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THE SOLUTION OF A DECISION PROBLEM
FOR SEVERAL CLASSES OF RINGS

H. SIMMONS

This paper is concerned with the solution of certain decision
problems for classes of associative commutative rings. We
consider several such classes defined by restricting the nature
of the rings, e.g., by specifying the characteristic. If 3fc~ is
any of these classes we consider the problem of deciding which
universal sentences are true in (all members of) J3f\ We
show that this problem is recursively solvable.

In § 1 we define our terminology, give a precise description of the
problem, and state the main theorem. In § 2 we make certain reduc-
tions of the problem. Basically we show that it is sufficient to be
able to solve linear equations over polynomial domains. In §'s 3 and
4 we show that these linear equations can be solved.

The techniques used in this paper can also be used to show that
the word problem for commutative semigroups is solvable.

1* Introduction* Throughout this paper we deal with rings
ivhich are both associative and commutative. Thus, from now on,
•'ring' will mean 'associative commutative ring'.

By a ring we mean a structure (A, +, , —, 0) which satisfies the
usual axioms for rings. Let & be the class of rings. Associated
with & there is the obvious first order language £f. This language
has logical symbols "1, V, &, —•, V, 3, =, and extra-logical symbols +,
x, —, 0, and the the usual punctuation symbols. (It is not necessary

to include ' —' in the type of & and ' - ' in the language J5^, however
it is convenient to do so.)

By a ring with identity we mean a structure (A, +, , —, 0,1)
which satisfies the usual axioms. (We assume that these axioms imply
that 0,1 are distinct.) Let ^ ( 1 ) be the class of rings with identity.
Associated with &(l) there is the obvious first order language J*?(ϊ).
This is like £f except that it has another extra-logical symbol 1.
(Among the axioms for ^?(1) will be the sentence 1(0 = 1).)

We use 'term', 'atomic formula', 'formula', 'sentence', etc. in the
usual way to describe certain entities of ^ and -Sf(1). However,
since we have two languages we sometimes have to be more precise
.and say ',5^-term', ',SP(l)-formula', '^-sentence', etc. Notice that
•every ^SP-term, ^-formula, iS^-sentence, etc. is also an ^(l)-term,
.^(l)-formula, =5f(l)-sentence, etc.

It is convenient to introduce into J*f(ΐ) the abbreviations 2, 3, 4,
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5, , for 1 + 1, 2 + 1, 3 + 1, 4 + 1, respectively.
For each integer c ^> 2 let &c be the subclass of & of rings

whose characteristics divide c. Similarly we define ^.(1) . Thus ^.(1)
is the class of rings with identity which satisfy the ^(l)-sentenee
c = 0. Let ^ / , ^ / ( l ) be the subclasses of ^?c, ^ ( 1 ) of rings of
characteristic exactly c. Thus each member of &/(l) satisfies

1(1 = 0)& 1(2 = 0) & & Ί(d = 0)& (c = 0)

where d = c — 1. Notice that ^g5/ £ ^ c £ & and

Let ^ 0 , ^o(l) be the subclasses of ^?, ^?(1) of rings which satisfy
all the sentences

(Vx)[x + m times ••• + & = 0 —>x = 0]

for m ^ 1. We say these rings are torsion free (since their additive
groups are torsion free). Also let ^ 0 ' , &0'(l) be the subclasses of
^ , ^ ( 1 ) of rings of characteristic zero. Notice that ^ o g Ξ ^ o ' g i ^
and ^ P 0 ( l ) C ^ ί ( l ) S ^ ( l ) .

Let ^ ^ be any of the above defined classes of rings. Let T(^Γ)
be the elementary theory of 3ίΓ (i.e., the set of sentences which are*
true in all members of J^Γ). From the works of Tarski, Rabin, Ersov
it easily follows that T(3fΓ) is undecidable (i.e., not recursive). For
details see [1]. We are going to show that a certain subset U{J3Γ}
of T(JΓ) is recursive.

A universal sentence is a sentence in prenex normal form contain-
ing no existential quantifiers.

For each class 3ίΓ of rings let U{^Γ) be the set of universal,
sentences which hold in all members of 3Γ. Thus U(3ίΓ)
In this paper we prove the following theorem.

