). Thus B is a product of two symmetric matrices
with positive determinant. Finally,

γl/2
-2 -10

2"1 2

has characteristic polynomial λ2 + a, hence is similar to

0 1

-a 0

This completes the proof of the lemma.

LEMMA 5.2. Let & he proper orthogonal. Then & — S 1 S 2 S 3 JS 4

where each Si is real symmetric and has its eigenvalues in reciprocal
pairs; i — 1, 2, 3, 4.
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Proof. It suffices to establish this factorization when tf = F{φ).
By Lemma 5.1, F(φ) — S{S\S\S\ when each S is real symmetric with
det SI > 0, i = 1, 2, 3, 4. Since det F(φ) = 1,

(det SJ)(det Sί)(det S£)(det SO = 1 .

Let Si = (det Sί)-1/aSί, 1 ̂  i ^ 4. Then ^ - SfijSJSt, each S, is real
symmetric and has determinant one, hence its eigenvalues occur in
reciprocal pairs; 1 ̂  i ^ 4.

LEMMA 5.3. Lei 2x2 real A satisfy det A — 1. Then A can
be factored as in (86) when each Si is real symmetric and det St =
1, 1 ̂  i ^ 4.

Proof. Apply Lemma 5.1 to A and insert scalar factors as in
the proof of Lemma 5.2.

LEMMA 5.4. Let S19 S2, Sz be real symmetric with positive deter-
minant. Then

(87)

is impossible.

Proof. Suppose (87) holds. Let

a b

J> c

Then from (87) we get

(88)
— a ~i

The left member of (88) has zero trace. On the right side of (88),
S1 and S2 each are definite (since each has positive determinant). By
inserting two factors —1, we may take Sλ positive definite. Then
SiS2 has the same eigenvalues as Sί/2S2Sί/2. Thus, by the law of
inertia, both eigenvalues of Sβz are positive, or both are negative.
Hence tr SΊŜ  = 0 is impossible.

THEOREM 5.15. Let A be real and det A = 1.
( i ) If A is 2-square then A is a product of four commutators

A = τι
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where each Si is real symmetric and each K{ is real skew orthogonal.
(ii) If A is 2n-square with n > 1, A is a product of six

commutators

(89) A = U

where each Si is real symmetric and each K{ is real skew orthogonal.
(iii) It is impossible that

(90)

where each S< is real symmetric and each K{ is real skew.

Proof. ( i ) By Lemma 5.3, A = S^S^St where each S{ is real
symmetric with det St = 1. By Theorem 5.7 each St is a commutator
of a real symmetric matrix with a real skew orthogonal matrix.

(ii) Let A = &S be the polar factorization of A. Then det & =
detS = 1. By Theorem 5.14,

S = (S&S^KrWSJZJStt1)

where Sx and S2 are real symmetric and Kx and K2 are real skew
orthogonal. By Lemma 5.2, έ? = S'3S'4S'5S6 where SI, S[, S'δ, S'6 are
each symmetric with eigenvalues occurring in reciprocal pairs. By
Theorem 5.7 we have

SI = SiKSγ'Kγ1 , 3 ^ i ^ 6 ,

with each Si real symmetric and each Ki real skew orthogonal.
(iii) First note that for 2 x 2 matrices, if S is symmetric and

K is skew, then SKS~ιK~ι is symmetric. Thus, if (90) were true,
the matrix

0 1

•1 0

would be a product of three symmetric matrices, each with positive
determinant. This contradicts Lemma 5.4.

This completes our discussion of commutators of the form SKS^K*1.
The next natural question is to discuss commutators of the form

This discussion is contained in Part II of this paper.

6* The commutator of a normal and a unitary matrix* In
this section we give the following theorem, first proved by Fan.
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THEOREM 6.1. A normal matrix N with det N = 1 is a com-
mutator

N=

where U is unitary and Nλ is normal and commutative with N.
If N is Hermitian, positive definite Hermitian, or unitary, we
may, in addition, choose JVΊ to be Hermitian, positive definite
Hermitian, or unitary, respectively. If N is real symmetric or
symmetric positive definite we may choose U to be real orthogonal
and Nί to be symmetric or symmetric definite, respectively, and still
commutative with N.

Proof. Let JV = diag (λx, λ2, , λ j . Then put

Nr1 = diag (1, λx, λxλ2, , W K-ύ

Put Z7= [1, 1, -•-, 1]». Then Nr1 = UNr'U"1. Hence N = N.UNT'U'1,

and Nt commutes with N. The other assertions of the theorem
follow easily.

