ON S-UNITS ALMOST GENERATED BY S-UNITS OF SUBFIELDS

JOHN H. SMITH

Let K/k be a finite galois extension of number fields, S a finite set of primes of K, and Φ a set of intermediate fields. We assume that S and Φ are closed under the action of G(K/k) and that S contains all the archimedean primes. This paper determines conditions under which the S-units of fields of Φ "almost generate" those of K (i.e., generate a subgroup of finite index).

Let U be the S-units of K and U' the subgroup generated by S-units of fields in Φ . For any subgroup, H, of G, let χ_H be the character of G induced by the trivial character on H and let M_H be the corresponding C[G]-module.

THEOREM 1. U/U' is finite if and only if every irreducible C[G]-module, M, which occurs in some $M_{H(\mathfrak{P})}$, $\mathfrak{P} \in S$ also occurs in some $M_{J(F)}$, $F \in \Phi$. (Here $H(\mathfrak{P})$ denotes the splitting group of the prime \mathfrak{P} and J(F) the group of automorphisms fixing the elements of F).

Proof. U/U' is finite if and only if $U \otimes C = U' \otimes C$. But we know the structure of $U \otimes C$ (see, e.g., p. 10 of [1]). If θ is the sum, over all conjugacy classes of primes of S, of $\chi_{II}(\mathfrak{P})$, and $N = U \otimes C$ then the character of N is $\theta - \chi_G$. Hence, except for components with character χ_G , the components of N are those and only those which occur in some $M_{II}(\mathfrak{P})$, $\mathfrak{P} \in S$.

Now U' is generated by those elements which are invariant under some J(F), $F \in \Phi$. So U/U' is finite if and only if N is generated by such elements, which of course is the case if and only if each irreducible component is so generated. Such a component, N', is so generated if and only if it has a nontrivial element fixed by some J(F). By Frobenius reciprocity this is equivalent to saying that N' occurs in some $M_{J(F)}$.

COROLLARY 1. If for every $\mathfrak{P} \in S$ there is an $F \in \Phi$ such that \mathfrak{P} does not split at all from F to K then U/U' is finite.

Proof. In this case each $H(\mathfrak{P})$ contains some J(F).

2. In this section we suppose that every irreducible character

of G occurs in some $M_{H(\mathfrak{P})}$, $\mathfrak{P} \in S$ (for example, if k has a complex prime or K has a real one.)

COROLLARY 2. Let Φ be the set of all proper subextensions. Then U/U' is infinite if and only if G admits a fixed point free (complex) representation (i.e., one in which only the identity has eigenvalue 1).

Proof. Clear.

REMARK. Groups admitting such a representation are fairly special, the only familiar ones being the cyclic groups, certain metacyclic groups, and SL(2, 5). A complete classification is given in [3].

COROLLARY 3. Let G be abelian and let Φ consist of cyclic subextensions. Then U/U' is finite if and only if every maximal cyclic subextension belongs to Φ .

Proof. Clear.

THEOREM 2. The S-units if K of degree $\leq m$ over k generate a subgroup of finite index in U if and only if every irreducible (complex) representation of G factors through a transitive permutation representation on at most m symbols.

Proof. We let Φ be the set of all intermediate fields of degree m. Then the first condition is equivalent to the finiteness of U/U', which is equivalent to the occurrence of each irreducible representation of G in some $M_{J(F)}$, $F \in \Phi$.

Now the representation afforded by $M_{J(F)}$ factors through the action of G on cosets of J(F) by translation, hence any component of it factors through permutations on $[G:J(F)]=[F:k] \leq m$ elements. Conversely if a representation φ factors through a transitive representation on a set Ω , $|\Omega| \leq m$, let $J \subset G$ be the stabilizer of a point of Ω . Then the action on Ω is equivalent to translation of the cosets of J, which gives rise to the character χ_J . Since φ , restricted to J, has a fixed point, φ occurs in χ_J by Frobenius reciprocity. Clearly the field F, corresponding to J, has degree $[G:J] \leq m$.

REMARK. For m=2, 3, 4 (but not higher) the above condition is easily seen to be equivalent to the assertion that every irreducible representation factors through S_m .

Since explicit algorithms are available for finding units (in fact fundamental units) in quadratic and cubic extensions of Q (see [2]) we mention the following example.

THEOREM 3. The S-units of degrees 2 and 3 over k "almost generate" the S-units of K if and only if G is of one of the following forms:

- (1) G abelian of exponent 2 or 3
- (2) G has an abelian subgroup, A of exponent 3 such that A is of index 2 and G/A acts on A by inversion.

Proof. It is easy to check that all irreducible representations of groups of the above forms factor through S_3 . Conversely suppose all the irreducible representations of G factor through S_3 . Then the same is true of quotients of G, and, by Frobenius reciprocity, of subgroups. In particular all elements are of orders 1, 2 or 3. This takes care of the abelian case.

If G is not abelian, let φ be any irreducible representation of G'. If ψ is an irreducible component of the induced representation of G then the restriction of ψ to G' contains φ by Frobenius reciprocity. Since ψ factors through S_3 , φ factors through S_4' . Hence G' is abelian of exponent 3. Since G/G' is abelian it is abelian of exponent 2 or 3. If it is a 3-group, so is G, but then, since all irreducible representations of G factor through the 3-Sylow subgroup of G_4 , G' is would be abelian. Hence G/G' is of exponent 2. The action of G/G' on G' gives an ordinary representation of G/G', which can be diagonalized. If G/G' had more than one generator some element of order 2 would commute with an element of order 3, giving an element of order 6 which is impossible. Hence $G/G' \cong Z/2Z$ and the action on G' is inversion.

REFERENCES

- 1. E. Artin and J. Tate, Class field theory, Benjamin, 1968.
- 2. B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, Amer. Math. Soc. Trans. of Math. Mono., Vol. 10.
- 3. J. A. Wolf, Spaces of constant curvature, McGraw-Hill, 1967.

Received February 10, 1969.

BOSTON COLLEGE