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PROJECTING ONTO CYCLES IN SMOOTH,
REFLEXIVE BANACH SPACES

H. B. COHEN AND F. E. SULLIVAN

This paper deals with operator algebras generated by
certain classes of norm 1 projections on smooth, reflexive
Banach spaces. For a strictly increasing continuous function
JF* on the nonnegative reals, the set of " ^-^-projections "
gives rise to operator algebras equal to their second commu-
tants. The principal result is that the closed subspace gener-
ated by the set of elements Ex, where x is fixed and E runs
through a Boolean algebra of ^^-projections, is the range of
a norm 1 projection that commutes with each projection in
the Boolean algebra. Sufficient conditions using Clarkson type
norm inequalities are given for the commutativity of the set
of all ^^-projections. Examples in Orlicz spaces are given.

1* Projections in smooth spaces* A normer of a nonzero element

x in a Banach space X is a functional x* in the dual X* such that

||α?*|| = 1 and | |g| | — x*(x). A normer for x always exists; we say

that X is smooth if every nonzero x has but one normer, denoted N(x).

We make the definition N(0) = 0.

Proof of the following three lemmas is left to the reader; see,

for instance, [5; p. 447],

LEMMA 1. In a smooth space X, the norming map N:X—*S*{J {0}

has the following properties, where £* is the unit sphere of X*.

( 1 ) N(x) is the only element of S* such that N(x)(x) — \\x\\ if

xΦO.

( 2 ) N(Xx) — (I X \/X)N(x) for all scalars X Φ 0; in particular,

N(Xx) = N(x) for X > 0.

( 3 ) In the real case, N(x)(y) = lim (λ -+ 0)(\\x + \y\\- \\x\\)/X for

.x,yeX and x Φ 0.

L E M M A 2. If X is a smooth complex Banach space. Re X is also

smooth; indeed, for each x Φ 0, Re N(x) is the normer of x in (Re X ) * .

A vector x is said to be James-orthogonal to y iί \\x + Xy\\ ^ \\x\\

for all real numbers λ.

LEMMA 3 If X is a smooth space, then N(x){y) = 0 if and only

if x is James-orthogonal to y in the real case and James-orthogonal

to both y and iy in the complex case. If Y is a subspace, then

N(x)(y) = 0(ye Y) if and only if \\x + y\\ ^ \\x\\(ye Y).
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LEMMA 4. // E is a norm one projection in a normed linear
space X, then \\a + δ|| :> | |α | | for every aeEX and be (I — E)X.

Proof. \\a\\ = \\E{a + b)\\^\\a + b\\.

LEMMA 5. If E is a norm one projection on a smooth space Xr

N(Ex)(Ey) = N(Ex)(y)(x,yeX).

Proof. This is an immediate consequence of Lemmas 3 and 4.

THEOREM 6. A subspace of a smooth space X can be the range
of at most one norm 1 projection.

Proof. Suppose E and F are norm 1 projections on X with EX =
FX. ΎhenEF = Fand FE^E so that E-F=E(I-F) = F(E-I).
If E Φ F, there is an x such that

0 Φ \\Ex - Fx\\ - N(Ex - Fx)(Ex - Fx)

= N(E(I - F)x){Ex) - N(F(E - I)x)(Fx)

= N(E(I - F)x){x) - N(F(E - I)x){x) = 0 ,

a contradiction.

We wish to thank the referee for sharpening the following two
lemmas into their present form and for suggesting lines of proof.

THEOREM 7. A subspace of a rotund space can be the null mani-
fold of at most one norm 1 projection.

Proof. Suppose E and F are distinct norm 1 projections on a
rotund space X, with the same null manifold N. Then there is an
element x in the range of E that is not in the range of F. Then
x — y + w where y is the range of F, w is in N, and x and y are not
linearly dependent.

- \\E(x - l/2w)\\ £ \\x - l/2w\\ = ||l/2(a + y)\\

- \\F(y + 1/2^)|| ^ \\y + l/2w\\ = ||l/2(» + y)\\

so t h a t 1/2(| I α? 11 + \\y\\) ^ \\l/2(x + y)\\ £ l/2(\\x\\ + | | ί / | | ) , ||a? + »| | =

| |a?|| + ||7/1|, and X is not rotund.