MAIN THEOREM. Let J%Γ be any of the following subclasses of

for c i> 2, and let S?~(ϊ) be the corresponding subclass of
Then

(a) U{J%Γ) is recursive,
(b) U(Sίr(X)) is recursive if 3T Φ &£{.

Three remarks about this theorem:
(1) The theorem gives us no information about Ϊ7(^?o'(l)).
(2) The methods we use show that most of the above sets.



THE SOLUTION OF A DECISION PROBLEM 549

are primitive recursive. In fact only U(&(1))9 U(&), U(&Q') are not
shown to be primitive recursive.

(3) The corresponding results for fields and integral domains
follows from the decidability of the theory of algebraically closed
rfields.

2 Some preliminary reductions* In this section we show that
for the main theorem to be true it is sufficient to be able to solve
linear equations over certain polynomial domains. We do this by
making several reductions of the problems, most of which are fairly
standard.

Sections 3 and 4 and the last part of this section are devoted to
proving the following theorem.

THEOREM 1. The following sets of J*f(l)-sentences are recursive:
ί i )
(ii)
(iii) U(&c(l)) for any integer c ^ 2.

Once we have Theorem 1 the remainder of the main theorem is
iairly easy. We use the following lemma.

LEMMA 2. Let SίΓ he any of the above defined subclasses of &,
<ιnd let J%Γ(1) be the corresponding subclass of &(1). Let c be any
integer ̂ >2.

(a) // U(J%Γ(1)) is recursive then so is
(b) // U{&) is recursive then so is
(c) // U(&e(l)) is recursive then so is

To obtain the main theorem from Theorem 1 and Lemma 2 we
use the following chains of implication.

(i) — ^ ( D - ^

Proof of Lemma 2. (a) Let (7 be any universal i^-sentence.
Since every member of SΓ(1) is a (reduct of α) member of SΓ we
Jiave
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X N ( J - JT (1) μ σ .

It is well known that every member of J%Γ can be embedded in a
member of 3ίΓiX). Thus, since universal sentences are preserved under
passage to substructure, we have

JT"(1) \= σ=> 3Γ \= σ .

Hence, for any universal ^-sentence σ,

a e U(ST) « σ e U{ST{1)) ,

which gives (a).
(b) Every ring can be embedded in a ring of zero characteristic,,

hence (b) follows in the same way as (a).
(c) Let a be the quantifier-free J*f(l)-sentence

1 Φ 0& ••• &d Φ 0

where d = c — 1. Let σ be any universal .Sf (l)-sentence. Then

^ / ( l ) |= σ<=*gpo(l) \= a->σ .

Thus, since a—>σ is (equivalent to) a universal sentence, we get (c)..

In order to extend the main theorem to include the class J%Γ =
^o'(l) it would be sufficient to extend Lemma 2 by adding the im-
plication

(d) If U(&(1)) is recursive then so is U(&0'(ί)),
and prove this by the method of proof of (b). However this will not work
since there are rings with identity which cannot be embedded in rings-
with identity of characteristic zero. (Such an embedding must pre-
serve the indentity.)

Another way to extend the main theorem would be to add
(e) If U(&Q(1)) is recursive then so is U(&Q'(1)),

to Lemma 2. This could be proved by the method of proof of (c), i.e.,.
we describe an effective method which, for each universal sentence σf,
produces a universal sentence σf such that

( |= σ' .

However I do not know how to construct such a σ'.

We must now prove Theorem 1. To do this we first use a result
of McKinsey [3].

A conditional sentence is a sentence of the shape

(Vαlf , xn)lfi = 0 & &/, = 0 — / = 0]
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where fu -- , / r , / are terms in the variables xl9 •••,»„. For each
class of rings with identity, JΓ~(1), let C{SΓ{1)) be the set of condi-
tional sentences which hold in J ^ ( l ) . We will eventually prove the
following theorem.

THEOREM 3. The following sets of J^(l)-sentences are recursive*
( i )
(ii)
(iii) C(^?c(l)) for any integer c ^> 2.

Once we have proved Theorem 3 we can obtain Theorem 1 using*
the following lemma.