7* The commutator of a Hermitian matrix and a unitary
matrix*

THEOREM 7.1. Let N be normal. Then N is a commutator of
a Hermitian H and a unitary U,

(91) N

if and only if:
( i ) The characteristic polynomial of N is real. Let

be the nonreal eigenvalues of N, and let λ ί + 1, •• ,λ f t be the real

eigenvalues.

( i i ) Nonzero real numbers h19 h2, , ht, ht+ι, , hk exist such

that the numbers

\\\hί9 -\W K \X2\h2, -\\\h2, ---,\Xt\ht, -1 Xt I ht ,

are the same as the numbers

(93) hi9 —hu h2, —h2, , ht, —ht, ht+1, ht+2, , hk ,

except for order.
If N is real and conditions (i) and (ii) hold, we may take H to

be real symmetric and U to be real orthogonal.



794 ROBERT C. THOMPSON

Proof. Suppose (91) holds. Then

(94) ΛΓ* = H-'NH .

Thus if λ is a nonreal eigenvalue of N with a certain multiplicity,
λ is also an eigenvalue of N, with the same multiplicity. Thus
after a unitary similarity of (91), we may assume

(95) N=j±- (Ύji + ΪJi) +.Σ pJi ,

where the yi9 τ» are nonreal and distinct, 1 ^ i ^ t, and the pi are
real and distinct, t < i <̂  k. Then using (95), HN* = NH yields

(96) H = Σ
1 = 1

Thus

(97) iV-Ή = Σ Γ ° 7 i Ί + Σ ft-'fl"*.

Since iV^if = UHU~\ N~Ή and if have the same eigenvalues. Let
Mi> h2i2> be the eigenvalues of MiMf, 1 ^ i ^ t, and let hil9 hi2,
be the eigenvalues of Hif t < i ^ k. Using Lemma 3.5 we find that
the eigenvalues of N*1!! are

and the eigenvalues of #" are

*^11> *^11> *^12> ^ 1 2 > * * *> " ' ί l ί ^ ί l > ^ ί 2 > ^ ' ί 2 > * * * J

^ t + lyU ^ ί + i,2> * * *> ^ f c l > ^A;2> * * *

After taking inverses and changing notation, we obtain that the
second condition of the theorem is necessary.

Conversely, the conditions of the theorem imply that nonzero
real numbers h19 hz, , ht, , hk exist such that the numbers

(98) ± I λx ]-%, ± I λ2 ]-%, , ±\Xt \~ιhu K+iht+1, K+iht+t, , Xςιhk

are a rearrangement of the numbers

(99) ±h19 ±h2, , ±ht, ht+1, ht+2, , hk .

Let λy = rj exp( — iφd), 1 ^ j ^ t. After a unitary similarity we may
assume
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N = Σ nFiψi) + diag (λί+1, , λ») .

Let

4- diag (ht+1,

The eigenvalues of H are the numbers (99). We find that

t

N~ιH = Σ * r^hiGi — cpi) + diag (λr+\^ί+1, , Xϊιhk) .

The eigenvalues of N~ιH are the numbers (98). Since N~ιH and H
are two real symmetric matrices with the same eigenvalues, an
orthogonal & exists such that N^H — ^H^"1. Hence N =

^-1, as required.

THEOREM 7.2. Suppose normal N is a commutator (91) of a
Hermitian H and a unitary U, such that

(100) NH = HN .

Then N is Hermitian and det N = 1. The converse assertion is
contained in Theorem 6.1.

Proof. From (94) and (100) follows N* = N.

THEOREM 7.3. ( i ) Let N be normal. If N is a commutator
(91) of a Hermitian H and a unitary U such that

(101) NU= UN,

then N is unitary, N has real characteristic polynomial, and
det N = 1. Conversely, if N is unitary with real characteristic
polynomial and det N = 1, then N is a commutator (91) with H
Hermitian unitary and U unitary and commutative with N.

(ii) Let & be proper orthogonal. Then & is a commutator
& — S^β^^T1 of a symmetric orthogonal S and a proper orthogo-
nal &Ί with g?x commutative with &.

REMARK. For unitary matrices, Theorem 7.3 improves Theorem
7.1.