THEOREM 8. For any norm 1 projection E on a smooth space X>
N(EX Π S) S E*X* Π N(S), with equality if X is smooth and rotund.
If X is reflexive, then N(S) = S*, but in any case N(S) is dense-
in S*.
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Proof. If #* eN(EX Π S), then there is a norm 1 vector x such
that x* = iV(aO and JSfc = x. Then E*N(x)(y) = N(Ex)(Ey) = N(Ex)(y) =
#*(#) by Lemma 5 for all y in X; hence, #* e E*X* n JV(S).

If X is rotund and &* e E^X* Π #(5), then £* = JVfc) where
J|a?|| = 1 and E*(N(x)) - #(&). Then

Ex 11.
||g + Ex\\ g ||g||

= N(x)(x) + N(x)(x) - N(x)(x) + (E*N(x))(x) =

Then ||g|| + \\Ex\\ = ||a? + JS»|| and α? = Ex by rotundity and the fact
that E is a projection.

The last statement follows from results of James [7] and Bishop-
Phelps [2].

2Φ ^'-projections* Throughout this section, ^ ~ denotes a fixed,
but arbitrary, strictly increasing continuous function from the set of
nonnegative real numbers into itself.

DEFINITION. An Jt"-projection on a Banach space X is a projec-
tion E on X for which ^{\\x\\) = ̂ (\\Ex\\) + ̂ {\\{I - E)x\\) for
all x in X.

LEMMA 9. (1) An ^-projection has norm 1 or 0; (2) If E
is an ^-projection, J^( | |α + δ||) = ̂ (\\a\\) + J Π P I Q and \\a + fe||
= ||α - &|| for all a in E[X], b in (I - E)[X]; (3) the product of
two commuting J^-projections is an ^-projection.

Proof. (1) If E is an .^-projection,

jr(\\EX\\) <: &-(\\Ex\\) + J^(\\(I- E)x\\) -

Since jβ~ is strictly increasing, \\Ex\\ ^ ||a?||.

and

JT{\\ — α - &|D) - | | α -

3) If E and F are commuting .^^-projections,

+ 11
- E)Fx\\) F)x\\)
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= jr(\\EFx\\) + jr(\\F(I-E)x + (/- F)x\\)
= ^(\\EFx\\) + jr(\\(l - EF)x\\)

for all x in X.

REMARK. If E is an ^"-projection, then \\a + δ||, where a is any
norm 1 vector in EX and b is any norm 1 vector in (I — E)X, is
constant at j ^ - ^ j ^ l ) ) . For

||α + ft|| = ^ r - ι ^ ( | | α

THEOREM 10. A maximal family & of commuting j^-projections
is a complete-Boolean algebra of norm 1 projections.

Proof. Clearly 0 and / are in & and if E is in ^ , so is / — E
by the symmetry of the definition of an ^-projection. If E and F
are in &, EF is an ^-projection by Lemma 9, and it commutes with
&. Therefore, EF is in &. Thus & is a Boolean algebra of pro-
jections on X as defined by Bade [1], Now suppose Ea is an increasing
net of projections in ^ . For each x in X and for a ^ β, Eax — EaEβx.
So ||l?α#|| ^ | |# | | ; thus, ^"(\\Eax\\) is an increasing net of real numbers,
bounded above by J^(||α?||); hence, covergent. This implies Eax is
Cauchy, as follows. Given e ^ 0, choose θ such that

\\) ^ limrjr(\\Erx\\) -

for all a^θ. lΐ β^θ,

jT(\\Eβx - E$x\\) + jr(\\E6x\\)

= jr(\\Eβx - EβEθx\\) + jr(\\EθEβx\\)

- jr{\\{I-Eθ)Eβx\\) + jr(\\EβEβx\\) -

Thus,

jT(\\Eβx - Eθx\\) = J^(\\Eβx\\) -

And from this

jF-(ε/2) ^ l im α ^( | | ^ α x | | ) - ^ ( | | Eθx \ |)

^ ^ ( H ^ l l ) - JF-(||JS7,a||) = ^ ( | | ^ - Eθx\\)

hence, ε/2 ^ \\Eβx — Eθx\\ because J^ is increasing. If a, β ^ 0,

||£kc - ^ | | ^ ||Jg7«α5 - J5^| | + \\Eβx - Eox\\ ^ ε .