LEMMA 4. Let JΓ(1) be any of ^P(l), ^?0(l), ^ ( 1 ) /or c ^ 2.
// C(J^Γ(1)) is recursive then so is

Proof. Let σ be any universal =^?(l)-sentence. σ is logically
equivalent to a sentence of the shape

where each Z^ is a disjunction of literals (i.e., atomic formulas or
negations of atomic formulas). For each 1 ^ i <S m let σ^ be the
sentence

Clearly we have

JT (1) μ σ <=> J2T(1) μ ^ a n d and

Using the constants 0, 1, and the abbreviations 2, 3, •••, we can
write each term of σ{ as a "polynomial" in the variables xL, -*-,xπ

with coefficients from 0,1,2, •••. Also, since ' —' occurs in ^(1),
each atomic formula can be written as / = 0 for some "polynomial"
/. Thus each σ{ can be rephrased in the shape

(Vα?lf , OLΛ ^ 0 V V / r ^ 0 V f l r 1 = 0 V Vflr. = 0]

where fly " ,gs are "polynomials". We may assume that r ^ 1 and
s gr 1, for if not we introduce a new formula 0 ^ 0 or 1 = 0.

For 1 ^ j ^ s let σ iy be the sentence

(V^, . . . , ^ ) [ / 1 = 0& . &/ r = 0 - > ^ = 0] .

Clearly we can obtain the σi3- from α in a recursive fashion. Thus
the proof is completed by using the following lemma.
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LEMMA 5. With SΓ(1), σiy a{j as above

J3T(1) N ^ « J5Γ(1) μσiλ or >.- or J5T(1) N σis .

Lemma 5 is proved in McKinsey [3, Th. 1, p. 66]. It should be
pointed out that Lemma 5 depends on the fact that ^?(1), ^?0(l) and
^ c ( l ) are closed under (finite) direct products.

The rest of the paper is devoted to proving Theorem 3. To do
this we first translate the statement 'σ eC(Sέ^(ϊ))' (where σ is any-
conditional sentence and 3ίΓ{£) is any of ^ ( 1 ) , ^>(1)> ^ β ( l ) ) i n t o a
statement concerning the membership of polynomial ideals. We will
concentrate on one particular sentence,

σ = (V^, . , xu)[f± = 0 & &fr = 0 — / = 0] ,

although this sentence can be arbitrarily chosen. The technique we
use was used by Shepherdson in [4].

Let Z be the ring of integers, Q the field of rational numbers,
and Zc the ring of integer modulo c. With each of f19 •••,./*•»/ we
associate, in the obvious way, polynomials F19 * ',Fr,F of the poly-
nomial domain Z[X^ , Xn], Thus

( i ) X19 , Xn are associated with x19 •••,#», respectively,
(ii) 0,1, 2, are associated with 0, 1, 2, , respectively,
(iii) if d , G2 are associated with gly g2 then Gx + G2, G1*G2, Gι — G2

are associated with g1 + ^2, ^i x g2, gγ — g2, respectively. Let α be the
ideal generated by Fl9 , Fr.

Although F19 , Fr9 F are defined to be polynomials in Z[Xλ, ,
Xn] they can be construed as polynomials in Q[Xιy « , X J or Zΰ[Xu

• , Xn]. In the same way α can be construed as an ideal of
Q[XU ~-,Xn] or ZC[X19 -- , X J . We will use the phrases ^over Z\
'over Q\ 'over Zc\ to indicate the polynomial domain we are con-
sidering.

The following theorem completes our translation of the problem.

THEOREM 4. With σ, F, α defined as above,
( i ) σe C(^?(l)) <-Feα, over Z,
(ii) (JG C(^?0(l)) - F e α , over Q,
(iii) σ 6 C(^c(l)) - f e α , over Zc.

Proo/. Since the proofs of (i), (ii), and (iii) are similar we will
prove only (iii), and sketch the proof of (ii).

