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ON UNIFORM CONVERGENCE FOR
WALSH-FOURIER SERIES

C. W. ONNEWEER

In 1940 R. Salem formulated a sufficient condition for a
continuous and periodic function to have a trigonometric
Fourier series which converges uniformly to the function.
In this paper we will formulate a similar condition, which
implies that the Walsh-Fourier series of such a function has
this property. Furthermore we show that our result is stronger
than certain classical results, and that it also implies the
uniform convergence of the Walsh-Fourier series of certain
classes of continuous functions of generalized bounded varia-
tion. The latter is analogous to results obtained by L. C.
Young and R. Salem for trigonometric Fourier series.

Let {φn(x)} be the sequence of Rademacher functions, i.e.,

φQ(χ) = + 1 (O £ x < i - ) , φo(x) = -

φo(χ + 1) = φo(x) .

ψn(x) = φo(2nx), (n = 1, 2, 3, •). In [3] R. E. A. C. Paley gave the

following definition for the Walsh functions {ψn(x)}: ψo(x) = 1, and,

if n = 2%1 + 2%2 + + 2% with n,> n2> > nr, then ψn(x) =
φni(x)φn2(x) <p*r(x). J. L. Walsh [6] proved that the system {ψjx)}
is a complete orthonormal system. For every Lebesgue-integrable
function f(x) of period 1 there is a corresponding Walsh-Fourier
series (WFS):

f(x)~Σ*ckfk(x), with ck= [f(t)fk(t)dt .

As in the case of trigonometric Fourier series (TFS), we can find a
simple expression for the partial sums of a WFS,

Sn(f, x) = ΣM'ΛaO = (/(» + t)Dn(t)dt ,
k=0 OJ

where Dn(t) = Σ*=o Ψk(t) F o r the meaning of ~f and for further
notations, definitions and properties of the WFS we refer to [2]

2* In [4], Chapter VI, R. Salem proved the following theorem:
Let f(x) be a continuous function of period 2π. For odd n, let

(w-D/2

TM = Σ (P + I)" 1 !/** + 21OT/Λ) - /(a; + (2p + ϊ)π/n)]
p=Q
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and let Qn(x) be obtained from Tn(x) by changing π into — π. Then,
if lim^oo Tn(x) = l i m ^ Qn(x) = 0 uniformly in x, the TPS of f(x)
converges uniformly to f(x). R. Salem also showed that this theorem
implies both the Dini-Lipschitz test for continuous functions with
modulus of continuity ω(f, δ) = o(log δ"1)"1 as δ —» 0, and Jordan's
theorem on continuous functions of bounded variation. Finally, he
extended this last theorem to certain classes of continuous functions
of generalized bounded variation. For a proof of Salem's results,
see also [1], Chapter IV, § 5.

3* Our main result about WFS can be stated as follows:

THEOREM. Let f(x) be a continuous function of period 1. Let

1 I A* + 2pβn+1) ~ fix
2 M — 1

2 > = 1

Then, lim^oo Un(x) = 0 uniformly in x implies that lim^oo Sk(f, x) =
f(x) uniformly in x.

Proof. For each natural number k we have

Sk(f, x) - f(χ) - t) - f(x)]dt.

Let k = 2" + &', with 0 ̂  k' < 2n, then, according to [2], p. 386, we
have Dk(t) = Ds»(*) + Ί M O Ά Λ * ) * where

and

— 1 on

Therefore,

\St(f,x)-f(x)\£

•2n on [0, 2~n)

0 on [2- , 1)

on [2p/2B+1,

, DA,(ί) = k' on [0, 2-M) ,

for ί? = 0, 1, ••-, 2n - 1
1, (2p + 2)/2M+I)

t) - f(x)]dt = A + B .

For the first term of this sum we have
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A ^ 2

For the second term we have

τ>

p = 0

- f(x) I dt ^ ω(f, 2~n) .

X + t)- f(x)]dt

(t + 2—1)) - f(x)])dt

Now we observe that, since k' < 2%, J5fc/(ί) is a sum of functions
ψi(t) with i < 2W. Each of these functions is constant on the
intervals [k/2n, (k + 1)/2W), (k = 0, 1, , 2n - 1). Therefore, if
t e [2p/2«+1, (2p + l)/2%+1), then Dh,{t) = Dk,(t + 2~n~ι) = Dk,(2p/2n+1).
Thus we have