Proof. Suppose (91) and (101) hold. Then, as in the proof of
Theorem 7.1 we obtain (95) and (96). Because of (101),

U=±'άmg(Ui, U,)+ Σ U*.
i=i i=t+i
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Then NUH = HU yields

t

Σ
α02) T Γ o

0

Comparing the two sides of (102), we obtain

I{ = MfUMr1 ,

hence, by taking determinants, | τ< | = 1; 1 ̂  i ^ ί. We also get
PiUiHi = HiZJί, hence by taking determinants, we find p{ = ± 1 .
This proves that JV is unitary. By Theorem 7.1 we already know
that N has real characteristic polynomial.

To establish the converse we notice that if N is unitary with
real characteristic polynomial and det N — 1, then N is unitarily
similar to a direct sum of copies of F(φ) and an identity matrix.
We therefore need only notice that by Lemma 3.3

F(φ) = G(θ)F(-φ/2)G(θ)-ίF(-φ/2)~ί

for any choice of θ, and F(φ) and F( — φ/2) commute. Here G(θ) is,
of course, symmetric orthogonal.

THEOREM 7.4. Let N be normal. If N is a commutator (91)
of a definite H and a unitary U then N is positive definite
Hermitian and det N = 1. The converse assertion is contained in
Theorem 6.1.

Proof. Since N = H( UH~ι U~ι) is a product of the two positive
definite Hermitian matrices H and UHU*, it follows from Lemma
3.1 (iii) that N has all eigenvalues positive. Therefore N is positive
definite Hermitian.

THEOREM 7.5. Let normal N be a commutator (91) of a definite
H and a unitary U such that (101) holds. Then N = I.

Proof. By Theorem 7.4 N is positive definite. By Theorem 7.3
N is unitary. Hence N = I. Theorem 7.5 is a special case of
Theorem 1 of [4].

THEOREM 7.6. Let K be real skew with det K = 1. Then K is
a commutator,

(103) K =
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with S real symmetric and έ? orthogonal. Moreover S is never
definite and never commutative with K. Ω can be chosen to be com-
mutative with K if and only if K is also orthogonal.

Proof. Let ± r 1 ί , ± r 2 ί , •••, ±rti be the eigenvalues of K, with
τ19 r2, , rt each positive. Then det K = 1 implies rλr2 rt = 1.
Let hx = 1, h2 — rlf h3 — r^, , ht = r1r2 rt_λ. Then the numbers
±rjhλ, ±.r2h2, •••, ±rtht are a rearrangement of the numbers ±hly

±h2, •••, ±ht. Apply Theorems 7.1-7.5.

THEOREM 7.7. Let θ be a nonreal number with \ θ | = 1. Let
H be Hermitian. If

(104) ΘH= H.UHT'U-1

is a commutator of Hermitian Hx and unitary U then θ = ±i and
iH is unitarily similar to a real skew symmetric K for which
det K=l.

Proof. Suppose (104) holds. Then, by Theorem 7.1, for certain
eigenvalues \ and λ2 of if, we have ^ = reiφ, ΘX2 = re~~iψ. Then
Θ(X1 + λ2) = 2r cos φ. This implies θ is real unless it happens that
λ2 = — λi and φ = ±π/2. Then it must be true that θ = ±i. More-
over it follows that if Xι is an eigenvalue of H with a certain
multiplicity, — λx is also an eigenvalue with the same multiplicity.
Thus, after a change of notation, iH is unitarily similar to

diag (rj,, —rλiy r2i> —r2i, , rti, —rti) ,

which in turn is unitarily similar to

0 rj

-r, 0

THEOREM 7.8. Let U be unitary with det U = 1.

(105) U - (H^HΪ1 U^){H2U2H2

ιUςι)

is a product of two commutators, with H1 and H2 Hermitian
unitary and Uι and U2 unitary. If U is 2-square, one commutator
suffices in (105).

Proof. By Fan's factorization U = VW where the eigenvalues
of V and W occur in reciprocal pairs. Apply Theorem 7.3 to V and
W. If U is 2-square the eigenvalues of U must appear in reciprocal
pairs.
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THEOREM 7.9. Let A be complex with det A = 1. Then

(106) A = (H, UXHT1 Uτι){H,

where H1 is positive definite Hermitian, H2 and Hz are Hermitian
unitary, and Ulf U2, U3 are unitary. If A is 2-square, (106) may
be improved to

(107) A = (H, U.HT1 Uτι)(H2 U2H2' U2')

where Hιy Uly H2, U2 are as just stated. If A is real, (106) may be
improved to

(108) A =

where Sx is positive definite symmetric, S2 is orthogonal symmetric,
and έ?! and έ72 are orthogonal.