Consider first the implication <= of (iii). If Fea, over Zc then,
for some polynomials G19 , Gr,
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F = G,F, + • + GrFr ,

o v e r Zc. L e t G19 •••,(*> b e assoc ia ted w i t h t h e t e r m s g19 * 9gr> so
t h a t

/ = (</i x Λ) + + (gr x Λ )

holds in &e(l). The implication is now clear, for if

/ r = 0

holds in some Re&c(l)9 then automatically / = 0 holds in i?.
To prove the implication => of (iii) suppose σ e C(&c(ϊ)) and con-

sider the ring R = Ze[Xl9 , Xn]/a. Clearly Re &e(ϊ), and so σ holds
in R. Now consider the elements xt = XJa, , xn = XJa of Ry and
with these elements form f%, •••,/„/• The elements of i? so formed
are, in fact, j^/β, , Fr/a, F/a respectively. Since Fxeay •• , ί τ

f e α
we have

holds in R, and so (since R satisfies σ) we have / = 0 holds in i2.
Thus Fea, as required.

Now for the implication <= of (ii). If Fea, over Q then

F = HJF, + + fl-rFr

where H19 * ,Hr are polynomials with rational coefficients. Hence

dF = GγF, + + GrFr

for some integer d and integral polynomials G19 , Gr. Thus d x / =
0 holds in ^?0(l) But each member of ^ 0 ( l ) is torsion free, hence
/ = 0 holds in ^ 0 ( l ) .

For the implication => of (ii) we consider the torsion free ring
R = Q[Xlf , Xn]/d and argue as above.

This completes the translation. To complete the proof of Theorem
3 (and hence the main theorem) we must show how to test member-
ship of polynomial ideals.

3* The solution of linear equations over polynomial domains*
Let F19 ---,Fr,F be polynomials in D[X19 •••, JSΓΛ], where D is any
of Z, Q, Zc1 c ^ 2. We must consider the solution of equations of the
form

(3.1) Fι0Cl+ ... + Frar = F

and

<3.2) F A + + Frar = 0 ,
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where aly •••,#,. are unknown polynomials of D[XU « , X J . As in
the previous section we will assume where possible that all polynomials
are written as polynomials in Z[XL, •••, JSΓft], and, where necessary,
we will use the phrases 'over Z', 'over Q\ 'over Ze* to indicate how
they should be interpreted.

With equations like (3.1) the problem is first to test whether or
not a solution alf **,ar exists, and then to find such a solution if
one exists. With equations like (3.2) the problem is to find a com-
plete solution, i.e., a finite matrix [Gi3:1 <£ i <£ r, 1 ^ j ^ s] of poly-
nomials such that aL, * ,ar satisfies (3.2) if and only if

for some polynomials βly •••, βa. Of course, these solution procedures
must be carried out in a recursive fashion.

Let α be the ideal over D generated by Fu •••, Fr. Notice that
as soon as we can test the solvability of (3.1), we can test whether
or not Feα; hence we have a proof of Theorem 3 for the correspond-
ing class of rings.

For each polynomial G we denote the degree of G by dG. Also-
we let cZ = dF, q = max (dFly , dFr).

Methods of solving equations like (3.1), (3.2) have been considered
by Hermann in [2]. We state the following results of that paper.

LEMMA 5. There are recursive functions m^ , , ,) and m2( , •)
such that if D is a field then:

( i ) Equation (3.1) has a solution over D if and only if it has-
a solution aλJ •••, ar such that da{ <̂  mL(d, q, n) for each i.

(ii) Equation (3.2) has a complete solution [G^] over D such
that dGi:j <I m2(qy n) for each i, j .

The proof of (i) is contained in Satz 2 of [2], and the proof of
(ii) is contained in Satz 3 of [2]. Both of these proofs are an intricate
use of the division algorithm for polynomial domains.

This lemma gives us an effective method of solving (3.1), (3.2)
over Q or Zp (p prime). We use the method of "comparing coefficients".
For instance, consider (3.1) over D. We replace each a by an arbitrary
(i.e., with unspecified coefficients) polynomial of D[X19 , Xn] of degree
m^d, q, n). If we now compare coefficients of the various products*
of Xu •••, Xn we obtain a set of linear equations E with coefficients
in D and unknowns ranging over D. This set E is solvable if and
only if (3.1) is solvable over D. But E can be solved using the usual
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methods of linear algebra.
Thus, using the previous lemma and the method of comparing

coefficients we get the following lemma.

LEMMA 6. Let D be any of Q, Zp, p prime. Equations like (3.1),,
(3.2) over D can be effectively solved.

