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ON THE CONFORMAL MAPPING
OF VARIABLE REGIONS

FRANK J. POLANSKY

We establish an estimate for the functional

ί ώ l ,Kf,g;p)=\ \M-g(t)\.

Cp is the circumference \t \ = p, 0 ^ p < 1. Here / and g are
normalized conformal mapping functions of | z \ < 1 onto a
pair of bounded, open, simply connected, origin containing
domains in the w plane whose boundaries are near each other
in some sense. In the second part of the paper we establish
an estimate for the functional /(/', g'; p) in case the boundaries
are additionally assumed to be rectifiable.

We are motivated by the fact that if one of the domains is a
disc we get the case of "nearly circular" domains which has been
much studied.

Aside from an absolute constant our estimates are geometric in
nature, being expressed in terms of numbers which are derived from
properties of the boundaries of the mapped domains. They are of
interest to us because they hold uniformly for all p, 0 g p < 1 and
because they approach zero when one of the domains converges to the
other as described in the paper.

1* DEFINITION 1. Let Df and Dg denote a pair of open, bounded,
simply connected sets in the w plane both of which contain the origin.
Let Γf and Γg denote their respective boundaries. Let Δ denote the
component of Df Π Dg which contains the origin and let Γ denote the
boundary of A. Let Xf be the radius of the largest disk lying in
the complement of Γf and having its center on Γ (if no such disk
exists, write Xf — 0). Let Xg be analogously defined. The inner distance
is defined by the formula

ε = ε(Γf, Γg) = Max (Xf, X9) .

The statement 'φ(z) is a normalized mapping function' means that

Φ(z) is the conformal mapping function of one bounded, simply connected,

origin containing domain onto another and that 0(0) = 0, and ^'(0) is

positive.

The symbol Cp will always be used to denote the locus \t\ = p,

0 ^ p < 1.

Let Rλ and R2 denote the radii of two circles with centers at w = 0
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which are such that the boundaries Γf and Γg lie in the ring

0 < Rγ ^ I w I ̂  R2.

THEOREM 1. If f(z) and g(z) are the normalized mapping functions
of I z I < 1 onto Df and Dg respectively, if 0 < e(Γf9 Γg) < Rίy then

I(f g;ρ)=\ I fit) - g(t) | | dt \ £ KXR%(J-)1" .

The number K^ is an absolute constant, and the inequality holds
uniformly for all p, 0 <^ p < 1.

Before proving Theorem 1 we state some results which are used
in the proof.

LEMMA A. ([4], p. 349.) Let D be a bounded, simply connected
domain which contains the origin and let z = ψ(w) be the normalized
mapping function of D onto the disk \ z \ < 1 in the z plane. If w
is a point of D at a distance δ from the boundary of D, then

1 - I ψ{w) I ̂  AVΊψψ) .

LEMMA B. ([3], p. 563.) Let w = φ(z) be the normalized mapping
function of \ z \ < 1 onto the domain whose boundary D lies in the
ring 1 - <7 ̂  | w | ^ 1, 0 < < 7 < l . Then

\ \φ(t) - t\2.\dt\

The number K2 is an absolute constant, and inequality holds uniformly
for all p,Q <^ p < 1.

LEMMA C. ([1], p. 165.) If F(z) and Θ(z) are regular in \ z \ < 1
if 0(0) = 0 and \ Θ(z) | < 1 in \ z \ < 1, then

\ \F(Θ(t))\2-\dt\^\ \F(t)\*.\dt\,

uniformly valid for all ρ,0<*p<l.

2. Proof of Theorem 1. (a) Prom Definition 1, each point of
Γ will have distance at most ε from Γf. The inverse of f(z) maps Δ
onto a domain E which lies in | z \ < 1. Let Eι denote the boundary
of E. From Lemma A, the set E1 will lie in the ring
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Since

/'(0) ^ inf

the set Ex will lie in the ring

1 - 4

The above inequality fails to define a ring if ε/R1 ^ 1/16. We treat
the two cases separately. Let ω(z) be the normalized mapping function
of I z I < 1 onto E. If ejR1 < 1/16, we have from Lemma B,

J(p) = f J ω(t) - 1121 dt I ̂  16iζ>—

For the case 1/16 ̂  ε/2^ < 1, we have trivially,

J(ρ) S 4:-2πρ ^ 128τr — .