Proof. Let A = HU be the polar factorization of A. Apply
Theorem 6.1 to H and Theorem 7.8 to U. If A is real, write
A = Sέ? and apply Theorem 6.1 to S and Theorem 7.3 to &.

We next investigate commutators of the form

THEOREM 7.10. Let N be real and normal. Then N is a
commutator,

(109) N =

of a skew K and an orthogonal & if and only if:

( i ) Each eigenvalue of N has even multiplicity. Let

(110) λιX, Xx, Xx, Xlf \2, \2, X2, X2, , Xu, Xu, Xu, Xu

be the nonreal eigenvalues of N, and let

(HI) ^u+li \i-M> ^u+2J ^u+2J " " *> Xjci ^k

be the real eigenvalues of N.
(ii) Positive real numbers hγ, h2, , hu, hu+ι> hu+2, , hk exist

such that the numbers

\W hlf I λj. I h19 \X2\h2, \X2\h2, , \XU\ h u , \ Xu \ h u

I λ#u+i h u + 1 , I Xu+21 h u + 2 , , I Xk I h k

a r e the s a m e as t h e n u m b e r s

(113) hy, h19 h2, h2, , hu, hu, hu+1, hu+2, , hk ,

except for order.
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Proof. Suppose that (109) holds. After an orthogonal similarity
of N, K, έ?, we may assume that

(114) N = Σ r A M ) + Σ RJai + Σ -Rilat .
<=i i=u+i ί=v+ι

Here in (114), and throughout this proof, a subscript on a matrix
denotes the degree of the matrix. In (114) the Ri and r< are posi-
tive, distinct direct summands do not have any common eigenvalue,
and each Φ2m.(φi) has no real eigenvalue.

From (109) we obtain

(115) KNT = NK .

From (114) and (115) we obtain a partitioning of K, as follows:

(116) K = diag (Ktmι, K2mz, , Kim%, Ka%+ί, , KaJ .

In (116) each direct summand is a nonsingular skew matrix; hence in
particular au+1, >- ,aw are each even. Thus each Et and each — Ri
has even multiplicity.

We now fix our attention on K2mι. From (115) K2mi satisfies

To relieve the notation, let us drop the subscript 1, and write

(117) K2mΦ2m{~φ) = Φ2m{φ)K2m .

P a r t i t i o n K2m = (Mμv)^μtV^m i n t o 2 x 2 s u b m a t r i c e s Mμv. F i x m o m e n -
t a r i l y μ a n d v, a n d l e t

Then (117) yields MμvF( — <p) = F(<p)Mμu, hence b sin^? = cs in^ and
— asinφ = dsinφ. Since sinφ=£θ (because Φ2m{φ) does not have
real eigenvalues), we obtain that b = c and d = — α. Restoring μ
and v, we thus have

^ μ, v ̂  m

Let V be the 2-square unitary matrix

XT Q—1/2

Note that F*F(y>)F= diag(β", tr*), and that
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V*MμvV =
o

<: μ, v

where zuv = aμv — ibμv. Let V2m be the direct sum of m copies of V.
Then we have

(118)

(119)

0

- diag (e*?,

Let T72m be the 2m-square permutation matrix such that for any
2m-square matrix M, the rows of WξmMW2m are the rows of M in
the order

(120) 1, 3, 5, , 2m - 1, 2, 4, 6, , 2m ,

and the columns of WξmMW2m are the columns of M in the order
(120). Then

(121) WLVLK2mV2mW2m = ί l

where Zm — (zμί)lsμιVSm, and

(122) WL VLΦUφ) V2m W2m = e**l

In (121) because KZm is skew symmetric,

Ό Zm

zm o
is skew Hermitian. Hence, Zτ

m = —Zm, that is Zm is complex skew
symmetric.

Returning now to (109), (114), we let

U=±'V2mtW2mt+±-iLt.

