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COHOMOLOGY OF NONASSOCIATIVE ALGEBRAS

NEAL D. GLASSMAN

A cohomology theory is constructed for an arbitrary non-
associative (not necessarily associative) algebra satisfying a
set of identities, within which the associative and Lie theories

are special cases.

1. Exactness of the fundamental sequence through H? Let
T be a set of identities, .o a T-algebra over a commutative ring K
with unit, M a T-bimodule for .&~. When T is clear we call M an
7 -bimodule. Let (U(.), M., 0.,) be the universal T-multiplication
envelope of & with A, 0, the canonical maps. When 1., 0. are
obvious, we write U(.r). Let D(.%7, M) be the K-module (under
pointwise addition and scalar multiplication) of derivations from
&7 to M. veHomy.,, (M, M, induces D(.%7, v) e Hom, (D(.&7, M),
D(.7, M,)) in the obvious fashion. For further details of these objects
see Jacobson [16].

Regarding U(.%) as the free .o~ -bimodule on one generator, we
define, for w € U(.%), f,: U(.") — U(.%) such that 1, ..,f, =u. D(,
U()) is a left U(7)-module under the multiplication ud = dD(.%7, f,,).

DEFINITION. An inner derivation functor is an epimorphism pre-
serving subfunctor of D(.&7, ).

For example, suppose .o is Jordan. Define J(.&7, M) to be the
K-module generated by all mappings of the form 3);[R, R, ] where
a; €. and m;€ M. Then J(.&, M) & D(.%&7, M) and J is an inner
derivation functor.

THEOREM 1. There is a one-to-one correspondance between the
set of inner derivation functors and the set of left U(.7) submodules

of D(7, U()).

Proof. If J(&7, )& D(7, ) is an inner derivation functor,
define 6(J) = J(.&, U(-¥)). We need to define an inverse + = 6.
Let 41 = D(s7, U(.)) be a sub-U(.&) module. If M = >, U(.),
define J(.&7, M) = Ser D 4;, where 4, =~ A for all 7. If M is any
unital right U(.%)-module, let X, be the free unital right U(.)-

module on the set M. Let 2, be the composite >.,.., D 4, = J(7,
Xy) = S n @ D(7, X,) = D(7, X)) 22, Do, M), where 1T

is the canonical projection 17: X,, — M. Define J(.&7, M) = image £2,.
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It is easy to see that the two definitions of J on free bimodules
agree.

Let v: M, — M, be a map of .o7-bimodules. v induces X,: X,, — X,
by applying v to generators. Consider the diagram

J(+, X))

I, Xy) L2, por, Xp)
| |
D7, Xy) 20, plr, X))
D(W,H)l lD(J‘/, I

D7, M) 2522, por, My

where ¢ is the inclusion. By restricting D(.%7, X,) to 4, for each
me M, we get J(.&, X,) making the entire diagram commutative.
Define

J(7, v) = D(.o7, v)/image 1D(.o7, II)
= D(7, v)[J(7, M) .

By commutativity, J(Q, v) takes on values in J(.&7, M,) and is an
epimorphism if vy is. Hence J is an inner derivation functor.

Finally, we show that ¢ and ¥ are inverses. Given 4 & D(.%7,
U(.7)), 00(A) = T(A)(7, U(¥)) = A. Conversely, given an inner
derivation functor J, 0(J) = J(.o7, U(.7)), T(O()(, U(¥) = J(.&7,
U(.~7)). Hence, by definition of ¥ and additivity of J, ¥(6(J)(.o7,
X)) = J(&7, X,;) for any .o -bimodule M. Then, since both J, ¥6(J)
are subfunctors of D(.o, ) preserving epimorphsims, they must agree
on all bimodules M.

DEFINITION. Let J be an inner derivation functor. Hj;(.%7, M) =
D(&7, M)[J(.s7, M). If a: M, — M, H(.o7, «) is the K-module homo-
morphism induced by D(.&7, «). Clearly, this makes H;(.%, ) a functor
from .o~ -bimodules to K-modules.

DEFINITION. Let {d.};.r & D(.o7, U(.%7)). An inner derivation
functor J is generated by {d.};., if J corresponds to the left U(.&)-
submodule of D(.&7, U(.%7) generated by {d;};c.r. J is finitely generated
if J is generated by some finite set {d;}., & D(.&7, U(.7)).

Let J be a finitely generated inner derivation functor, say by
{d}e. Let X; be the free .o7-bimodule on one generator x;,. Then
there is a unique morphism of bimodules &;: U(.%) — X, such that
1y0,& = ;. We write d; = d;o&;, the composite. Note that d; e D(.o7,
X). Let Y be the U(.%)-submodule of > X; generated by
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{7 (X} d_z)} Let C(di) =2V X)/Y.

DEFINITION.  Hj,,,(.%7, M) = Homy ., (Cy4,y, M). If a: M,— M,
then H3, 4, (.57, @) is the K-module morphism induced by Homy.,(C\,,, @).

These definitions clearly make Hj (.7, ) a functor from .o7/-
bimodules to K-modules. For any short exact sequence of .7 -bimodules
0—M —M— M"— 0, the sequence 0— HJ ,.,(.87, M) — H} 4,(7,
M) — Hj3,.,(.57, M") is exact.