Thus, if K3 = Max [128ττ, 16ίΓ2], then

( 1 ) ^

( b ) For O S r £ 1, \z\ < 1 let

Br(z) = f(z) - f(rz) .

Then

Hence

f(z) ~ f(ω(z)) = Br(z) - Br(ω(z)) + f(rz) - f(rω(z)) .

\ \f(t)-f(o)(t))\ \dt\

(2) ^ ί \Br{t)\-\dt\ + \ \Bτ(a>{t))\ \dt\

+ ( \f(rt) - f(rω(t)) \-\dt\ = I, + I, + Is.

Jc p

If /(») = Σ Γ akz
k then

? ^ 2πp> \ I β r(ί) |2.1 dt I - 2JΓ/OJ | ak \2-ρ*k {l - rkf 2πρ
JCp

α41
2(1 - rk)

= 4π*Σ I ak |
2(1 - r)( l + r + r a + + r*-1)
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4ττ2(l - r)Σ(\ ak f k) = 4τr(l - r) (area of Df)

Thus, if Kϊ = 4ττ2,

( 3 ) I, ̂  KiRyT^~r, 0 ̂  r ^ 1 .

From Lemma C, the same bound is valid for /2:

(4) Z2 ̂  KJtyT^ΓΪ, 0 ̂  r ^ 1 .

( c) If 0 < r < a < 1, we have for the integrand of̂  I3:

1 1

7 — r ί 7 — rω

rci) — r ί

Idγl

(7 — rt)(y — rω)

\dΎ\
2π

- ί I

'« 17 — r ί I 17 —

T/2.Γ( I ^Ύ i i i/2:

! J 'l)ca I γ - r ω l 1 J
<. Rt\ω - t\

2π

Let α - » l and we obtain

\f{rt)-f{rω{t))\^-

Hence, from (1)

JCp

( 5 )

Γ 27rα T/2

 # Γ__27rα___T / 2

l α 2 - Irίl J I r f - Irωl2 J '

1 — r
0 < r

\ω(t) - t\\dt

^ - ^ — Γ( I ω - 1121 dt l
1 — r LJcp

If we combine (2), (3), (4) and (5), we obtain the estimate

( 6 )
\f(t)-f(ω(t))\ \dt

^ 2UΓ4i?2V
/Γ=~r + 4r)\ , 0 < r < l

(d) The whole argument can be repeated with g(z) in place of"
). In this case we shall have an estimate analogous to (6):
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2, 0 < r < 1 .

The function ω,(z) is the normalized mapping function of | z | < 1 onto
the image of A under the inverse of g(z). Since f(ω(z)) and giω^z))
are both normalized mapping functions from | z | < 1 onto A it follows
from the uniqueness that

( 7 ) f{ω{z))^g{ωί(z)),\z\<l.

If we combine (6), (6'), (7) and choose r so that 1 - r = (ε/R,)113, the
conclusion of the theorem is established.

Throughout the remainder of the paper we shall assume the
situation of Theorem 1 with the added hypothesis that Γf and Γg are
rectifiable Jordan curves of lengths Lf and Lg. In this case it is
well-known that Df is the continuous image of | z | <: 1 and that if
f'(z)' is defined at the boundary by

f'(eiθ) =

then /'(eίθ) exists almost everywhere, is Lebesgue summable, and

3* The following definition ([4], p. 337) and lemma ([4], p. 337)
are useful.

DEFINITION OL. Let c denote a crosscut of Df which does not
pass through w = 0. Let T denote that subregion of Df determined
by c which does not contain w — 0. Let λ denote the diameter of c
and let A denote the diameter of T. For any δ > 0 consider all
possible crosscuts c for which λ ^ δ. The crosscut modulus is defined
is defined to be

ηf(S) = sup A

The crosscut modulus is monotonic and has the property:

ηf{δ) — 0 as 8 —> 0 .