Define Ex — limα Eax for every a? in X. Then i? is surely a pro-
jection and, since j ^ ~ is continuous, ί? is an ^"-projection; since E
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commutes with ^ , it is in ^ This completes the argument.

By Zorn's lemma, complete Boolean algebras of .^-projections
always exist, although they may be trivial. Nontrivial examples are
given later.

THEOREM 11. Suppose that all vectors v and w in X satisfy the
(Clarkson) inequality

+ w\\) + l / 2 J H | b -w\\)£ JT(\\v\\) + JT(\\W\\)

and suppose ^"(2) Φ 4, ^"(1) = 1. Then any two ^-projections
commute (and so the set of all J^~-projections form a complete Boolean
algebra of projections). The same result holds for the reverse
inequality.

Proof. Let E and F be two ^""-projections and xeX. Then
decomposing Ex into F and then E components, applying Clarkson's
inequality, and simplifying (using Lemma 9) we obtain

x\\) = JT(\\EFEX\\) + JT{\\E{I- F)Ex\\)

+ jr(\\(i - E)FEx\\) + j r ( | | ( I _ E)(I - F)Ex\\)

^ ll2jr(\\EFEx + E(I- F)Ex) ||) + 1/2J^{\\EFEx- E{I-F)Ex\\)

- E)FEx + ( / - E)(I- F)Ex\\)
- E)FEx - (I - E)(I - F)Ex\\)

l/2jr(\\EFEχ _ E(I- F)Ex

+ (I- E)FEx -(I- E)(I - F)Ex\\)

= ll2jΓ(\\Ex\\) + l/2&-(\\FEx - (I - F)Ex\\)

= lβJ^(\\Ex\\) + 1/2^-(\\FEx + (I- F)Ex\\)

= J?-(\\Ex\\) .

This implies equality in Clarkson's inequality for the vectors
(/ - E)FEx and (I - E)(I - F)Fx:

- E)FEx\\) + ^"( | | ( f - E)(I - F)Ex\\)

- E)FEx + (I - E)(I - F)Ex\\)

- E)FEx -(I- E)(I - F)Ex\\) .

Since the first term on the right is zero, we can define Z = Z(x) =
(I-E)FEx = -(I- E)(I- F)Ex and obtain 4F"(||a||) = jr(β\\z\\).
What if Z(x) Φ 0? Then ||Z(αj/||Z(*)||)|| = 1, and we have

4 = 4^r(||Z(*/||Z(aj)||)||) = ^r (2\\Z(x\\\Z(x)\m =

which contradicts the hypothesis. Thus Z = 0 and so FEx = EFEx
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for any x and any two .^"-projections E and F. Replacing E and F
by (I - E) and F yields F(I - E)x = (I - E)F{I - E)x; whence EFx =
EFEx. Therefore FEx = EFx and so E and F commute.

REMARK. Consider J^(λ) = Xp for a fixed p,l ^ P < °°- An
^"-projection for such an j ^ ~ is called an Z/-projection. Cunningham
[4] showed that the Lι projections always commute in any Banach
space. The above theorem shows that for p Φ 2, the Lp projections
in an Lp space commute.

DEFINITION. A net Ta of projections on a Banach space X is said
to be increasing if a < β implies TaTβ = Ta — TβTa.

THEOREM 12. // Ta is an increasing net of norm 1 projections
on a reflexive Banach space X, then Ta converges in the strong oper-
tor topology of X to a norm 1 projection T that commutes with each
Ta and whose range is the norm closure of \Ja Ta[X].

Proof. The essentials of a proof can be found in [8; p. 223].

3* Projecting onto cycle subspaces*

DEFINITION. If & is a Boolean algebra of projections on X and
x is in X, let S(x; &) denote the cycle generated by x and &\ that
is, the closed subspace of X generated by

THEOREM 13. Let & be a Boolean algebra of Jf -projections on a
Banach space X that is smooth and reflexive, and let xeX. Then
S(x; &) is the range of a (unique) norm 1 projection that commutes
with &.