2 W — 1 f

Σ
0 j

Σ
2>=0 j22>/2 ί l

(ί

- /(* + (ί + (2p

p=0 O

- A* + (

(ί

-1 [lDk,(O)[f(x + t/2n+1) - f(x + (t'+ l)/2w+1)]dί
oj

p = l Oj

(Ϊ2-"-ιlΣ-- Vί

+
2-«-i

Using the fact that for u e (0, 1), | Dk{u) \ < 2%-', [2], Lemma 1, we
obtain the following inequality for the integrand, I, of B2:

\I\ ^ (ί

Now we observe that for every 16 [0, 1) there is an x e [0, 1), x = x(t),
such that g + (t + q)/2n+1 = x + q/2n+ι for all q = 1, 2, , 2B+1 - 1.
Therefore
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111 ^ Σ V I Λ% + 2p/2n+1) - /(* + (2p + l)/2"+1) I = 17.(3) .

Under the hypothesis of our theorem Un{x) —> 0 uniformly in x as
n —> oo. This implies that B2 —> 0 uniformly in x as w —• °o, and so,
limfc_oo (Sk(f, x) — f{x)) = 0 uniformly in x.

4* In this section we will show that our main theorem implies
two classical results for WFS. The first is the Dini-Lipschitz test
for WFS, which was first proved in [2], Th. XIII. A generalization
of it can be found in [5], § (3.5).

COROLLARY 1. Let f(x) be a continuous function of period 1
and let ω(f, δ) = o(log δ"1)"1 α* δ -* 0. Then the WFS of f(x) con-
verges uniformly to f(x).

Proof. We see immediately that

I Un(x) i ^ Σ V ^ ( / , 2-%-L) ^ ω(f, 2~n-ι)Clog2n

for some constant C. Thus lim^^c Un(x) = 0 uniformly in a?.

The next corollary is Jordan's test for WFS, which was first
proved in [6], Th. IV.

COROLLARY 2. Let f(x) be a continuous function of period 1.
If f(x) is °f bounded variation on [0, 1], then its WFS converges
uniformly to f(x).

Proof. We can find a nondecreasing sequence of natural numbers
{m(n)} such that (a) m(n)<2n — 1 for all n, (b) m(ri)—>°o as n—*°o,
(c) ω(f, 2~n~ι) log m(n) -* 0 as rc -> oo. Then,

Un(x) I ̂  α>(/, 2—-^[l + \ + + —!—Ί
L 2 mWJ

Σ \f(
^ Cω(/, 2— 1) log m(n) + (m(n) + I)- 1 Var (/) .

Thus lim^oo Un(x) — 0 uniformly in x.

Finally we will prove a theorem for WFS analogous to certain
results of L. C Young [7] and R. Salem [4] for TFS, and which is
an extension of Jordan's theorem. First we will give a definition of
bounded Φ-variation.
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Let φ(u) be a continuous, strictly increasing function defined for
u ^ 0, such that φ(0) = 0 and limu_oo φ(u) = °o. Let ψ be the inverse

<p(t)dt and Ψ{u) = \ f(t)dt. Functions so
oj

obtained, are called complementary in the sense of W. H. Young, and
they satisfy the following inequality, due to W. H. Young: if α, 6 ̂  0,
then ab ^ Φ(a) + W(b), see [8], p. 16.

DEFINITION. A function f(x) on [0, 1) is said to be of bounded
Φ-variation if there is an M< oo such that for each finite partition
0^xl<x2^^<xn^l we have Σ S 1 Φ(l/fo+i) - /(&*) I) < M.

We can prove the following

COROLLARY 3. Let Φ(x) and Ψ(x) be functions complementary
in the sense of W. H. Young and let Σ£=i Ψ{k~ι) < °°. Let f(x) be
a continuous function of period 1 and of bounded Φ-variation. Then

co Sn(f, x) = f(x) uniformly in x.

Proof. Since ΣϊU Ψ{k~ι) < °°, we can find a sequence {ε(k)} of
positive numbers, decreasing to 0 as ί -^oo, and for which

Σ Ψ{ke(k))~ι) < oo .

Let

|/(α? + 2p/2 +1) - f(x + (2p + l)/2%+1) | = J, .

Then, according to Young's inequality, we have

1 ^ Φ(ΔV)

From our hypothesis it follows that there is a constant N < oo such
that for each m

+ ΣV((pe(p))-1) <

Therefore,

Choosing {m(n)} as in the proof of Corollary 2, we have

Un{x) I ^ α>(/, 2—^Γl + -L
L 2

i . e . , Un(x) —»0 u n i f o r m l y i n a? a s % — ^ 0 0 .
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The author wishes to express his gratitude to Professor D»
Waterman for bringing this problem to his attention and for his.
encouragement during its solution.
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