LEMMA D. Lei ̂  d<mo£e ί/ie area of Df. Let zQ be any point
on I s I = 1 and k8 the part of the circle \ z — zQ \ = s wfcic/t ϋiβs m
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I £ I < 1. Then for every s, 0 < s < 1, there exists a σ, s <̂  σ <̂  slβ

such that the image of kσ is a crosscut of length

We introduce the abbreviation:

(8) v,(δ) = ηfH-^_Y\,0<δ<l.

An immediate consequence of Lemma D is

LEMMA 1.

hf(r) = Sup \f(z) - f(rz) | ̂  vf(l - r), 0 < r < 1 .

4* DEFINITION 2. For m ̂  2, let {wx, w2, w3, , iι;w} be any set

of m distinct points taken in cyclic order on Γf and so distributed
that Γf is partitioned into m subarcs of equal length, each subarc
having length Lf!m. Let lλ be the length of the perimeter of the
cyclically determined polygon, and let λ, the norm of the partition,
be defined by

λ = MaxflWi - wm I, \w2 - w j , \w3 - w2\, •••, \wm - wm^\] .

The number lλ can be written as

lλ = I w, - wm I + Σ I ^^+1 ~ u>k!
Λ = l

For any 8 > 0 consider all partitions for which λ ̂  δ. Let

Uf(δ) = Inf ^ .

It is easily shown that Sup Uf(δ) — Lf. We define the modulus of
rectifiability to be

ζf(δ) = Lf- Uf(δ) .

The modulus ζf(δ) is monotonic and has the property: ζf(δ) —> 0 as S ~> 0.

LEMMA 2. // L/(r) is the length of the level curve in Df which
is the image of \z\ — r, then

Lf - Lf(r) ^ ζf(Vv(l - r)) + 2LfVvf(l - r)

+ Avf(l - r), 0 < r < 1
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Proof. Let the positive integer m be defined by

(9) m = \ Lf 1
LVvf(l - r) J + 2 .

Vvf(l - r) J
Let wί9 w2, , wm be a set of points in cyclic order Γff so arranged
that Γf is partitioned into m equal subarcs, each subarc having length
Lfjm. Clearly the norm of the partition does not exceed Lf/m and
if lm is the length of the perimeter of the polygon, then

(10) L, - L ̂  U^A .
V m /

We define the points zk, wk by wk — f(zk), wk — f{rzk). The set wk

determines a polygon inscribed in the level curve in Df which is the
image of | z \ = r. Comparing corresponding sides of the polygons, we
have from Lemma 1,

I Wk+i - w* I ̂  I wk+1 - wk+ί I + I wk+1 - wk I + I wk - wk |

^ hf(r) + \wk+1 -wk\ + hf(r)

^ 2vf(l - r) + \wk+1 - wk I .

Similarly,

I wk+ι — wk I <; 2^(1 — r) + I wfc+1 — wfc | .

Thus, if Γm is the length of the perimeter of the level curve polygon,

(11) 11'» - L I ̂  2mvf(l - r) .

Noting that ^ ^ ί//(r), we have from (10) and (11)

Lf - Lf(r) £ L , - l ' m £ L f - l m + \ l m - l

d±A - r) .
m

From (9)

m ^ , hJ v + 2 .
l - r) ~ ~ τ/v/(l - r)

The conclusion follows from (10), (11) and (12).
In the estimate of Lemma 2, it would appear that the first term

should dominate the others and this will be so if ζf is sufficiently weak.
However, it is possible (e.g., if Df is a disk) for the term 2LfVvf

to be dominant. For purpose of final estimate we introduce the
boundary functional

(13) βf(δ) = ζf{Vvf{d)) + 2LfVvf(δ) + 4»f(δ), 0 < δ < 1,.
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LEMMA 3.

ί I fit) - f'(rt) I I dt I ̂  2VLfβf(l - r) ,
J^p

0 < r < 1 , for all p, 0 ̂  p < 1 .

