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COINCIDENCES AND FIXED POINTS OF
MULTIFUNCTIONS INTO TREES

HELGA SCHIRMER

The main purpose of this paper is to find conditions on
an upper semi-continuous (use) multifunction φ from a compact
Hausdorff space X onto a tree T so that it has a coincidence
with any multifunction f:X->T which is either continuous
or use and connected-valued. It is shown that it is sufficient
(but not necessary) that φ be either open or monotone. This
result contains as special cases known conditions for coinci-
dence producing single-valued maps onto trees as well as
known fixed point theorems for multif unctions on trees. It is
used to obtain a new result on fixed points, namely that any
composite of an use and connected-valued and a continuous
multifunction of a tree into itself has a fixed point. All
proofs make use of the order-theoretic characterization of
trees by L. E. Ward, Jr.

A single-valued map / : X —> Y from a space X into a space Y
is called coincidence producing for all maps g:X —>Y if / has a
coincidence with all maps g, i.e., if there exists a point xeX such
that f(x) = g(x). Coincidence producing maps onto trees have been
studied in [4] and [5], and it was shown there that a map f:X—>T
from a continuum X onto a tree T is coincidence producing if it is
either monotone or open. The main purpose of this paper is to extend
this result to multifunctions, but the situation is here more complex.

The known fixed point theorems for multifunctions of trees and
similar spaces are mainly of two kinds: they require that either the
multifunction is continuous (see, e.g., [3]) or that it is upper semi-
continuous (use) and connected-valued (see, e.g., [2], [5], [8], and
[9]). The principal result of this paper, Theorem 4.6. below, applies
to both of these cases and shows that an open or monotone use func-
tion onto a tree is coincidence producing both for continuous and for
use, connected-valued functions. The theorem includes the results
for single-valued maps mentioned above. As was the case there, the
•condition that the coincidence producing function be either open or
monotone is sufficient but not necessary; a condition which is both
necessary and sufficient is not yet known.

We apply the theorems on coincidence producing functions to

obtain some results on fixed points. In addition to showing that any

function of a tree into itself which is either continuous or use and

•connected-valued has a fixed point, they show that any function which
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can be factored into two functions such that one is continuous and
the other is use and connected-valued does also (see Theorem 5.2).

Although the contents of this paper are generalizations of [4]
and [5] the method of their proof is quite different. It makes use of
the order-theoretic characterization of trees given by Ward [7] and is
related to arguments used in the fixed point case by Capel and
Strother [2] and Ward [9].

The required properties of trees are collected in §2, those of
multifunctions in §3. The proofs of the coincidence theorems can be
found in §4, and the applications to fixed points are given in §5.

2* Properties of trees* By a tree T we mean a continuum
(i.e., a compact connected Hausdorff space) in which every pair of
distinct points is separated by a third. It is well-known that every
tree has a partial order ^ . We define, as usual,

L(A) — {ye T\y ^ x for some xe A} ,

M(A) = {ye T\x ^ y for some xe A} .

Then Ward [7] has characterized trees as follows.
A compact Hausdorff space T is a tree if and only if it admits

a partial order ^ satisfying
( i ) L(x) and M(x) are closed for every xe T,
(ii) if x < y then there exists a z such that x < z < y,
(iii) L(x) Π L(y) is a nonnull chain (i.e., is linearly ordered) for

every x,yeT,
(iv) M(x)\{x} is an open set for every xe T.
We define [x, y] = M(x) Π L(y); then [x, y] is a nonempty chain if

x < y. A point m is called a maximum of a subset A of T if m e A
and if m < x for each xe A. A zero of A is a point aQe A for which
A c M(a0). In the following four lemmas we state some properties
of trees which are needed in the proofs of our main results.

LEMMA 2.1. Every nonempty closed subset of T has a maximum-

Proof. See [6, Th. 1].

LEMMA 2.2. Every nonempty closed connected subset of T has a
zero.

Proof. See [2, Lemma 2].

L E M M A 2 . 3 . If A is a connected subset of T\{y) for some yeT
and if Af] M(y) Φ 0 then A c M(y)\{y}.
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Proof. Otherwise M(y)\{y} and T\M(y) would provide a separation
of A.