In the sequel, we use the notation [x/x satisfies P] to mean the
submodule generated by the set of a« satisfying P. If f and g are
homomorphism, d a derivation, we write their composites as fg, fed,

dof.

THEOREM 2. Let M be an .o7-bimodule, f, € Homy ., (U(.), M)
such that 1;.,f. =meM. Then H} , (.57, M) is isomorphic to the
K-module of all k-tuples (m,)i such that 3 d;f, = 0.]

Proof. This is immediate from the fact that ftd;of, =
DU dio& T o, = (X di)o fim,, Where f, ., Homg ., (3 X;, M) such
that #,f,,...n, = m;. But by the definition of C,, as 3}F P X,/[.o7 3. d.],

H.;J,(di)(u{\/y M) = Homy., (dei): M) =~ [fmlmk/(Zf Jz)ofmlmk =0.]

Lemma 1. D(.Y7, ) is a left exact fumctor from .o7-bimodules
to K-modules.

Proof. Form the right U(.7)-module .o~ @ ,U(.7). Let P be
the submodule generated by {a, ® af — a0, X1 + a, R aila, a,e .7).
Then it is easily seen that D(.o7, M) ~ Homy ., (57 & U(.~7)/P, M)
for all M. But Homy ., (.7 @ U(.%)/P, ) is left exact.

Let 0— M’ N M-25M"—0 be an exact sequence of .-
bimodules, J generated by {d;}i, C\4, defined as above. Let f e Homy,
(Ciayy M") = Homy (., (55 €D X3/ Y, M"”). Lift f uniquely to f, € Homy.,
G X, M) and choose f,eHomy ., S\ P X;, M) so that f,o = fl.

Since SFd;eJ(.o7, SED X)), SFd)ef.ed(.o7, M) & D(.o7, M).
Since .7 3 d, S Y, f.0 = f, and f,/Y = 0, we have (3} d,)of.0 = 0.
Hence .27 (3fd;)of, & M’y and, regarding M’ as a submodule of M,
Sk d;)of, can be considered as an element of D(.&7, M").

DEFINITION. B?di): H‘?’(di)(%’ M”) '—’HJI(.M, M') iS deﬁned byf5?dl, -
SEd)ofy + J(7, M) e D(.o7, M) J(.o7, M').

LEMMA 2. 0y, is well-defined and natural. Further, if {di}F is
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another finite generating set for J, there are K-module morphisms
@, 2, such that the square

0
H, (57, M) 24, Hy o7, M)

NN

&%y
H} (7, M") % H{(.7, M)
commutes.

This is an easy exercise in diagram chasing.

By the last part of the preceeding lemma, we may drop the sub-
seript on 6, = 6°. In order to begin the exactness proof, we need
the following lemma.

LEMMA 3. Let J be an imner derivation functor gemerated by
{d;}i<=. Letde J(7, M). Then there exists an f € Homy,., Clrep X,
M) such that Cfd;)of = d.

Proof. There is a Y€ > ,,cx J(57, X,,) such that vJ(.&7, II) = d.
Write v = 3. By B € J(¥, X,,) and B,, # 0 only finitely many times.
Each 8,, = 3 Ui, mli ms Ui,m € U(.) where the second subscript indicates
that d belongs to the mth direct summand. Then, we easily see that
d =vJ(7, I1,) = (S d)of where o, f = 3. MU -

X .

LeEmmA 4. If 0—M —>M-25M"—0 is an evact sequence

of &7-bimodules, J an inner derivation functor gemerated by {d;}%,
then the sequence

0 — Hj (&, M') — Hj}, (7, M) — Hj,4,(7, M")
— Hy(, M') — H}(7, M) — Hj}(.7, M)

18 exact.

Proof. We have already seen exactness through Hj,,.(.7, M).

Exactness at H (.7, M").

Let fe Hj4,(57, M) = Homy,, (Cy,, M), fH} .,(57, 0) = foe
Hj,4(-57, M").  Then (fHj, (.57, 0))8° = (X di)o f+J(.o7, M'). But
since feHomy,, (Cy,, M), f/Y =0 and, therefore, (3fd;)-f = 0.
Then Hj, (7, 0)0° = 0.

Next, let feHomy(,, (Cy,, M"”) and fo¢° = 0. This means that
if feHomy ., (SF@ X;, M) is any lifting of f, as before, then
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Sk d)efeJ(7, M'y). Hence, there is feHomy.,, (SF® X;, M)
such that (3Fdy)ofy = (3Fd;)of by the previous lemma. Consider
F — FreHomy,, (S @D X, M). We have (3} di)o(f — F7) = 0; hence
Y(f— fX) =0, and (f — fX) € Hommy) (C(d yy M) = Hj,4,(7, M). Fur-
ther (F — P HS (7, 0) = (F — Fy)o = fo — Fyo = fo = f. That
is, f — fy is the required preimage.

Exactness at Hj(.%7,M').

Let fe Hj,4,(.,M"). Then fo°c D(.57, M')[J(.7, M') is gotten
by restricting the image of some element of J(.&7, M) to M’. Hence
So°H;(7, x) = 0.