From (109), (114), (121), (122) we get

u

LJ ±v LJ — S t U l d g \l t & J-m + i ' t " J-m + )
ί = l

+ Σ Rvιi«t + Σ -Rτιiat,

(123)
0 + Σ ^ + Σ κat,
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(124)

+ Σ RT'K^ + Σ -Rτικat

Since N~'K = (^K^-1, (123) and (124) have the same eigenvalues.
We therefore proceed to evaluate the eigenvalues of a matrix of the
form

(125)
0 yZΊ

ΊZ 0 J

where Z is complex skew symmetric, m-square, nonsingular, and
γ ^ 0. By Lemma 3.7 a unitary T exists such that

TZTT = 1 + 0, pi > 0 for 1 ^ i ^ r .

J
-Pi 0

Since Z is nonsingular, m must be even, and

Then

T 0

0 T

TZT =

I 0

0 7

0 p.

-pt 0

0

I 0 Ί -

0 ΊZ

T 0

0 T
0

_\Ί\2(TZTT){TZTT) 0_

Thus (125) has the same eigenvalues as

0 /

(126)

The eigenvalues of (126) are

i \ y \ Pu - i M Pt, i \ y \ Pt, - i \ Ί \ Pt , 1 ^ t ^ m / 2 .

Returning now to (123) and (124), let the eigenvalues of

zmt
o

be

(127) iptj, -ίptj, iptj, -iptj

and let the eigenvalues of Kat be

^ j ^ m t / 2 ; l ^ t ^
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(128) iptj, -iptj 1 ^ j ^ at/2; u <t ^w .

In (127) and (128) we can choose the notation so that each ρtj > 0.
One now finds that the eigenvalues of (123) are (127) and (128),
whereas the eigenvalues of (124) are

(129) i r ^ p t j , - i r τ ι p t j , i r τ ι p t ύ , - i r ^ p a 1 ̂  3 ̂  m , / 2 l ^ t ^ u ;

together with

(130) i B τ ι p t s , - ί R ϊ ' p t j 1 ^ 3 ^ <**/2 u < t ^ w

the numbers (129) and (130) must be a rearrangement of (127) and
(128). Throughout (127)-(130) we may discard the common factor of
i. After discarding the i, the positive numbers in (127), (128) ,

Pw Pa , 1 ^ 3 ^ W 2 , 1 ̂  ί ^ w ,

Λi , 1^3 ^ octβ , u <t ^w r

must be a rearrangement of the positive numbers in (129), (130):

rT'Pts, rv'Ptj , 1 ^ 3 ^ wt/2 , 1 ^ ί ^ ^ ,

After taking inverses in (131) and (132), and making some notational
changes, we find that the conditions of the theorem must hold.

Suppose now that the conditions of the theorem are satisfied.
Let the nonreal eigenvalues of N be

rte
iφ*, rte

iφt, rte~i<pt, rte~i(pt , Uί^s,

and let the real eigenvalues be

Rt,Rt s <t^k .

Then N is orthogonally similar to

(133) Σ (rtF(φt) + rtF(φt)
τ) + Σ diag^, Rt) .

ί=l t=s+l

We may assume N is given by (133). The conditions of the theorem
imply the existence of positive numbers hlf , hk such that

TT'K rTιK rϊιK rϊιh2, , rjιhsi τ7ιhs ,
( I R s + ί |-^.+1, I R 8 + 2 |-^s+2, , I Rk \~ιhk

are a rearrangement of

(135) h19 h19 h2, hi9 , ha, h8, hs+ί, hs+2, , hk .

P u t
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0
0

K

0
0

0

ht

0

0

0

h

0

0 -ht 0 0_

+ Σ
0 h,

_-ht 0

Matrix K is^real and skew and has eigenvalues

(136)
±ih19 ±ihί9 άzih2, ±ih2, •••, ±ίh8, ±ihs ,

±ihs+1, ±ihs+2, ---, ±ihk .

We compute that

N~ιK = Σ*
0 rτ%F(φty

0
~t~ 2

0 ΛΓ1*,

-ΛΓ 1 ** o

The matrix N~*K is skew symmetric. Using Lemma 3.4, one can
compute the eigenvalues of N~ιK. Then turn out to be

(137)
±ϊr1

1/£1, ±ir1

ίh1J ±ίr2

1/ι2,

±i I Rs+1 l^K+i, ±i I Rs

, ±ir71hs, ±irs

1h8 ,

Because (135) is a rearrangement of (134), (137) is a rearrangement
of (136). Thus N^K and K are real skew matrices with the same
eigenvalues, hence iV"1^ = &K&-1 for some orthogonal <^ Hence
N = K^K~x^-\ as required. Note that if s = 0 (that is, if all
eigenvalues of N are real) the construction just given produces a K
commutative with N.