Proof. Let π denote the set of all partitions of x by &*; that
is, finite subsets {El9 , En} of & such that E{E5 = 0 if iφ j and
(ViEi)(x) = ̂ ΣjiEiX = x. The set {/} is such a partition. Order π by
setting g " r j ^ if, given A in Ssf there is an E in g? such that AE —
A. This " is refined by " relation r is reflexive, anti-symmetric, transi-
tive, and it directs the set π. Indeed, if {E19 , En} and {Alf , Am}
are partitions of x, then one common refinement is the set of EιAά

such that EiAόx Φ 0.
For each partition gf of x, define T(ξ?)(y) = Σ (Ee ξf)(N(Ex)(y)/

\\Ex\\)Ex for all y in X. The transformation T(&) is obviously linear;
that it is a projection on X is an immediate consequence of the fact
that for E and F in & with EF = 0, N(Ez)(Fy) - N(Ez)(EFy) = 0.
We now show that the norm of T(&) is 1. It is not 0, first of all,
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because the projection leaves x fixed. Proceeding, let y e X.

\\[N(Ex)(y)/\\Ex\\]Ex\\ = \N(Ex)(y)\ = \N(Ex)(Ey)\ £\\Ey\\.

From this,

&)Ey\\) =

ϊf)(N(Ex)(y)/\\Ex\\)Ex\\) = j ^ ( | | Ί\&)y\\) .

Consequently \\T(ξf)y\\ £\\y\\.

In order to apply Theorem 12, we must show that T{J*f)T(&) =
Γί^) = T(gf )T(J^0 under the assumption that g > j ^ . It is a routine
matter to use Lemma 5 to check that T(s$f)(Ax) — Ax for any A in J ^ ,
that T(Jtf)(Ex) = .Efe for any # in g7, and that, therefore, T(gf) =
T(j>f)T(β). Let ^ b e a given element of the null manifold of T{j*f).
Then for each A in J ^ , (ΛΓ(Ac)(2)/||Ax||)ila? = 4T(J/)^ = 0 so that
N{Ax)(Az) = JV(i4a?)(«) = 0. Then Ax is James orthogonal to Az:

\\Ax + Az\\^ \\Ax\\ .

Then

- A)jr(\\Ax\\)

for every E in if. Therefore, ||jBfe + JES|| ^ ||JES»|| and, similarly,
||JEfc + ijEfeU ^ [IJBSrll if -3Γ is complex. In any case, N(Ex)(z) =
N(Ex)(Ez) = 0 for all l i n g7 and, therefore, z is in the null manifold
of T(gf). Since the null manifold of T(&) contains that of Γ(J^),
we have Γ(g?)Γ(J^) = Ί\&).

By Theorem 12, there is a norm 1 projection T commuting with
every T($?) that is the limit in the strong operator topology of the
net T(ί?) and whose range is the subspace cl U (i? eπ)T(W)[X]. Let
us show that T commutes with the projections in &. Let Ee^.
If Ex Φ 0, let g7 denote the set {E} or {£/, I — E) that is a partition
of x. Given J ^ 6 TΓ such that

= A)(iV(ilaί)i?i/)/||i4αj||)i4α?

e J^)(N(Ax){y)l\\Ax\\)Ax)



362 H. B. COHEN AND F. E. SULLIVAN

for all y in X. Consequently, for each y in X,

TEy = lim (&rs^)T(Ssf)Ey = lim

= Elim (gf

Therefore, TE = £ T provided £7̂  Φ 0. If £7x = 0, then (I - E)x Φ 0
and T(I - E) = (I-E)Tby the same argument. From this, ΓJ? =
when Ex = 0.

For all J ^ in TΓ, T(J^)[X] g S(α; ̂ ) ; hence, Γ[X] s S(
And given Ee^f if Ex Φ Q, then, letting g7 be the above partition
of x, S(x; if) C Γ[X|. This completes the proof of Theorem 13.

THEOREM 14. Let ^ be a complete Boolean algebra of ^-pro-
jections on a Banach space that is reflexive and smooth. Then the
weakly closed algebra Ύ/^{^) of operators on X generated by & is
equal to its second commutant.

