PROJECTING ONTO CYCLES IN SMOOTH, REFLEXIVE BANACH SPACES

H. B. COHEN AND F. E. SULLIVAN

This paper deals with operator algebras generated by certain classes of norm 1 projections on smooth, reflexive Banach spaces. For a strictly increasing continuous function \mathscr{F} on the nonnegative reals, the set of " \mathscr{F} -projections" gives rise to operator algebras equal to their second commutants. The principal result is that the closed subspace generated by the set of elements Ex, where x is fixed and E runs through a Boolean algebra of \mathscr{F} -projections, is the range of a norm 1 projection that commutes with each projection in the Boolean algebra. Sufficient conditions using Clarkson type norm inequalities are given for the commutativity of the set of all \mathscr{F} -projections. Examples in Orlicz spaces are given.

1. Projections in smooth spaces. A normer of a nonzero element x in a Banach space X is a functional x^* in the dual X^* such that $||x^*|| = 1$ and $||x|| = x^*(x)$. A normer for x always exists; we say that X is smooth if every nonzero x has but one normer, denoted N(x). We make the definition N(0) = 0.

Proof of the following three lemmas is left to the reader; see, for instance, [5; p. 447].

- **LEMMA 1.** In a smooth space X, the norming map $N: X \to S^* \cup \{0\}$ has the following properties, where S^* is the unit sphere of X^* .
- (1) N(x) is the only element of S^* such that N(x)(x) = ||x|| if $x \neq 0$.
- (2) $N(\lambda x) = (|\lambda|/\lambda)N(x)$ for all scalars $\lambda \neq 0$; in particular, $N(\lambda x) = N(x)$ for $\lambda > 0$.
- (3) In the real case, $N(x)(y) = \lim_{h \to 0} (\lambda \to 0)(||x + \lambda y|| ||x||)/\lambda$ for $x, y \in X$ and $x \neq 0$.
- LEMMA 2. If X is a smooth complex Banach space, Re X is also smooth; indeed, for each $x \neq 0$, Re N(x) is the normer of x in (Re X)*.

A vector x is said to be *James-orthogonal* to y if $||x + \lambda y|| \ge ||x||$ for all real numbers λ .

LEMMA 3. If X is a smooth space, then N(x)(y) = 0 if and only if x is James-orthogonal to y in the real case and James-orthogonal to both y and iy in the complex case. If Y is a subspace, then $N(x)(y) = 0 (y \in Y)$ if and only if $||x + y|| \ge ||x|| (y \in Y)$.

LEMMA 4. If E is a norm one projection in a normed linear space X, then $||a + b|| \ge ||a||$ for every $a \in EX$ and $b \in (I - E)X$.

Proof.
$$||a|| = ||E(a+b)|| \le ||a+b||$$
.

LEMMA 5. If E is a norm one projection on a smooth space X, $N(Ex)(Ey) = N(Ex)(y)(x, y \in X)$.

Proof. This is an immediate consequence of Lemmas 3 and 4.

Theorem 6. A subspace of a smooth space X can be the range of at most one norm 1 projection.

Proof. Suppose E and F are norm 1 projections on X with EX = FX. Then EF = F and FE = E so that E - F = E(I - F) = F(E - I). If $E \neq F$, there is an x such that

$$0 \neq ||Ex - Fx|| = N(Ex - Fx)(Ex - Fx)$$

= $N(E(I - F)x)(Ex) - N(F(E - I)x)(Fx)$
= $N(E(I - F)x)(x) - N(F(E - I)x)(x) = 0$.

a contradiction.

We wish to thank the referee for sharpening the following twolemmas into their present form and for suggesting lines of proof.

THEOREM 7. A subspace of a rotund space can be the null manifold of at most one norm 1 projection.