THEOREM 7.11. Let N be real and normal.
commutator (109) of a skew K and an orthogonal d

Then N is a
such that

(138) NK= KN

holds, if and only if: (i) N is symmetric; (ii) each eigenvalue of N
has even multiplicity, (iii) det N = 1.

Proof. Suppose (109) and (138) hold. Then N =
and N commutes with iK, hence by Theorem 7.2 N is symmetric.
By Theorem 7.10 each eigenvalue of N has even multiplicity. Clearly
det N = 1. Conversely if X19 λlf λ2, λ2, , Xk, Xk are the eigenvalues
of N, then det N = 1 implies | λL | . | λ& | = 1. Put

hλ = 1, h2 =

Then the numbers

λ2 , hk =

| λx | fex, , | λfc | feΛ are just a rearrangement of
fei, •••, hk, and the proof of Theorem 7.10 showed how to construct
skew K commutative with N such that (109) holds.
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THEOREM 7.12. Let N be real and normal.
commutator (109) of a skew K and an orthogonal

Then N is a
such that

(139) Nέ? =

if and only if: (i) N is proper orthogonal, (ii) each eigenvalue of
N has even multiplicity. If these conditions hold, we may in fact
make K skew orthogonal.

Proof. Suppose (109) and (139) hold. Then from

N =

and Theorem 7.3 we deduce that N is proper orthogonal. From
Theorem 7.10 we deduce that each eigenvalue of N has even multi-
plicity. For the converse we need only consider two cases: N —
F(φ) + F(φ)τ, and N = d iag(- l , -1) . In the first possibility let

K =

0 0 1 0

0 0 0 1

- 1 0 0 0

0 - 1 0 0

= diag (1, 1, F(φ))

Then Nέ? = έ7N and (109) holds. Moreover K is orthogonal and έ?
is orthogonal. For the second case observe

(140)
- 1 0

0 - 1

0

- 1 0

0

- i

0

THEOREM 7.13. Suppose N is real normal but that N has no
real eigenvalues. Then N is a commutator (109) of a skew K and
an orthogonal & if and only if each eigenvalue of N has even
multiplicity and det N = 1. It cannot happen that K commutes
with N and & can commute with N if and only if N is also
orthogonal.

Proof. That the conditions are necessary follows from Theorem
7.10. Conversely, let \, λx, λ1? λ:, , \k, \kJ Xk, xk, be the eigenvalues
of N. Then | \ | . . | Xk \ = 1. Put

x — 1 , h 2 — , h k — I λ x

Then the conditions of Theorem 7.10 are satisfied.
Theorem 7.13, of course, applies when N is skew symmetric.

When the eigenvalues of N are all real, Theorem 7.11 provides a
strengthened form of Theorem 7.10.
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THEOREM 7.14. Let & be proper orthogonal and n-square with
n = 0 (mod 4). Then

is a product of two commutators, with K1 and K2 skew orthogonal,
and έ7x and έ?2 orthogonal.

Proof. As n = 0 (mod 4), έ? is orthogonally similar to a direct
sum of 4-square blocks of the form F(φ^ + F(φ2). Now

diag {F{Ψι), F(φ2))

= diag (1, - 1 , 1, -1) diag (G(π/2 - Ψι), G(π/2 - φt)) .

Here diag (1, —1,1, —1) satisfies the conditions of Theorem 7.12,
hence is a commutator of a skew orthogonal matrix with an orthogonal
matrix. Moreover diag (G(π/2 — φj, G(π/2 — φ2)) also is orthogonal
with eigenvalues +1 (twice) and —1 (twice), hence is orthogonally
similar to diag(l, —1, 1, —1). This completes the proof.

THEOREM 7.15. Let S be positive definite symmetric and n-square,
with n ΞΞ 0 (mod 4), and det S = 1. Then

is a product of four commutator, with each K{ skew and each &{

orthogonal.

Proof. First use Fan's factorization to express S as a product
S — SiS2 where the eigenvalues of St and of S2 occur in reciprocal
pairs. Now note that diag (λ:, λr\ λ2, λΓ1) — PQ, where

P = diag (λ}/2λ2-
1/2, λ;/2λf1/2, λ f λr1/2, λl/2λr1/2)

and

Q = diag (λ}/2λp, λr1/2λ2~
1/2, λl'V 2, λr1/2λ2-

1/2) .

