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PRINCIPAL MULTIPLICATIVE LATTICES

M. F. JANOWITZ

P. J. McCarthy has recently proved that if R is a Noetherian
ring with unity, then every ideal of R is a principal element
of L(R), the lattice of ideals of R9 if and only if R is a
multiplication ring. It is shown here that an arbitrary com-
mutative ring R with unity is a Noetherian multiplication ring
if and only if every ideal of R is a principal element of L(R).

1* M-lattices* The basic terminology and notation will follow

that of [2] and [3]. It will be assumed throughout the paper that
L denotes a complete commutative and residuated multiplicative lattice.
The results of this section, though well known, have apparently not
been previously published. They are included here because they are
needed to prove the results of § 2.

THEOREM 1. The following conditions are equivalent:
(1) L is an M-lattice.
( 2 ) (A: B)B = Af]B for all A,BeL.
(3) Every element of L is meet principal.

Proof. (1)=>(2) Let A, B e L. Since A n 5 ^ S , w e have Af]B =
BC for some C e L. Then BC ^ A=>C g A:B, so we have

A Π B = BC ^ B(A :B)^Af)B.

It follows that (A : B)B = A Π B.
(2)=>(3) Given A, B, MeL we need only note that

AM n B = (B : AM)AM = {[(B : M) : A]A}M = [A Π (B : M)]M .

(3)=>(1) If AM Π B - [A n (B : M)]M for all A, B e L and if £ ^
Λf we have

B = IMf]B =[IΓ)(B: M)]M = (B : M)M .

THEOREM 2. Every M-lattice is infinitely distributive.

Proof. Let M = U aMa in the M-lattice L. Then for any BeL,
B n M is an upper bound for {B Π -M«}. Let X be any other upper
bound for this set. Then for all a,

It is easily deduced that
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X:M = na(X:Ma)^ ς\a(B : Ma) = B : M .

By Theorem 1 we have

X ^ (X: Λf)Λf ^ (B : M)M = B f] M .

It follows that BΓ\M= Όa(BΓ\Ma) .

THEOREM 3. Let L be an M-lattice. Then (U aAa): M = U α(AΛ: M)
holds for all AaeL and for every principal element M of L.

Proof. Let A= ΌaAa. By Theorem 2, Af]M= {Ja(AaΓ\M).
Hence A:M = (Af]M):M= [{J a(Aa Γ) M)]:M = [ U a{Aa : M )M ] : M =

: ikf - [Uα(Aα : M)] U (0 : M) = Όa(A« ' M).

2. Principal lattices. Though our goal is to investigate the
lattice of ideals of a commutative ring with unity, it will cost us
nothing to begin our discussion in the context of an M-lattice. In
connection with this, it will prove convenient to call L a principal
lattice when each of its elements is principal.

LEMMA 4. Let L be an M-lattice whose unit element is compact.
Every principal element of L is then compact.

Proof. Let M be a principal element of L and assume that M ^
U aBa. Then by Theorem 3,

I=(UaBa):M= Ua(Ba:M).

Since / is compact there must exist finitely many indices au a2, , ak

such that / - U t i (Ba.: M) = (U?=1 Ba.): M. It follows that M ^
\Ji=1Ba. as desired.

THEOREM 5. Let L be an M-lattice whose unit element is com-
pact. Suppose further that every element of L is the join of a
family of principal elements. An element C of L is then compact
if and only if it is principal.

Proof. By Lemma 4 every principal element of L is compact.
On the other hand, if C is compact then it is the join of a finite
number of principal elements. It follows from the argument given
in [3] that any such element is principal.

THEOREM 6. Suppose that every element of L is the join of a
family of principal elements and that the unit element of L is
compact. The necessary and sufficient condition that L be a principal
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lattice is that it be an M-lattice satisfying the ascending chain con-
dition.

Proof. Assume first that L is a principal lattice. By Theorem
1 it is an M-lattice, and by Lemma 4 each of its elements is compact.
It follows that L satisfies the ascending chain condition. For the
converse, see [3], Theorem 1, p. 706.

COROLLARY. Let L be an M-lattice satisfying the conditions of
the theorem. Assume further that 0 : A — 0 for all A Φ 0 in L. The
ascending chain condition then holds in L.

Proof. Let MeL and write M = \JaMa with each Ma principal.
It was shown in [3], p. 707 that for any BeL,

BM:M^B{J(0:Ma) = B .

It follows that B = BM:M = B U (0 : M) so that by [1], Theorem 1,
p. 215, M is principal,

When viewed in the context of ring theory these results translate
to the following:

THEOREM 5*. Let R be a multiplication ring with unity. An
ideal of R is a principal element of L(R) if and only if it is finitely
generated. The necessary and sufficient condition that L(R) be a
principal lattice is that R be Noetherian.

THEOREM 6*. Let R be a commutative ring with unity. The
necessary and sufficient condition that L(R) be a principal lattice is
that R be a Noetherian multiplication ring.

The corollary to Theorem 6 translates to the well known fact
that an integral domain is a multiplication ring if and only if it is
Dedekind.

In closing we mention a few easily established facts about the
lattice of ideals of an arbitrary commutative ring with unity. First
of all, an obvious modification of the proof of Lemma 4 will show
that every principal element of L{R) is finitely generated, thus ans-
wering a question posed by P. J. McCarthy ([4], p. 269). At this
point it is easily shown that L{R) satisfies Postulate C of Ward (see
[5], p. 631) if and only if R is a multiplication ring with minimum
condition, and that L(R) is a Boolean algebra if and only if R is a
semiprime multiplication ring with minimum condition.
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