Proof. Suppose E and F are distinct norm 1 projections on a rotund space X, with the same null manifold N. Then there is an element x in the range of E that is not in the range of F. Then x = y + w where y is the range of F, w is in N, and x and y are not linearly dependent.

$$||x|| = ||E(x - 1/2w)|| \le ||x - 1/2w|| = ||1/2(x + y)||$$

 $||y|| = ||F(y + 1/2w)|| \le ||y + 1/2w|| = ||1/2(x + y)||$

so that $1/2(||x|| + ||y||) \le ||1/2(x + y)|| \le 1/2(||x|| + ||y||), ||x + y|| = ||x|| + ||y||$, and X is not rotund.

THEOREM 8. For any norm 1 projection E on a smooth space X, $N(EX \cap S) \subseteq E^*X^* \cap N(S)$, with equality if X is smooth and rotund. If X is reflexive, then $N(S) = S^*$, but in any case N(S) is dense in S^* .

Proof. If $x^* \in N(EX \cap S)$, then there is a norm 1 vector x such that $x^* = N(x)$ and Ex = x. Then $E^*N(x)(y) = N(Ex)(Ey) = N(Ex)(y) = x^*(y)$ by Lemma 5 for all y in X; hence, $x^* \in E^*X^* \cap N(S)$.

If X is rotund and $x^* \in E^*X^* \cap N(S)$, then $x^* = N(x)$ where ||x|| = 1 and $E^*(N(x)) = N(x)$. Then

$$||x + Ex|| \le ||x|| + ||Ex|| \le ||x|| + ||x||$$

$$= N(x)(x) + N(x)(x) = N(x)(x) + (E^*N(x))(x) = N(x)(x + Ex) \le ||x + Ex||.$$

Then ||x|| + ||Ex|| = ||x + Ex|| and x = Ex by rotundity and the fact that E is a projection.

The last statement follows from results of James [7] and Bishop-Phelps [2].

2. *F*-projections. Throughout this section, *F* denotes a fixed, but arbitrary, strictly increasing continuous function from the set of nonnegative real numbers into itself.

DEFINITION. An \mathscr{F} -projection on a Banach space X is a projection E on X for which $\mathscr{F}(||x||)=\mathscr{F}(||Ex||)+\mathscr{F}(||(I-E)x||)$ for all x in X.

LEMMA 9. (1) An \mathscr{F} -projection has norm 1 or 0; (2) If E is an \mathscr{F} -projection, $\mathscr{F}(||a+b||) = \mathscr{F}(||a||) + \mathscr{F}(||b||)$ and ||a+b|| = ||a-b|| for all a in E[X], b in (I-E)[X]; (3) the product of two commuting \mathscr{F} -projections is an \mathscr{F} -projection.

Proof. (1) If E is an \mathcal{F} -projection,

$$\mathscr{F}(||EX||) \leq \mathscr{F}(||Ex||) + \mathscr{F}(||(I-E)x||) = \mathscr{F}(||x||)$$
.

Since \mathscr{T} is strictly increasing, $||Ex|| \leq ||x||$.

$$\mathscr{F}(||a+b||) = \mathscr{F}(||Ea+(I-E)b||) \ (2) = \mathscr{F}(||E(Ea+(I-E)b||) + \mathscr{F}(||(I-E)(Ea+(I-E)b||) + \mathscr{F}(||Ea||) + \mathscr{F}(||(I-E)b||) ,$$

and

$$\|a+b\|=\mathscr{F}^{-1}(\mathscr{F}(\|a+b\|)=\mathscr{F}^{-1}(\mathscr{F}(\|a\|)+\mathscr{F}(\|b\|)) \ =\mathscr{F}^{-1}(\mathscr{F}(\|a\|)+\mathscr{F}(\|-b\|))=\mathscr{F}^{-1}(\mathscr{F}(\|a-b\|))=\|a-b\|$$
 .