Thus Si and S2 are each a product of two symmetric matrices to
each of which Theorem 7.11 may be applied. This yields the result.

THEOREM 7.16. Let real A be n-square with n = 0 (mod 4) and
det A = 1. Then

A = Π K^tKr1^1

where Kx, K2 are skew orthogonal, K3, iΓ4, K5, K6 are skew, and
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< î> 9 ̂ e are orthogonal.

Proof. Let A = #S. Use the two previous theorems.
One can show, at least for n = 2, that no counterpart of Theorem

7.16 can hold when n = 2 (mod 4). For if K is any 2-square skew,
and & is any 2-square orthogonal, then a direct computation reveals
and K^K-γ^~γ = ±1. Thus any product Π ^ ^ ^ Γ ' ^ T 1 = ±L

8* On the commutator of a Hermitian matrix with a unitary
Hermitian matrix* In §4, certain normal matrices were seen to be
the commutator of a Hermitian and a unitary Hermitian matrix.
We ask: When can this happen?

THEOREM 8.1. Let N be normal. Then N is a commutator (91)
with H Hermitian and U unitary Hermitian if and only if N is
unitarily similar to a direct sum of types (7), (8), (10), (11) and
the following special form of type (9):

(141) diag (reiψ, r~ιeiψ, re~ίφ, r - 'β"^) , r > 0, φ real .

Proof. Suppose (91) holds with H Hermitian and U unitary
Hermitian. By Theorem 4.1 N is unitarily similar to a direct sum
of types (7)-(ll). From the forms of types (7)-(ll) and the fact
(Theorem 7.1) that the eigenvalues of N come in conjugate pairs, it
is clear that the totality of diagonal elements of type (9) is composed
of conjugate pairs. Without loss of generality we may assume no
eiφ in type (9) is real, since otherwise type (9) may be reclassified
under types (7) or (8). If, in (9), we have r2 = rx or r2 = rf1 then
type (9) is already in the form (141). Then the totality of the
remaining blocks of type (9) must have their diagonal elements in
conjugate pairs. If r1 Φ r2, rλ Φ r^1, then in addition to (9) we must
have a block

(142) diag (r 3 e^, rϊιeiφ, rxe~iip, rτιe~iψ) .

We may recombine the blocks (9) and (142) as

(143) diag (r^*, rτιei(?y rxe-iip, rτe~-i(p) ,

(144) d i a g (r3e
i<p, r^eίφ, r2e~iφ, r^e~i(p) .

The block (143) has the form (141); and now the remaining blocks of
type (9) not yet considered together with (144) retain the property
that their diagonal elements come in conjugate pairs. By repetition
of this argument, we see that the condition of the theorem is
necessary.
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For the converse, we need only refer to the last part of the
proof of Theorem 4.1, noticing that H2 defined in (31) is symmetric
orthogonal when rx = r2.

The results corresponding to Theorem 8.1 when N is real, when
N commutes with H or with U, and when H is definite, are all
contained in the theorem of §§ 4, 5, 7 and so no further discussion
is needed here.

9* The commutator of two normal matrices when it is
normal and commutes with both factors* Recently several papers
have appeared studying the system of matrix equations

(145) C = ABA-'B-1 , CA = AC , CB = BC .

It turns out to be easy to show that C has roots of unity as eigen-
values, and it is possible, though more difficult, to obtain the necessary
and sufficient conditions that the elementary divisors of C must
satisfy in order for C to be representable in the form (145). Here
we shall study (145) when C, A, and B are normal. We shall obtain
a result analogous to one obtained by I. Sinha [6, 8]. In this §9,
Ia is to denote the <x-square identity matrix.

THEOREM 9.1. Let N, A, B be normal matrices such that

(146) N = ABA-'B-1 , NA = AN , NB = BN .

Then N is unitary and after a simultaneous unitary similarity of
N, Ay B we have

(147) N=±' 7Λ4 ,

(148) A = ± [Hit Ht,-; Ht, Uiffλt ,

(149) B = Σ diag (/,., 7 ί I . . , 7?!.., , 7Ϊ*-1!,,) .