Let de D(.s7, M) be a representative of an element of H} (.57, M’)
with (d + J(.&7, M")H;(.%, x) = 0. This means that doy e J(.%7, M).
Hence, by the previous lemma, there exists fe Homy,,C.rPX;, M)
such that (3¥Fd;)of =doy. Consider foeHomy ., (3@ X, M").
(Ckd)ofo = doyo=0. Hence Yfo =0 and foeHomy., (Cyy M) =
Hj,4,(o7,M"). Clearly (fo0)d° =d + J(.&7, M').

Exactness at Hj} (.87, M).

Clearly H}(.>7, x)H}(.%7, 0) = 0. Suppose d € D(.&7, M) is a repre-
sentative of an element of H}(.o7, M) and (d + J(.&7, M")H}(.57, 6) =0
This means doo € J(.&7, M""). Then there exists f € Homy ., CFPX;, M)
such that (3\¢d;)o f = do and there exists f e Homy ., (SF P X;, M) such
that fo=f. Consider d— (3 d;)of € D(.57, M). (d—(SFd;)of)D(7,0)=
doo — (¢ d))ofo = do — (3Fd;)of =0. Hence d — (3Fd;)of can be
considered as an element of D(.%, M’) and, as such, (d — X\id ;o f)D(.>7, ) €
D(.>7, M). But (SFdy)ofed(.7, M) and so (d — SFd;of)D(.7, x) =
d(J(7, M)). That is, (d — Sk d;of) + J(.o7, M) € H}(.>7, M') is the
required preimage.

2. Exactness of the long sequence.

DEFINITION. For n = 2, .97 a T-algebra, M a T-bimodule for
7, H* (7, M) is the K-module of equivalence classes of singular
extensions of length n of M by .&. Let

E=0—M—sM, ,—> M,_, Z 7 ——0

be a representative of an element of H*(.%7, M) and « € Homy .., (M, N).
Then EH"(.%7, a)e H*(.%7, N) is the equivalence class of the sequence

0—_)N‘_)Nn_2__)Mn_3 b .@ 7 0

where N, , = R/R,;; R, = NP M,_,, R, is the submodule of R, gener-
ated by {(—ma, my)/me M}. Under these definitions H*(.%7, ) is a
functor form .%7-bimodules to K-modules. For further details see
Gerstenhaber or Maclane.
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Let 0-M'—>M~— M"—0 be exact. We now adapt a method
of Barr [1] to define a connecting homomorphism 6*: H*(.%7, M) —
H (7, M), n=2,and §": D(.7, M"") — H*(.%, M’) and to show that the
long sequence 0— D(.57, M")— D(.>7, M)—D(.s7, M"Y — H¥.&7, M')—
cee > HY(Y, M) — HY (S, M) — H*""(.o7, M') — - - - is exact. Note
that we have dropped the subscript J from H" because, for n = 2,
H"(»7, M) is independent of the inner derivation functor chosen.

DEFINITION. A long T-singular extension is called generic if it
admits a morphism to any long T-singular extension.

LEMMA 5. Generic extensions exist.

Proof. See Barr [1] or Gerstenhaber [5].

Briefly the construction of a T-generic extension for %7 is as
follows. Let # be the free T-algebra on the set .o, N the kernel
of the canonical projection . # — .&7. Letting &% = 7 /N? the se-
quence 0 — N — . & — .7 — 0 is universal (or generic) for short singular
extensions of .. Let X;— N be an .97 -projective resolution of N.

Then X, — & .7 —0is a generic extension of &7 .

DEFINITION. If M is an .o7-bimodule, E(.57, M) is the split null
extension of M by .o7. It is the algebra on the K module .o~ @ M
with multiplication (a,, m.)(a,, m,) = (a,a,, a,m, — m,a,). The equiva-
lence class of the sequence 0— M — E(.57, M) — .7 — 0 is the 0
element of H*.o7, M).

A morphism « ¢ Homy, ., (M, N) induces E(.&7, «) € Hom, (E(.>7, M),
E(7, N)), the algebra homorphisms, in the obvious fashion.

LEMMA 6. If 7 1is generic for the algebra &7, then D(ZF, )
1s exact on .7 -bimodules (regarded as F -bimodules by pullback along
T F — 7).

Proof. We need only show that if M 2> M"—0 is exact then
D(&, M)— D( , M")—0 is exact. Let m: % — % be the canoni-
cal projection, d” e D(.&# , M").

We write Hom,(, ) to mean algebra homomorphisms. d’ induces
d" e Hom, (7, E(.57, M"")) defined by fd" = (fz, fd”) for fe. & ; and
d" induces d” e Hom, (& , E(.>7, M") defined by d” = nd".

We have
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J// s
/ |

—
E(s7, M) m—’ E(sr, M) —0

where d e Hom, (&, E(.>7, M)) exists by freeness of &% . Since (a,
m)E(.57, 6) = (a, mo) we must have d of the form fd = (fzz, m) for
some m e M. This implies that d is induced by a derivation d: Z — M,
where M is regarded as an & -bimodule by pullback along 7z. Since
(7 7i)d = (W,77)T, + 7(7@wT) = 07, + 7,0 =0, N°d =0. Hence d induces
de D(& , M) which is clearly the required preimage.