(3) If E and F are commuting \mathcal{F} -projections,

$$\mathscr{F}(||x||) = \mathscr{F}(||Fx||) + \mathscr{F}(||(I-F)x||)$$

= $\mathscr{F}(||EFx||) + \mathscr{F}(||(I-E)Fx||) + \mathscr{F}(||(I-F)x||)$

$$= \mathscr{F}(||EFx||) + \mathscr{F}(||F(I-E)x + (I-F)x||)$$
$$= \mathscr{F}(||EFx||) + \mathscr{F}(||(I-EF)x||)$$

for all x in X.

REMARK. If E is an \mathscr{F} -projection, then ||a+b||, where a is any norm 1 vector in EX and b is any norm 1 vector in (I-E)X, is constant at $\mathscr{F}^{-1}(2\mathscr{F}(1))$. For

$$||a + b|| = \mathscr{F}^{-1}\mathscr{F}(||a + b||) = \mathscr{F}^{-1}(\mathscr{F}(||a||) + \mathscr{F}(||b||)$$
.

Theorem 10. A maximal family $\mathscr P$ of commuting $\mathscr F$ -projections is a complete-Boolean algebra of norm 1 projections.

Proof. Clearly 0 and I are in $\mathscr P$ and if E is in $\mathscr P$, so is I-E by the symmetry of the definition of an $\mathscr F$ -projection. If E and F are in $\mathscr P$, EF is an $\mathscr F$ -projection by Lemma 9, and it commutes with $\mathscr P$. Therefore, EF is in $\mathscr P$. Thus $\mathscr P$ is a Boolean algebra of projections on X as defined by Bade [1]. Now suppose E_{α} is an increasing net of projections in $\mathscr P$. For each x in X and for $\alpha \leq \beta$, $E_{\alpha}x = E_{\alpha}E_{\beta}x$. So $||E_{\alpha}x|| \leq ||x||$; thus, $\mathscr F(||E_{\alpha}x||)$ is an increasing net of real numbers bounded above by $\mathscr F(||x||)$; hence, covergent. This implies $E_{\alpha}x$ is Cauchy, as follows. Given $\varepsilon \geq 0$, choose θ such that

$$\mathscr{F}(||E_{\alpha}x||) \geq \lim_{r} \mathscr{F}(||E_{r}x||) - \mathscr{F}(\varepsilon/2)$$

for all $\alpha \ge \theta$. If $\beta \ge \theta$.

$$egin{aligned} \mathscr{F}(||E_{eta}x-E_{ heta}x||)+\mathscr{F}(||E_{ heta}x||)\ &=\mathscr{F}(||E_{eta}x-E_{eta}E_{ heta}x||)+\mathscr{F}(||E_{ heta}E_{eta}x||)\ &=\mathscr{F}(||(I-E_{ heta}E_{eta}x||)+\mathscr{F}(||E_{ heta}E_{eta}x||)=\mathscr{F}(||E_{eta}x||) \;. \end{aligned}$$

Thus,

$$\mathscr{F}(||E_{\scriptscriptstyle{eta}}x-E_{\scriptscriptstyle{ heta}}x||)=\mathscr{F}(||E_{\scriptscriptstyle{eta}}x||)-\mathscr{F}(||E_{\scriptscriptstyle{ heta}}x||)$$
 .

And from this

$$egin{aligned} \mathscr{F}(arepsilon/2) & \geq \lim_{lpha} \mathscr{F}(||E_{lpha}x||) - \mathscr{F}(||E_{eta}x||) \\ & \geq \mathscr{F}(||E_{eta}x||) - \mathscr{F}(||E_{eta}x||) = \mathscr{F}(||E_{eta}x - E_{eta}x||) \ ; \end{aligned}$$

hence, $\varepsilon/2 \ge ||E_{\beta}x - E_{\theta}x||$ because \mathscr{F} is increasing. If $\alpha, \beta \ge \theta$,

$$||E_{\scriptscriptstyle{lpha}} x - E_{\scriptscriptstyle{eta}} x|| \leq ||E_{\scriptscriptstyle{lpha}} x - E_{\scriptscriptstyle{ heta}} x|| + ||E_{\scriptscriptstyle{eta}} x - E_{\scriptscriptstyle{ heta}} x|| \leq arepsilon$$
 .