Proof. The function l//'(£) (i.e., the branch which is positive

at the origin) is regular in | z \ < 1. If Vf(z) — ΣΓ ckz
k, it is well

known that Σ\ck\
2 is convergent and

Lf = f ^ V / ' f e ^ ) ^ = 2ττi; I ck |
2 ,

Jo

L,(r) = (2V/'(re ί θ)τ//'(re i θ)rd;© = 2τrr.2? | ck |V
2fc, 0 < r

Jo

We write

[\c l/'(ί)-/'

= Ji J2 ,

2πΣ | cfc |
2(1 - rzk)

f f { ) ^ f f { ) ,
r

I2 = 2πρΣ\ ck |
2 p2k(l + 2rfc + r2k) ^ 2ττΣ(| cΛ |

2 4) = 4Lf .

From these inequalities and Lemma 2, the conclusion is apparent.

5* Final estimates* We assert:

THEOREM 2. If Γf and Γg are rectifiable Jordan curves of lengths
Lf and Lg, if 0 < ε/R1 < 1, then

', g>; p) <ς 2[VΊΓf

uniformly for all p, 0 <; p < 1 ,

= (ε/i?,)1'24, /̂  = | Lf - Lg |, M = Max [JΓA, 2v/LgK1R2].

Proof. Write

/ ( / ' , ^' P) ^ \ I / '(ί) - / '(r ί) I. I dt I + ( I / '(r ί) - ^'(

Jcp Jcp

+ ( W(rt) - ff(

Choose 1 — r = σ, from Lemma 3,
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Jt S 2VLfβf{σ) .

Let 0 < p < a < 1, then, from Theorem 1

cpL2π Joa ( γ - r ί ) 2 (1 - r) 2

From the proof of Lemma 3 (with g in place of /)

and

Lg - L,(r) £\L.-Lf\ + Lf- L,(r) + \ Lf(r) - L,(r) |
= μ + A + B.

From Lemma 2, A ^ βf{σ), and

- I Sf(rt) | ] I dt I ^ j c \ f ' ( r t ) - g'(rt) \-\dt\

Thus,

I, g 2vΊΓg(μ + A + B)112 ^ 2vΊΓg(μ112 + A1'2 + B1'2)

Combining estimates we have

(14) HΓ, 9'; P) ̂  2(V% + VTg)Vβ~Aσ)
+ 2VLg~μ + (2v/L,KiR2

From (8) and (13) and the definition of ηf,

\
V*

^ ((2πsEtγι*-σ) ^ Rfσ

Hence

(15)

the conclusion follows from (14) and (15).

LEMMA 4. If μ = \Lf - Lg\ and if

J* = Sup ! ( / ' , 0'; !θ), 0 ^ p < 1 , μ ^ I*
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Proof. We have

I Lf{p) - L β ( p ) I = •( I f ' ( t ) I \dt I - Γ • I ^ dt

Let * l on the left and the lemma is proved.

LEMMA 5.

\f(eiθ) -g(eiθ)\ £ I* .

Proof. The Fejer-Riesz inequality asserts that

= [ \H(x) * dx ^M2* \H(eia)\p da =
2 Jo

p > 0 and a? is real .

Here H(z) which is regular in \z\ < 1 belongs to the Hardy class H*

in I z I ̂  1. Let p = 1 and we make the choice H{z) ..== ρeiθ{f'(zρeiθ) —

g'{zρeiθ)). Noting that A ^ Γ.EΓ(α!)<fo , that 2B = / ( / ' , #'; /o) ^ I* ,
Jo

we let p-+l and we get the conclusion of the lemma.
We are now able to state our convergence theorem as

THEOREM 3. If the f boundary is held fixed and the g boundary
is allowed to vary, a necessary and sufficient condition that /(/ ', g'; p) —>
0 uniformly for all ρf 0 <: p < lf is that μ + σ —> 0.

Proof. We get the sufficiency from Theorem 2. From Lemma 4
we see that J* —> 0 implies that μ —• 0 which is one part of the
necessity. From Lemma 5, we see that if I* is arbitrarily small the
boundary point f(eiθ) will be! arbitrarily close to the g boundary and
vice versa. So we have J*-^0 implies ε—>0 implies that in f iϋ^O
so that /*—•() implies that σ-+0. This completes the proof of
Theorem 3.

Without estimate, S. E. Warschawski [2] established a result that
is similar to Theorem 3.
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