Suppose we have an .97 -bimodule M with the sequence X LN

F — o7 — 0 exact and deD(& ,M). It is easy to verify that
Eod € HOH]U(,,) (X, M)o

Levmma 7. If 00— N £, T — o7 —0 is generic for short sin-
gular extensions of 7, them for any .7 -bimodule M, H(.S, M) =
Hom, .., (N, M)/D(%, M)D(B, M).

Proof. The preceeding remark shows that D(& , M)D(B, M) &
Homy .., (N, M). Let f,eHomy.,, (N, M). Let <& be the T-algebra
E(s, M)|G, where M is an & -bimodule by pullback along 7, G the
ideal consisting of the elements {(—nB, nf.)/ne N}. It is easy to see
that the diagram

T

0—N-L o v 0

T

0 ng &7 0

[

is exact and commutative, where for g€ . &, gf, = (9,0) + G; for me M,
my = (0, m) + G; for (g, m) + Ge =#, (g, m) + G)og = gr.

Conversely, for any short singular extension 0 — M 2z
7 — 0, since 0 —»Nin?“ v —0is generic, there is a com-
mutative diagram

0 N F

S
=]
0—M— F —

0

ag

where f, is an algebra morphism, f, is an .%-bimodule morphism.
Suppose f1: F — &, fi: N— M also yield a commutative diagram.

Let f=f,— fi. Since f.o0d= flo =7, fc =0 and f is a K-linear
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map into M. Let 2, 2,6 % . Then

(T@,) f = (@ f)(@.f) — (@, fD)(@. 1)
= @)@ 1) — @ L)@ + @) @f) — @) (@.f1)
= @.f)@S) + (@f)(@.f7)
= ,(2.f) + (xxf)xz

regarding M as an .~ -bimodule by pullback along z. Hence f =
fi— fie D(&, M) and so

H*.o7, M) = Homy .., (N, M)/D(Z", M)D(8, M) .

LemMaA 8. If X< 7 —1s o/ —0 is exact, then ker (D(e, M):
D(Z, M) — Homy ., (X, M)) = D(.o7, M).

Proof. We have X — & - o —0 with d e ker (D.7~, M) —
ld

M
Homy (., (X, M)). Hence Hom; .., (X, M) is 0. Then says (imgge e)d=0.
By exactness ker(z)d =0. Then for ge . &, (g +kert)d =gd is a
well-defined derivation from . to M and is the required one.

~ Let X;,—> % —» .o/ —0bea generic resolution of .&7. Define
Hi(.s7, M) to be the i-th cohomology module of the complex 0 — D(.%7,
M) —>H0mU(,;/) (XU M) —> e ——>H0mU(;,,) (Xk, M) —.

LEMMA 9. H(.o7, M) = D(.7, M); H™"(.>7, M) ~ H**(.7, M),
n=1.

Proof. H(.7, M)=Xker (D(Z , M)—Homy., (X,, M)) = D(., M)
by Lemma 8. HY(., M)=ker (Homy ., (X,, M) — Homy ., (X,, M))/
D(&, M)D(e, M) = Homy ., (N, M)/D(%, M)D(B, M), since X, — X, —
N —0 is exact and Homy..,( ,M) is left exact, ~ H*(.&, M) by
Lemma 7.

For n=2,let0-M—P, ,— -+ — P — F — . —0 be a singu-
lar extension of length » + 1 and let C = ker (&Z — .&). Since 0 —
N— & — . — 0 is generic, we can fill in

0 N F &7 0

bk

0 C =4 &7 0

to a commutative diagram with f, a morphism of algebras, f, of .o-

bimodules; and, since X;— N — 0 is a projective resolution, we can
fill in
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X, X, X, N—0

Is I s

0 M P, C >0

to a commutative diagram with 0 = df,: X,,,— M. Then f, is a
cocycle and the coset of f, is in H"(.%7, M). A straighforward ap-
plication of the Chain Comparison Theorem shows that f, is unique

up to cohomology class.

LEMMA 10. Let 0 > M — M — M" — 0 be exact. Then there are
natural homomorphisms, 0", so that the long sequence

0 —— D(.57, M") —— D(.57, M) —— D(.57, M") —— H*(.7, M)
s B, M) — H¥ (7, M) s B, M) —— - -
s HY (7, M) s HY (7, M) — -
1s exact.

Proof. Taking a generic resolution X, — & — &% —0, we get
a commutative diagram

0 0 0 0 0

l l l
0— D(¥,M) — D(&,M) — D& ,M") —0

| | |
00— Homy ., (X,, M') — Homy ., (X,, M) — Homy ., (X,, M")—0

l | |

| | |
[ I |

0— Homy ) (X, M) — Homy (., (X,,, M) — Homy ., (X,,, M"") —0
I ! I

| I I

where the second row is exact by Lemma 6, the others since the X,
are projective. By Lemma 9, the long exact sequence corresponding

to this is as asserted.