Define $Ex = \lim_{\alpha} E_{\alpha}x$ for every x in X. Then E is surely a projection and, since \mathscr{F} is continuous, E is an \mathscr{F} -projection; since E

commutes with \mathcal{P} , it is in \mathcal{P} . This completes the argument.

By Zorn's lemma, complete Boolean algebras of \mathscr{F} -projections always exist, although they may be trivial. Nontrivial examples are given later.

THEOREM 11. Suppose that all vectors v and w in X satisfy the (Clarkson) inequality

$$1/2\mathscr{F}(||v+w||) + 1/2\mathscr{F}(||v-w||) \le \mathscr{F}(||v||) + \mathscr{F}(||w||)$$

and suppose $\mathcal{F}(2) \neq 4$, $\mathcal{F}(1) = 1$. Then any two \mathcal{F} -projections commute (and so the set of all \mathcal{F} -projections form a complete Boolean algebra of projections). The same result holds for the reverse inequality.

Proof. Let E and F be two \mathscr{F} -projections and $x \in X$. Then decomposing Ex into F and then E components, applying Clarkson's inequality, and simplifying (using Lemma 9) we obtain

$$\begin{split} \mathscr{J}(||Ex||) &= \mathscr{J}(||EFEx||) + \mathscr{J}(||E(I-F)Ex||) \\ &+ \mathscr{J}(||(I-E)FEx||) + \mathscr{J}(||(I-E)(I-F)Ex||) \\ &\geq 1/2\mathscr{J}(||EFEx + E(I-F)Ex)||) + 1/2\mathscr{J}(||EFEx - E(I-F)Ex||) \\ &+ 1/2\mathscr{J}(||(I-E)FEx + (I-E)(I-F)Ex||) \\ &+ 1/2\mathscr{J}(||(I-E)FEx - (I-E)(I-F)Ex||) \\ &= 1/2\mathscr{J}(||Ex||) + 1/2\mathscr{J}(||EFEx - E(I-F)Ex||) \\ &= 1/2\mathscr{J}(||Ex||) + 1/2\mathscr{J}(||FEx - (I-F)Ex||) \\ &= 1/2\mathscr{J}(||Ex||) + 1/2\mathscr{J}(||FEx + (I-F)Ex||) \\ &= 1/2\mathscr{J}(||Ex||) . \end{split}$$

This implies equality in Clarkson's inequality for the vectors (I-E)FEx and (I-E)(I-F)Fx:

$$\mathscr{J}(||(I-E)FEx||) + \mathscr{J}(||(I-E)(I-F)Ex||)$$

= $1/2\mathscr{J}(||(I-E)FEx + (I-E)(I-F)Ex||)$
+ $1/2\mathscr{J}(||(I-E)FEx - (I-E)(I-F)Ex||)$.

Since the first term on the right is zero, we can define $Z \equiv Z(x) \equiv (I-E)FEx \equiv -(I-E)(I-F)Ex$ and obtain $4\mathscr{F}(||z||) = \mathscr{F}(2||z||)$. What if $Z(x) \neq 0$? Then ||Z(x/||Z(x)||)|| = 1, and we have

$$4 = 4\mathscr{F}(||Z(x/||Z(x)||)||) = \mathscr{F}(2||Z(x/||Z(x)||)||) = \mathscr{F}(2)$$

which contradicts the hypothesis. Thus Z = 0 and so FEx = EFEx

for any x and any two \mathscr{F} -projections E and F. Replacing E and F by (I-E) and F yields F(I-E)x=(I-E)F(I-E)x; whence EFx=EFEx. Therefore FEx=EFx and so E and F commute.