Proof. Bade [1] shows that if & is complete, then ^ ( ^ ) is
the uniformly closed algebra of operators generated by & and it
consists, furthermore, of exactly those (bounded linear) operators of
X which leave invariant every closed linear manifold invariant under

Suppose A is in the second commutant of <W(0*) For each x
in X, let Tx denote the norm one projection whose range is Sx — S(x;
&). Then Tx commutes with <W(&*) so that ATX = TXA for all x
in X. From this, we have that A leaves each Sx invariant: ASX =
ATXX = TXAX c TXX = Sx. If If is a closed subspace left invariant
under ^ , then Sm g M for all m in M; whence, A(m) e ASm Q Sm Q
M for each m in M. Therefore, A leaves M invariant. Therefore,

4* A class of examples* Let (S, >Σ, /̂ ) be a measure space with
the property FSP (a measurable set of infinite measure contains a
measurable subset of finite positive measure). This condition is dis-
cussed in [9]. We consider an Orlicz space LM over (S, Σ, μ) where
the complimentary Young's functions M and N are normalized (ikf(l) +
N(ΐ) = 1), satisfy z/2 conditions, and have continuous, strictly increasing
derivatives denoted m and n, respectively. Then LM is reflexive and
[9; Corollary 2.1] the Luxemberg norms in both LM and LN are strongly
differentiate. Furthermore, the weak derivative of a norm 1 function

/0 in LM is given by f~>\fm(fo)dμ.

LEMMA 15. If 0 ^ fe LM, then m(-£&) = mWχ^ for almost
v l l / i i y l |m/| |



PROJECTING ONTO CYCLES IN SMOOTH, REFLEXIVE BANACH SPACES 363

all xeS.

Proof. If h = ag for a ^ 0 and if h, g ^ 0 a.e., we have equality

for h and m(g) in Holder's inequality: \\h\\ \\mg\\ = \hm(g)dμ. Then

are normers for /. Since LM is smooth, normers are unique.

LEMMA 16. Assume the existence of sets of arbitrarily small
positive measure. Iff, geLM with 0 < | | / | | < | |# | | , then 0 < | |m/| | <
\\mg\\.

Proof. S e t K = 11g11/||/11 > 1. Choose x e S s u c h t h a t 0 < m(g(x))/
\\m(g)\\ = m(g(x))/\\g\\). Set a = \g(x)\/K > 0. For any measurable
set E, let fE be the function constant on E at the value α, and agree-
ing with I/I outside of i£. By diminishing the measure of E, the
function fE may be brought in the norm of LM as close to | / | as
desired. Furthermore, 11m(KfE) \\ - \\mf\\ approaches 11 m{Kf) \\ —
||m/| | > 0 as E decreases. It is therefore, possible to choose a set E
of positive measure so small that

m(^)/ | |^ | | )( | | / | | / | |Λ | | ) | |m(^Λ) | | > m(g(x)/\\g\\)\\mf\\ .

Select y e E such t h a t m(KfE(y)) = m(KfE(y)/\\ (KfE\\))\\m{KfE) \|. Com-

puting, we have

m(g(x)/\\g\\)\\mg\\ = m(g(x)) - m(Ka) = m(KfE(y))

= m(fE{y)l\ IΛ11) 11 m{KfE) \ \ = m(a/\ \fE\\)\\ m{KfE) \ \

= ^((^)/li^li)(ii/il/HΛii))iim(ifΛ)|| > m(g(x)/\\g\\)\\mf\\ .

Cancelling m(g(x)/\\g\\) finishes the argument.

Perhaps Lemma 16 is true without restrictions on the measure
space. We have not settled this.

Define J^(λ) = | | / | | \\mf\\ =\\f\m(f)dμ where / is any function

in LM of norm λ. From Lemma 16, it is clear that ^ is well defined
and strictly increasing. To show continuity, let E be any set of finite
positive measure and a (λ) = λ/|[χ£||. Then α(λ) is continuous and

\a{\)χEm(a{X)χE)dμ = \^a(X)m(a(X))χEdμ = a(X)m(a(X))μE ,

a continuous function.
Each measurable set E gives rise to the characteristic projection
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LEMMA 17. Every characteristic projection is an ^-projection.

Proof.

= \fm{f)dμ = \ fm(f)dμ + \ fm(f)dμ
J J E J S\E

= \{lEf)in{χEf)dμ + j(χSN*/)m(&

+ JHIIWΊI).
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