COROLLARY. Theorem 3 holds for the classes &0(l), &p(l), p
prime.

To obtain the Theorem 3 for the class ^ c ( l ) , c ^ 2 we must extend
this last lemma. This we now do.

THEOREM 7. Let D be any of Zc1c^2. Equations like (3.1)r

(3.2) over D can be effectively solved.

COROLLARY. Theorem 3 holds for the classes &C{1)> c ^ 2.

Proof of theorem. We prove the theorem by induction on c
Suppose the result is known for 2, 3, 4, , c — 1. If c is prime then
the result (for c) follows from the previous lemma. (The initial case
c = 2 also follows from the previous lemma.) If c is not prime we
can factorize c = d^ where px < c, d2 < c.

Consider (3.2). First we solve (3.2) over Zdl to get the complete
solution [Giji 1 ^ i ^ r, 1 ^ j ^ s]. (Remember that the Gi3 are written
as polynomials over Z.) For each 1 ^ j ^ s define G3 by

G — (^1^1 + * " + GrjFr

dλ

so that Gj is a polynomial over Z. We now solve the equation

Gβι + ...+ G$βs - 0

over Zdz to obtain the complete solution [iϊ^: 1 ^ i ^ s, 1 ^ j ^ ί]. I t
is now an easy matter to check that the product [(?<,•] [fl̂ -] gives a
complete solution of (3.2) over Zc.

We use the same technique to solve (3.1) over Zc. First we solve
(3.1) over Zdl to get the solution G[, , G'r. Let [G^ ] be the complete
solution of (3.2) over Zdι. We define

and G19 •••, Gs above. It is now easy to show that (3.1) has a solu-
tion over Zc if and only if
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Gβx + + Gβs = G

has a solution over Zd2. Also any solution of this last equation gives
<a solution of (3.1).

4* The test for membership of ideals over Z. To complete
the proof of the main theorem we must show how to test for member-
ship of the ideal α = (F19 , Fr) over Z. To do this we consider an
arbitrary polynomial F, and describe two effective procedures. The
first procedure stops if and only if F e α, and the second procedure
stops if and only if Fga. Thus, using the two procedures simult-
aneously, we can test whether or not Fea. (All the effective pro-
cedures we have used so far have been primitive recursive, however
the procedure we give for testing membership of a over Z is not
primitive recursive.)

The first procedure is trivial; we enumerate all r-tuples (Gu , Gr)
and for each such r-tuple we compute FιGι + + FrGr. We stop
when F = F& + + FrGr.

The second procedure is more complicated. We will first describe
it, and then explain its workings.

Stage - 1 . Is .Pea over Ql
No-then Fga over Z. STOP.
Yes-go to stage 0.

Stage 0. Find an integer m such that
mFea over Z.
Go to stage 1.

Stage 1. Is Fea + (m) over Zl
No-then Fga over Z. STOP.
Yes-go to stage 2.

Stage s. Is Fea + (ms) over ZΊ
No-then Fea over Z. STOP.
Yes-go to stage s + 1.

Lemma 6 shows that stages —1,0 are effective, and Theorem 7
together with the equivalence

Fea + (k) over Z*=>Fea over Zk

(for any integer k) show that the remaining stages are effective. If
Fea over Z then Fea over Q and Fea -h (k) over Z for all integers
k, thus the procedure does not stop. We must show that the pro-
cedure does stop whenever Fga over Z.
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Suppose F $a over Z. If Fίa over Q then the procedure stops-
at stage —1. If Fea over Q then we compute an integer m such
that mFea over Z, and we go to stage 1. Consider the ascending-
chain of ideals

α c α : (m) C C Q : (m*) c •

where

α : (k) = {G: &G e α over Z) .

We know that Fea: (m{) over Z for each i ^ 1. Now Z[XX, , XJ
is noetherian hence the above ascending chain is finite. Thus there
is an integer s such that

α : (ms) = α : (ms+i)

for all i ^ 0. With this s it is well known that

a = a: (ms) Π α + (ms) .

Thus, since Fea: (ms), we have

α + (ms) .

But -Fgα, hence the procedure stops on or before stage s.
This completes the proof of the main theorem.
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