REMARK. Consider $\mathscr{F}(\lambda) = \lambda^p$ for a fixed $p, 1 \leq p < \infty$. An \mathscr{F} -projection for such an \mathscr{F} is called an L^p -projection. Cunningham [4] showed that the L^1 projections always commute in any Banach space. The above theorem shows that for $p \neq 2$, the L^p projections in an L^p space commute.

DEFINITION. A net T_{α} of projections on a Banach space X is said to be *increasing* if $\alpha < \beta$ implies $T_{\alpha}T_{\beta} = T_{\alpha} = T_{\beta}T_{\alpha}$.

THEOREM 12. If T_{α} is an increasing net of norm 1 projections on a reflexive Banach space X, then T_{α} converges in the strong opertor topology of X to a norm 1 projection T that commutes with each T_{α} and whose range is the norm closure of $\bigcup_{\alpha} T_{\alpha}[X]$.

Proof. The essentials of a proof can be found in [8; p. 223].

3. Projecting onto cycle subspaces.

DEFINITION. If $\mathscr S$ is a Boolean algebra of projections on X and x is in X, let $S(x;\mathscr S)$ denote the *cycle generated by* x *and* $\mathscr S$; that is, the closed subspace of X generated by $\{Ex: E \in \mathscr S\}$.

THEOREM 13. Let \mathscr{S} be a Boolean algebra of \mathscr{F} -projections on a Banach space X that is smooth and reflexive, and let $x \in X$. Then $S(x; \mathscr{F})$ is the range of a (unique) norm 1 projection that commutes with \mathscr{F} .

Proof. Let π denote the set of all partitions of x by \mathscr{S} ; that is, finite subsets $\{E_1, \dots, E_n\}$ of \mathscr{S} such that $E_iE_j=0$ if $i\neq j$ and $(V_iE_i)(x)=\sum_i E_ix=x$. The set $\{I\}$ is such a partition. Order π by setting $\mathscr{C}r\mathscr{M}$ if, given A in \mathscr{M} there is an E in \mathscr{E} such that AE=A. This "is refined by" relation r is reflexive, anti-symmetric, transitive, and it directs the set π . Indeed, if $\{E_1, \dots, E_n\}$ and $\{A_1, \dots, A_m\}$ are partitions of x, then one common refinement is the set of E_iA_j such that $E_iA_jx\neq 0$.

For each partition $\mathscr E$ of x, define $T(\mathscr E)(y)\equiv\sum (E\in\mathscr E)(N(Ex)(y)/\|Ex\|\|)Ex$ for all y in X. The transformation $T(\mathscr E)$ is obviously linear; that it is a projection on X is an immediate consequence of the fact that for E and F in $\mathscr F$ with EF=0, N(Ez)(Fy)=N(Ez)(EFy)=0. We now show that the norm of $T(\mathscr E)$ is 1. It is not 0, first of all,

because the projection leaves x fixed. Proceeding, let $y \in X$.

$$||[N(Ex)(y)/||Ex||]Ex|| = |N(Ex)(y)| = |N(Ex)(Ey)| \le ||Ey||$$
.

From this,

$$\begin{split} \mathscr{F}(||\,y\,||) &\geq \mathscr{F}(||\,V(E \in \mathscr{E})Ey\,||) = \mathscr{F}(||\,\sum\,(E \in \mathscr{E})Ey\,||) \\ &= \sum\,(E \in \mathscr{E})\mathscr{F}(||\,Ey\,||) \geq \sum\,(E \in \mathscr{E})\mathscr{F}(||\,N(Ex)(y)/||\,Ex\,||)Ex\,||) \\ &= \mathscr{F}(||\,\sum\,(E \in \mathscr{E})(N(Ex)(y)/||\,Ex\,||)Ex\,||) = \mathscr{F}(||\,T(\mathscr{E})y\,||) \;. \end{split}$$

Consequently $||T(\mathcal{E})y|| \leq ||y||$.