THEOREM 3. Let 0 =M — M — M"—0 be exact, J an inner
derivation functor generated by {d;}:<=. Then the long sequence

O —_ H.?,‘di}(e/%’ M’) _— H}),(di,(JP/, M) I HJO',fd,‘-}(‘M’ M”)
—— Hi(., M') — H)(.7, M) — H}(.57, M) — H¥(.7, M)
e HYN o, M) - (S, M) —— e —s

18 exact.
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Proof. We have already seen the exactness of 0— HJ (.57,
M)— o - H{(S, M"). Note that the maps H}(.%, M') = D(.7,
MY, M) — D(&, M)[J(.7, M) = HX(., M), and H}(.%, M) —
Hj(.7, M") are induced by D(.s7, M') — D(.%7, M), D(.o, M) — D(.&7,
M) respectively.

Since J(.&7, ) is epimorphism preserving, J(.&7, M") 1s in image
(D(&7, M) — D(57, M""), and since D(.%, M) — D(.%, M"") —»Hz(&/
M) is exact, §* induces ¢": H} (.7, M"") = D(.s7, M")|J(.>7, M) — H¥ (%7,
M), the kernel of which is image (D(.&7, M)/J(7, M) — D(.&, M")/
J(&, M"”)). Combining, 0 e H} (A, M"”) has been shown exact,
Hy(y M)— H}(.7, M) —(E-1—> H*(7, M') is exact by the previous

remarks, and H}(.%7, M") SN H(s7, M) — H¥ (S, M) — - -+ is exact
by Lemma 10. This proves the theorem.

3. Extensions. We briefly indicate extensions of previous the-
ory to other cases of interest. First the relative (K-split) theory.
The zeroth and first cohomology modules are as before. H"(., M),
n = 2, is defined as the K-module of equivalence classes of K-split
extensions of length n. Once we note that a split generic resolution
always exists, the previous theorems are easily seen to hold with this
new definition of the cohomology modules. For a T-algebra, let #,
be a free T-algebra on the module . (rather than on the set .&),
Ny the kernel of %, — .o — 0, the canonical projection. Then, with
Ny = Ny/N%, 7 = Fx/N%, 0— Ny — Fr— % — 0 is generic for short
singular K-split extensions of .o7.

We next consider unital cohomology. Let .o be a T-algebra with
unit 1,,. The algebra U,(%) = U()/[1%, — 1y, 1% — 1y.] 18 the
unital universal T-multiplication envelope for .. It has the property
that any unital T-bimodule for .o, M, is a unital right U,(.%") module
and conversely. Then instead of working in the category of .o7-
bimodules, we may work in the category of unital .o7-bimodules.
After showing a correspondance between inner derivation functors in
this category and left U,(.%)-submodules of D(.&7, U,(.&)), all of the
previous constructions and results go through without change.

The following discussion of cohomology of algebras with involution
will find application in Glassman [7], in the cohomology of Jordan
algebras. If (&7, 0) is a T-algebra with involution (automorphism of
period 2), then (M, o) is an (.87, o) bimodule if E(.o7, M) is an algebra
with involution (automorphism of period 2) under the map (a, 0)o = (a0, 0),
(0, m)o = (0, mo). Morphisms of .9”-bimodules with involution are just
morphisms of .9”-bimodules which, in addition, commute with the in-
volution.

The universal envelope with involution (automorphism of period
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2) for (.7, 0) is the associative algebra U(.&7) @ U(.87)é with mul-
tiplication ¢* = 1, 6a* = (¢0)°d, 6a° = (a0)’d (Ga* = (a0)’d, Ga’ = (Ga)’o).
U(.>7) P U()d = (U(57), 6) has the property that any .o~ -bimodule
with involution (automorphism of period 2), (M, o), is a right unital
(U(.&7), 6)-module and conversely; and (U(.%), G) is the free (.27, 0)-
bimodule with involution (automorphism of period 2) on one generator.
We define D((.o7, 0), (M, 0)) = [de D(7, M)/god = d-a]. We define
an inner derivation functor as an epimorphism preserving subfunctor
of D((.7, o), ) and, again, show correspondance between inner deriva-
tion functors and right U(.%7, &) submodules of D((.%7, o), (U(.%), )).
The previous constructions and theorems follow without change,
now working in the category of modules with involution (automorphism
of period 2). However, the involution (automorphism of period 2) al-
lows a refinement in the choice of H® which we will now describe.
Write (X(x), &), the free bimodule with involution on one generator.
By X we will mean (X, &) considered without its involution. X is
free on two generators, ¢ and x26. Suppose that J is an inner deriva-
tion functor with the property [ J((.%7, 0), (X, 6))] S F = X. Here
J is generated by {d;}{, [ %7 J((.o7, 0), (X, )] is the submodule generated
by the image of . under all inner derivations, F' is a free U(.&)
submodule of X on one generator which is closed under /F. Then
letting [.%7 3¢ d;,6] be the submodule with involution (automorphism
of period 2) generated by .o~ 3Fd;, we define C%, ay = 248 B (F, 6/F)]
[ SFd;, 7] and get a long exact sequence as before
Of particular interest are the cases where F' is generated by
& — a0, or © + 5. Consider the former. Hom .5 ((CY, 4, &), (M, 0)) =
Hom 5 (3 @ (F, 6/F)/[(.o7 3k dy, 6), (M, 0)) ={(myy -+ -, m)/m; € M,
m; skew and 3F d;o fmz = 0}, where (z — xa)fm = my;, = {m, — mo, --
m,—m,0)|m; e M,>td ofm —m;0=0}. Onthe other hand Hom (., 3 (CJ @)
(M, 0)) = Hom g (o, (i O (X, (- St d,, ), (M, 0)) = {m., - - mk)/
ZI{ Ofm - O}y where z; fm =m;, = {(mu Tty mk)/z‘f diofmi—-mig = 0}°
Thus, by using C'"*?1 we have limited consideration to the skew
elements of M. In the general case, F' will be generated by an element
y such that yé = yu, w € U(.) invertible. So, by using C'"!, we will
limit consideration to k-tuples (m;) where m,o = m;u.