Here yζ is a primitive k\h root of unity for some ki dividing niy

and Oi — njki. Furthermore, H{ is a σΓsquare positive definite
Hermitian matrix and UΊ is a σrsquare unitary matrix commuta-
tive with Hi] 1 ^ i ^ r. Conversely, if N, A, B are as just de-
scribed, then N, A, B are each normal and (146) holds.

Proof. We may begin with N diagonal, as in (147), where
7i, 72, , 7r are the distinct eigenvalues of N. Then NA = AN and
NB = BN force A and B to decompose into direct sums conformally
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with the direct sum decomposition (147) of N. To simplify the nota-
tion we may now consider

(150) jln = ABA-ιB~ι .

Taking determinants, yn = 1. Thus 7 is a root of unity, say a
primitive kth root of unity, so that k divides n. Making a unitary
similarity of (150) we can get B diagonal. From ΊB — ABA^1 it
follows that if β is an eigenvalue of B with a certain multiplicity,
7/3 is also an eigenvalue of J3, with the same multiplicity. So we
can let B = B, + . + Bs where B{ = & diag (/,., T/,., , Ύk-ιIσi)
for some σiy with /3? Φ β) if i =£ j . Then 7#A = AB forces A to
partition as A = Ax + + A8, with A{ — [A ίu Aί2, , Aik]k, 1 ̂  i ^ s.
Again to simplify notation we consider each direct summand indi-
vidually, so let us examine

Ύlσk -

with

B = diag (/3/σ, 7/3Jσ,

Let Ai = UiHi be the polar factorization of Ai9 1 ̂  i ^ k. Let
TΓ = TΓi + + TΓ4 where TΓX - /σ, T72 = t/i, W3 = U,Ui9 , Wk =
Z7, CΓ^. Then T7BPΓ* - B and TΓATΓ* - [H19 ϋ 2 , , fΓ^,, ίΓff^
for certain positive definite Hιy , iffc and unitary Ϊ7. So change
notation and let A = [Hly •••, Hk_1? UHk]k. Then AA* = A*A yields
Jϊ* = HI = . . . - Jϊfc

2 and C/if|[/* = ίfLi As the H, are positive
definite these equations imply Hί = £Γ2 = = Hk = H (say) and
[/#£/* = Jϊ. Thus A = [#, £Γ, , H, UH]k as claimed, with U unitary
and commutative with H. The converse is direct.

THEOREM 9.2. The necessary and sufficient condition that a
normal matrix N be representable as a commutator (146) of normal
matrices are: (i) N is unitary; (ii) each eigenvalue 7 of N is a root
of unity satisfying

(multiplicity of Ύ) = 0 (mod (order of 7)) .

// these conditions are satisfied we may take both A and B unitary,
and also both real if N is real.

Proof. It is clear from the formulas (147), (148), (149) how to
choose A and B unitary if N is unitary (take Hi to be the identity.)
Suppose N is real. Then N is orthogonally similar to a direct sum
of blocks of the form Φ2k(φ) and diag( —1, —1) where angle φ has
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the form φ = 2πj/k. Set B = F(0) + F(φ) + F(2φ) + + F((k - l)φ),
and put A = [I2, I2, •••, I2]k, where I2 is the 2-square identity. Then
Φ2k(φ)BA = Ai? and Φ2k(φ) commutes with both A and B. Moreover

(151) d i a g ( - l , -1) =
Ό 11 Γ l 0

1 0 0 - 1

Ό I I - 1 Γl 0

1 0 0 - 1

This completes the proof.

THEOREM 9.3. Suppose normal matrices N, A, B satisfy (146).
If one of A or B is Hermitian then N is Hermitian unitary, and
det N = 1. Conversely, if N is Hermitian unitary then (146) holds
where A and B can both be chosen to be Hermitian unitary and
also real if N is real.

Proof. If (146) holds with A Hermitian then one easily sees
that each ki <Z 2. Thus N is Hermitian, and clearly det N = 1. For
the converse one need only note (151).

THEOREM 9.4. If A or B is positive definite in (146) then
N= I.

THEOREM 9.5. Suppose N, A, B are real and normal, and (146)
holds with A skew. Then N is symmetric, proper orthogonal, and
degree N is even. Conversely, if N is symmetric and proper
orthogonal with even degree then

N = KSK-'S-1 , NK = KN , NS = SN

with K skew orthogonal and S symmetric orthogonal.

Proof. For the first assertion use Theorem 9.3 and Λr =
(iKWiKy'S-1. For the converse note (140).
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