In order to apply Theorem 12, we must show that $T(\mathscr{A})T(\mathscr{E})=T(\mathscr{E})=T(\mathscr{E})T(\mathscr{A})$ under the assumption that $\mathscr{E} r\mathscr{A}$. It is a routine matter to use Lemma 5 to check that $T(\mathscr{A})(Ax)=Ax$ for any A in \mathscr{A} , that $T(\mathscr{A})(Ex)=Ex$ for any E in \mathscr{E} , and that, therefore, $T(\mathscr{E})=T(\mathscr{A})T(\mathscr{E})$. Let z be a given element of the null manifold of $T(\mathscr{A})$. Then for each A in \mathscr{A} , $(N(Ax)(z)/||Ax||)Ax=AT(\mathscr{A})z=0$ so that N(Ax)(Az)=N(Ax)(z)=0. Then Ax is James orthogonal to Az:

$$||Ax + Az|| \ge ||Ax||$$
.

Then

$$\begin{split} \mathscr{F}(||Ex+Ez||) &= \mathscr{F}(||(\sum (AE=A)A(x+z)||) \\ &= \sum (AE=A)\mathscr{F}(||Ax+Az||) \geq \sum (AE=A)\mathscr{F}(||Ax||) \\ &= \mathscr{F}(||\sum (AE=A)Ax||) = \mathscr{F}(||Ex||) , \end{split}$$

for every E in \mathscr{C} . Therefore, $||Ex + Ez|| \ge ||Ex||$ and, similarly, $||Ex + iEz|| \ge ||Ex||$ if X is complex. In any case, N(Ex)(z) = N(Ex)(Ez) = 0 for all E in \mathscr{C} and, therefore, z is in the null manifold of $T(\mathscr{C})$. Since the null manifold of $T(\mathscr{C})$ contains that of $T(\mathscr{A})$, we have $T(\mathscr{C})T(\mathscr{A}) = T(\mathscr{C})$.

By Theorem 12, there is a norm 1 projection T commuting with every $T(\mathscr{E})$ that is the limit in the strong operator topology of the net $T(\mathscr{E})$ and whose range is the subspace $\operatorname{cl} \cup (\mathscr{E} \in \pi) T(\mathscr{E})[X]$. Let us show that T commutes with the projections in \mathscr{F} . Let $E \in \mathscr{F}$. If $Ex \neq 0$, let \mathscr{E} denote the set $\{E\}$ or $\{E, I - E\}$ that is a partition of x. Given $\mathscr{A} \in \pi$ such that $\mathscr{E} r \mathscr{A}$,

$$T(\mathscr{S})Ey = \sum (A \in \mathscr{S})(NAx)(Ey)/||Ax||)Ax$$

$$= \sum (AE = A)(N(Ax)Ey)/||Ax||)Ax$$

$$= \sum (AE = A)(N(Ax)(y)/||Ax||)EAx$$

$$= E(\sum (AE = A)(N(Ax)(y)/||Ax||)Ax)$$

$$= E(\sum (A \in \mathscr{S})(N(Ax)(y)/||Ax||)Ax)$$

$$= ET(\mathscr{S})y$$

for all y in X. Consequently, for each y in X,

$$TEy = \lim (\mathscr{E} r \mathscr{A}) T(\mathscr{A}) Ey = \lim (\mathscr{E} r \mathscr{A}) ET(\mathscr{A}) y$$

= $E \lim (\mathscr{E} r \mathscr{A}) T(\mathscr{A}) y = ETy$.

Therefore, TE = ET provided $Ex \neq 0$. If Ex = 0, then $(I - E)x \neq 0$ and T(I - E) = (I - E)T by the same argument. From this, TE = ET when Ex = 0.

For all \mathscr{A} in π , $T(\mathscr{A})[X] \subseteq S(x;\mathscr{P})$; hence, $T[X] \subseteq S(x;\mathscr{P})$. And given $E \in \mathscr{P}$, if $Ex \neq 0$, then, letting \mathscr{C} be the above partition of x, $S(x;\mathscr{C}) \subseteq T[X]$. This completes the proof of Theorem 13.