*y

4. Comparison with known theories.

Maximal and minimal inner derivation functor. Let J be the
inner derivation functor corresponding to the 0 submodule of D(.o7,
U(s7)). It is clear that J(.o7, M) = 0 for all .o~-bimodules M. Since
@, the empty set, generates J, we have C, = 0 and H) , (.7, M) =
Homy ., (Cyy M)=0. Also H}(.o7, M)=D(.s7, M)/J(.&7, M)=D(.o7, M).
Then, given an exact sequence 0 — M’ — M — M — 0, the sequence
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of cohomology modules is 0 — D(.&, M') — D(.7, M) — D(.&7, M) —
H¥ >, M) — ... —. This is the minimal inner derivation functor and
has been discussed, for the commutative associative case, by Barr [1].

If J corresponds to the submodule D(.&7, U(.%)) of D(.&, U(.%)),
we call J the maximal inner derivation functor.

The classical inner derivation functor.

DEFINITION. If .57 is a T-algebra, the Lie transformation algebra
of %7 is the Lie algebra generated by {az, a,/a € 7}, the collection
of right and left multiplications of .&7 by elements of .9~. We denote

this & (.%7).

Write X(x) = U(%), the free right U(.%") module on one generator.
Then, as elements of E(.%, X), the product of two elements of X
is 0. Thus, we see that a non-zero element of & (E(.7, X)) map-
ping & — X must have the form >, p; where p; is of the form
la, [+ [a,, (u)]---]. Here a;€ .7, ue U(¥),s; s =L or R. If
f €Homy ) (X, X) lay, [ -+ [a,, @u)]o f = [a, [ -+ [a, (ofu)] -~ ].
Hence D(.57, U(.7)) N L (B(.7, U(.%7))) is a left sub-U(.)-module
of D(.s7, U(.7)).

DEFINITION. The classical inner derivation functor I is the inner
derivation funetor corresponding to D(.57, U()) N L (E(7, U(¥))).

a. Classtcal wnital associative cohomology. Let .o be associative
with unit, U () = &7 Q .7, the unital universal enveloping algebra.
Schafer has shown that a derivation d: . — .7 is in () if and
only if it has the form a, — a;, a € .. From this it is clear that if
M is an .o7-bimodule, a derivation from & to M is in F(E(.7, M))
if and only if it has the form m, — m,, me M.

Writing X(x) = U,(.7), the free unital .9 -bimodule on one gen-
erator, de I(, X) if and only if d = (xw), — (xu),, we U(). But
then d = (v — x,)of,, where f, € Homy ., (X, X) takes # —axu. Thus,
the set {v; — x,;} generates I. If Y is the U,(.%)-submodule of X
generated by .o/ (¢, — «,) = {ax — 2a/a e .}, then C,, ., = X/Y =
X/[ax — xa] = .7 (as . -bimodules) under the map axb— ab. So we
have Hj} ..., (%, M) = Hom 4.0 (., M) and H},, ., (5, M) =
[me M/am — ma = 0 for all ac . o7}].

The Hochschild relative cohomology groups for an associative al-
gebra with 1 are defined by H™(.o7, M) = Extl., 0,0 (57, M), It is
well-known that A°(.o7, M) = [m e M/am — ma = 0 for all ae.&] =
H g (7, M); HY(.o7, M)=D(.57, M)/I(.57, M)=H'(.57, M); H(.>7,
M) = the K module of equivalence classes of split short singular ex-
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tensions of M by .o = Hi(.%, M). Since H™ and H" both vanish on
relative injectives for n = 2, we have

THEOREM 4. If & is assoctative with 1, Hochschild cohomology
agrees with wnital classical split cohomology.

b. Classical unital associative cohomology with imvolution. Let
(.7, 0) be an associative algebra with unit and involution over a
commutative ring K with unit and 2, (U,(.%), ) the universal unital
enveloping algebra with involution for (&7, o), (X(2), ) = (U(%), )
the free unital .&7-bimodule with involution on one generator.

Let (M, o) be a bimodule with involution for (.7, ¢). We have
defined D((.%7, 0), (M, 0)) = {d € D(.&7, M)/ood = doo} and have noted
that del(.>7, M) = D(.&7, M) N L (E(S7, M)) if and only if d =
My — My, mE M.

LEMMA 11. del(.7, M) satisfies god = doo if and only if d =
my — m; with m skew in M.