THEOREM 14. Let $\mathscr P$ be a complete Boolean algebra of $\mathscr F$ -projections on a Banach space that is reflexive and smooth. Then the weakly closed algebra $\mathscr W(\mathscr P)$ of operators on X generated by $\mathscr P$ is equal to its second commutant.

Proof. Bade [1] shows that if $\mathscr P$ is complete, then $\mathscr W(\mathscr P)$ is the uniformly closed algebra of operators generated by $\mathscr P$ and it consists, furthermore, of exactly those (bounded linear) operators of X which leave invariant every closed linear manifold invariant under $\mathscr P$.

Suppose A is in the second commutant of $\mathscr{W}(\mathscr{T})$. For each x in X, let T^x denote the norm one projection whose range is $S_x = S(x; \mathscr{T})$. Then T^x commutes with $\mathscr{W}(\mathscr{T})$ so that $AT^x = T^xA$ for all x in X. From this, we have that A leaves each S_x invariant: $AS_x = AT^xX = T^xAX \subseteq T^xX = S_x$. If M is a closed subspace left invariant under \mathscr{T} , then $S_m \subseteq M$ for all m in M; whence, $A(m) \in AS_m \subseteq S_m \subseteq M$ for each m in M. Therefore, A leaves M invariant. Therefore, $A \in \mathscr{W}(\mathscr{T})$.

4. A class of examples. Let (S, Σ, μ) be a measure space with the property FSP (a measurable set of infinite measure contains a measurable subset of finite positive measure). This condition is discussed in [9]. We consider an Orlicz space L_M over (S, Σ, μ) where the complimentary Young's functions M and N are normalized (M(1) + N(1) = 1), satisfy Δ_2 conditions, and have continuous, strictly increasing derivatives denoted m and n, respectively. Then L_M is reflexive and [9; Corollary 2.1] the Luxemberg norms in both L_M and L_N are strongly differentiable. Furthermore, the weak derivative of a norm 1 function f_0 in L_M is given by $f \to \int fm(f_0)d\mu$.

Lemma 15. If
$$0 \le f \in L_{\scriptscriptstyle M}$$
, then $m\left(\frac{f(x)}{||f||}\right) = \frac{m(f(x))}{||mf||}$ for almost

all $x \in S$.

Proof. If $h=\alpha g$ for $\alpha\geq 0$ and if $h,g\geq 0$ a.e., we have equality for h and m(g) in Holder's inequality: $||h||\,||mg||=\int hm(g)d\mu$. Then $\int fm\Big(\frac{f}{||f||}\Big)d\mu=||f||=\int f\Big(\frac{m(f)}{||m(f)||}\Big)d\mu \text{ so } m(f/||f||) \text{ and } m(f)/||mf||$ are normers for f. Since L_M is smooth, normers are unique.

LEMMA 16. Assume the existence of sets of arbitrarily small positive measure. If $f, g \in L_{\scriptscriptstyle M}$ with 0 < ||f|| < ||g||, then 0 < ||mf|| < ||mg||.

Proof. Set K = ||g||/||f|| > 1. Choose $x \in S$ such that 0 < m(g(x))/||m(g)|| = m(g(x))/||g||). Set a = |g(x)|/K > 0. For any measurable set E, let f_E be the function constant on E at the value a, and agreeing with |f| outside of E. By diminishing the measure of E, the function f_E may be brought in the norm of L_M as close to |f| as desired. Furthermore, $||m(Kf_E)|| - ||mf||$ approaches ||m(Kf)|| - ||mf|| > 0 as E decreases. It is therefore, possible to choose a set E of positive measure so small that

$$m(g(x)/||g||)(||f||/||f_E||)||m(Kf_E)|| > m(g(x)/||g||)||mf||$$
.