Proof. Suppose m e M, mo=—m. Letac .. Then (am—ma)o=
mo(ao) — ao(mo) = —m(ao) + (ao)m = (ac)m — m(ac). Conversely, sup-
pose m e M, and my — m, commutes with o. This is equivalent to the
operator identity om; — om, = o(mo), — 6(mo),. Since ¢ is onto, we
may rewrite this (mz + moz) = (m; + mo;) or (m + mo)z = (m + mo);.
Writing m = #(m + mo) + 3(m — mo), we have

mp — my = 3(m + mo)y — (m + mo), + (m — mo), — 3(m — mo),
= i(m — mo)z — (m — mo), .

But m — mo is skew.

With (X(x), 6) =~ (U,(7), 7), the free unital bimodule with involu-
tion on one generator, we define the classical inner derivation functor
I((.s7, 0), ) to be the one generated by D((.&7, 0), (X, 7)) N L (E(7, X)).
From the previous lemma we see that d e I((.%7, 0), (X, §)) if and only
if d= (2u — (2u)d)z — (xu — (xu)d),, v e (U,(¥), 7). But then d =
(® — x0)r — (@ — ®G,)o fu, Where f,eHomy 5 (X, 0), X, 0)) takes
T — TU.

Writing @ =« — &, I is generated by %, — %,. Noting that ¥ gen-
erates a free submodule F' of X and recalling the previous discussion
of cohomology of algebras with involution, we define (C7 ., 0) =
(F, 6|F)[[.57 (x5 — @), 0] and find Homy, o,z (CT1zp—spys 0), (M, 0)) =
[m e M/m skew and am — ma = 0 for all a €.97].

We note that (.o, —0) is also a bimodule (but not an algebra)
with involution. The map taking % — 1, defines an isomorphism
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(CF iap—app 0) = (57, -0). Harris [8] has constructed an explicit (U,(.%),
0) K-split projective resolution of (.&, —o0), X, — (&, —0). He has
shown that Homy, (.5 ((X,, M, 0)) is isomorphic to the space of n-
linear functions ¢: ¥ ®Q -+ ® &% — M such that (a, ---,a,)90 =
®,(0,0, +++,0,0)g, ®, = (—1)"*(n—1)(n—1)(n—2). We have already seen
that Homy (), (-7, —0), (M, 0)) = [m € M/am — ma = 0 for all a € &7,
m skew]. We will now show correspondances between certain linear
maps and cocycles and coboundaries. Following standard notation, we
write these on the left. Harris shows that 1-cocycles are linear func-
tions g: 7 — M such that g(ab) = ag(d) + g(a)b and g(ac) = g(a)o for
all a,b in .%7; i.e., these are derivations commuting with involution.
1-coboundaries are functions g¢g:a — am — ma such that goo = gog.
By Lemma 11, these are just {mp — m m skew in M}. Hence
Extly, o0 (&7, —0), (M, 0)) = D((-7, 0), (M, 0))/I((.7, 0), (M, 0)) =
Hi(.o7, 0), (M, 0)). :

2-cocycles are bilinear functions g: & Q .o — M with a,9(a,, a;) —
g(a,as, a;) + g(ay, a.a;) — g(a, a)a; = 0 for all a;€ .97, and g(a, a,)o =
9(a,0, a,0).

Now let K be a field characteristic #2,

0 — (M, 0) —> (F, 0) — (&7, 6) — 0

be a short singular extension of associative algebras with involution.

We can choose a linear splitting o for (<#, o) -~ (57, 0) that respects
involution. For this, choose a basis for .o, say {a, ---, a,}. Choose
b, e <% such that b7 = a,. Define

b, if a,¢ Ka,
0.0 = 4(:22 )b, + kbo) if 0.0 = ka, and ~1#keK
1
3(b, — bo) if a0 = —a, .

Since %k* = 1, we can define a,00 = a,00.
Suppose a0, :--, a0, a,00, -+, 2,00 have been defined so that ¢

commutes with involution on [a,, :--, a,, @0, --+, @,0]. Suppose a,:,
is the first a; ¢ [a,, - -+, a,0]. Then we can choose as above and continue
inductively.

Let 6 be so chosen and write Z(a, b) = adbd — (ab)d € M. Then

Ma, b)o = ((adbd) — (ab)d)o
= booado — (ab)do = booacd — (ab)ad
= bodaocd — (boao)o = h(ho, ao) .

Hence we can associate a 2-cocycle to each singular extension of M
by .&. Suppose we have
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0— (M, 0)— (#,0) —> (¥,0) —> 0

| 1 |

00— M, 0) — (F,0)—> (¥,0)—>0.

Then (m, a)a = (m + h(a), a) where & is a 2-coboundary. But since
« commutes with involution (m, a)aoc = (m+h(a), a)o = (mo + h(a)o, ao).
Also (m, a)aoc = (mo, ao)x = (mo + h(ao), ac). Hence h(a)o =h(ao). Since
Harris’s cohomology modules clearly vanish on relative injectives for
n = 2 as do the classical ones we have

THEOREM b. If (.87, 0) is associative with unit over a commuta-
tive ring with 27, then Harris’s 0-th and 1-st cohomology modules
are classical; if K is a field of characteristic #2, (%, 0) an algebra
over K, Harris’s modules are classical for all n = 0.

c. Classical Lie cohomology. Let .o be a Lie algebra over a
commutative ring with unit X, M a Lie bimodule for .&~. We denote
multiplication in .&7 by brackets and multiplication of M by .o by
juxtaposition. Schafer has shown that a derivation from & — &
is in () if and only if it is of the form a,,ac.%”. From this
it is clear that a derivation from .7 to M is in ¥ (E(.&7, M)) if and
only if it has the form m,, m € M.