Select $y \in E$ such that $m(Kf_E(y)) = m(Kf_E(y)/||(Kf_E||)) || m(Kf_E) ||$. Computing, we have

$$egin{aligned} & m(g(x)/||g||)\,||\,mg\,||\,=\,m(g(x))\,=\,m(Ka)\,=\,m(Kf_{\scriptscriptstyle E}(y))\ &=\,m(f_{\scriptscriptstyle E}(y)/||\,f_{\scriptscriptstyle E}\,||)\,||\,m(Kf_{\scriptscriptstyle E})\,||\,=\,m(a/||\,f_{\scriptscriptstyle E}\,||)\,||\,m(Kf_{\scriptscriptstyle E})\,||\ &=\,m((g(x)/||g\,||)(||\,f\,||/||\,f_{\scriptscriptstyle E}\,||))\,||\,m(Kf_{\scriptscriptstyle E})\,||\,>\,m(g(x)/||\,g\,||)\,||\,mf\,||\,\,. \end{aligned}$$

Cancelling m(g(x)/||g||) finishes the argument.

Perhaps Lemma 16 is true without restrictions on the measure space. We have not settled this.

Define $\mathscr{F}(\lambda) = ||f|| \, ||mf|| = \int |f| \, m(f) d\mu$ where f is any function in L_M of norm λ . From Lemma 16, it is clear that \mathscr{F} is well defined and strictly increasing. To show continuity, let E be any set of finite positive measure and a $(\lambda) = \lambda/||\chi_E||$. Then $a(\lambda)$ is continuous and

$$\mathscr{F}(\lambda) = \int\!\! a(\lambda) \chi_{\scriptscriptstyle E} m(a(\lambda) \chi_{\scriptscriptstyle E}) d\mu = \int\!\! a(\lambda) m(a(\lambda)) \chi_{\scriptscriptstyle E} d\mu = a(\lambda) m(a(\lambda)) \mu E \; ,$$

a continuous function.

Each measurable set E gives rise to the characteristic projection $f \rightarrow \chi_E f$.

LEMMA 17. Every characteristic projection is an F-projection.

Proof.

$$\begin{split} \mathscr{F}(||f||) &= \int \!\! f m(f) d\mu = \int_E \!\! f m(f) d\mu + \int_{S \setminus E} \!\! f m(f) d\mu \\ &= \int \!\! (\chi_E f) m(\chi_E f) d\mu + \int \!\! (\chi_{S \setminus E} f) m(\chi_{S \setminus E} f) d\mu \\ &= \mathscr{F}(||\chi_E f||) + \mathscr{F}(||\chi_{S \setminus E} f||) \; . \end{split}$$

REFERENCES

- 1. W. G. Bade, On Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc. 80 (1955), 345-359.
- 2. E. Bishop and R. R. Phelps, A proof that every Banach space is sub-reflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98
- 3. J. A. Clarkson, Uniformly convex space, Trans. Amer. Math. Soc. 40 (1939), 396-414.
- F. J. Cunningham Jr., L-structure in L-spaces, Trans. Amer. Math. Soc. 95 (1960), 274-299.
- 5. N. Dunford and J. T. Schwartz, *Linear operators*, Part I, Interscience, New York, 1958.
- 6. R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292.
- 7. ——, Characterizations of reflexivity, Studia Math. 23 (1964), 205-216.
- 8. E. R. Lorch, On a calculus of operators in reflexive vector spaces, Trans. Amer. Math. Soc. 45 (1939), 223.
- 9. M. M. Rao, Smoothness of Orlicz spaces, Koninkligke Nederlandse Akademic Von Wetenschappen 68 (1965), 672-690.
- 10. F. E. Sullivan, A norm characterization of L^p-spaces, Doctoral Dissertation, University of Pittsburgh, 1968.
- 11. ———, Norm characterization of real L^p-spaces, Bull. Amer. Math. Soc. **74** (1968), 153-154.

Received July 23, 1968, and in revised form February 25, 1970.

THE UNIVERSITY OF PITTSBURGH