Writing X(x) =~ U(.%), the free .o-bimodule on one generator,
del(.7, X) if and only if d = (xu),, we U(.%7). But then d = x,of,,
where f, ¢ Homy ,, (X, X) takes © — zu. Thus the set {x,} generates
I. If YV is the U(%) submodule of X generated by .>7x,, then
C, ., = X/Y. Even over a ring, the Poincare-Birkhoff-Witt theorem
shows that U(.%7) is linearly generated by monomials in the generators
for .&7 and 1;..,, and that there is an augmentation U(.%7) ¢ K1, ).
Then X/Y ~ K, K regarded as an .o -bimodule by pullback along e.

To compute the modules Ext?; ., x (K, M), the Koszul resolution
may be used, and as was the case for associative algebras, we have

THEOREM 6. If 7 18 Le, H{?('—%y M) = EXt?U(:J),K) (Ky M) Jor
all n= 0.

d. Classical Lie cohomology with automorphism of period 2. In
a later paper, this case will be used to discuss cohomology of Jordan
algebras.

Let (%7, 0) be a Lie algebra with automorphism of period 2 over
a commutative ring K with unit and 27, (U(.%7), 6) the universal en-
veloping algebra with automorphism of period 2 for (%, o), (X(%), 6) =
(U(), G) the free .o -bimodule with automorphism of period 2 on
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one generator x. Let (M, o) be a bimodule with automorphism of
period 2 for (.%,0). We have defined D((.%,0), (M,0)) =][de
D(, M)/o-d = doo] and have noted that d € I(.&7, M) = D(.57, M) N
FL(E(s7, M)) if and only if d = m,, m e M.

LEMMA 12. de (., M) satisfies dod = doo if and only if d =
m; with m symmetric in M.

Proof. Suppose meM, moc =m. Let ae.&. Then (ma)o =
moao = m(aog). Conversely, suppose m € M is such that m, commutes
with ¢. This is equivalent to the operator identity o(mo), = a(m.).
Since ¢ is onto, we may write this (mo), = m,. Writing m =
3(m + mo) + 3(m — mo), m, = F(m+mo), + (m — mo), = §(m + mo),.
But i(m + mo), is symmetrie.

This shows that d € I((.%7, 0), (X, 7)) if and only if d=(2u + (xu)d),,
ue (U(), ). But then d = (x + xd).0f, where f, € Hom ., 5 (X, d),
(X, 0)) takes  — 2u. Thus, with # = « + «d, I is generated by {%.}.
Noting that x generates a free submodule F' of X, F' closed under &,
we define (C? 3, 0) = (F, 6/F)/[.%7 (%.), 6] and find that Homg,,;
((CY .,z 0)y (M, 0)) = [m € M/m symmetric and ma = 0 for all a € 7},
It is easy to see, as was done for X/Y = K, that C7 ;,, is isomorphic
to (K, 1), 1 denoting the identity automorphism, under the map % — 1.

For K a field of characteristic #2, Harris [9] has constructed a
projective (U(.%), &) resolution of (K,1). Defining H™((.o7, o), (M, 7))
as the #n-th cohomology of this complex. Harris has shown that
H((.%7, 0), (M, 0)) = [m € M/m symmetric and ma = 0 for all a e /'] =
H; (.57, 0), (M, 0)); H(.%7, 0), (M, 0)) = the K-module generated by
those derivations f from . to M such that f(xo) = f(x)o modulo inner
derivations of the form f(a) = ma with m symmetric ~ H}((.%7, 0), M, 0));
H*(.&7, 0), (M, 0)) = the K-module generated by those Lie 2-cocycles
g such that g(ao, bo) = g(a, b)o for all a,d in & modulo those 2-co-
boundaries given by linear maps commuting with the automorphism
o, ~ H¥(.>7, o), (M, 0)).

THEOREM 7. If .o is a Lie algebra over a field of characteristic
*#2, % with automorphism of period 2, then its cohomology modules
as defined by Harris are classical.

e. Classical untital commutative associative cohomology. If o7 is
commutative agsociative with 1, U,(.%) = .7 with A =p=1: & —U, ().
If M is a unital commutative associative bimodule for the associative
algebra .7, I(.%7, M) = [mz — m;/m € M]. But since M is commuta-
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tive am = ma for all ae .7, and I(.o7, M) = 0. Thus, in this case,
classical cohomology is minimal.

If K is a field, F a field extension of K regarded as a commutative
associative algebra over K, then Gerstenhaber has shown that H*(F,
F') = 0 if and only if F' is separable extension. But since F' is certainly
an injective F-bimodule, the case F not separable provides as example
for which H*F, ) does not vanish on injectives.

THEOREM 5. If .7 is a commutative associative algebra with 1,
classical unital cohomology 1s minimal. If FF 2 K is a nonseparable
field extension, there is mo immer derivation functor J, no module C,
for which the right derived functors of Hom,(C,, ) are {H}(F, )}.
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