LEMMA 2.4. If ye V, where V is an open subset of T, and if
y < t then there exists a ze V such that y < z < t.

Proof. From [2, Lemma 1].

3* Properties of multifunctions* A multifunction φ:X~+Y
from a topological space X to a topological space Y is a correspondence
which assigns to each point of X at least one point of Y. We say-
that φ: X —> Y is use (upper semi-continuous) if for every xe X, φ(x)
is closed and for each open set V a Y with φ(x) c V there exists an
open set Uc X with xe U such that φ(U) c V. It is called lsc
(lower semi-continuous) if for every xeXand for every open set Va Y
with φ(x) ί l 7 ^ 0 there exists an open set U c X with xe U such
that φ(xf) Π V Φ 0 for all α' e 17. If <p is both use and lsc it is called
continuous. We will reserve the term map for continuous single-valued
functions.

It is well known that use of φ:X—>Y implies that φ~\B) =
{xe X\ φ(x) Π B Φ 0} is closed in X for every closed B czY, and lsc
of ψ\ X—> Y implies that φ~\B) is open in X for every open B c Y.
If X and Y are compact Hausdorίf spaces, then φ:X—>Y is use if
and only if its graph {(a?, y) \ x e X, y e Y, ye φ(x)} in X x Y is closed
(see [1, p. 112]). Hence in this case the image φ(A) = \j{φ{x) \xe A)
of a closed set A c X is closed in Y. The image of an open set
under a lsc function need not be open, however, even if X and Y are
compact Hausdorff.

Our coincidence producing functions will be special kinds of multi-
functions. We give their definitions.

Let φ: X-+ Y be a multifunction. Then we say that
( i ) φ is open if φ(A) is open for every open A c X,
(ii) φ is connected-valued if φ(x) is connected for every xeX,
(iii) φ is connected if φ(A) is connected for every connected

A c X ,
(iv) φ is monotone if φ~ι{y) is connected for every yeY.
We shall write φ: X -» Y if <£> is onto Y. The following lemma

states some relations between a multifunction φ: X -» F and its inverse
^~x: F-» JΓ. They are obvious from the definitions and from the
remarks about use functions.

LEMMA 3.1. ( i ) φ: X -» Y is lsc if and only if φ~u. Y-»X is
open,

(ii) φ:X-»Y is monotone if and only if φ"1: Y-»X is
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connected-valued,
(in) if X and Y are compact Hausdorff, then φ\ X -» Y is use

if and only if φ~ι: F-» X is use.

Finally we describe a case where (ii) in Lemma 3.1 can be
strengthened to connected instead of connected-valued.

LEMMA 3.2. Any use function φ: X -» T from a compact Haus-
dorff space X onto a tree T is monotone if and only if φ~r\ T -» X
is use and connected.

Proof. It is shown in [10, B4] that any use and connected-valued
function from a locally connected HausdorfE space onto a peripherally
compact Hausdorff space is connected. (A space X is called peripherally
compact if for each xe X and open set U containing x there exists
an open set V with xe V a U which has a compact boundary.) As
a tree is locally connected [7, Lemma 4] and as a compact Hausdorff
space is clearly peripherally compact, we see that if φ;X-*>T is use
and monotone then φ~λ: T-» X is not only use and connected-valued
but also connected. The converse is trivial.

4* The coincidence theorems* A coincidence of two multifunc-
tions φ, ψ: X-+Y is a point xe X such that φ{x) Γ) ψ(x) Φ 0 . The
purpose of this paragraph is to find conditions for φ so that the
functions φ, ψ: X —>Γ from a compact Hausdorff space X into a tree
T have a coincidence if ψ is either continuous or use and connected-
valued.

THEOREM 4.1. If φ: X-»T is use and open and if ψ: X—+T is
either continuous or use and connected-valued then φ and ψ have a
coincidence.

The crux of the proof of the theorem is to consider the set

E = {ye T\ M(y) Π ψ(x) Φ 0 for at least one x e φ~\y)}

and study its properties if φ and ψ have no coincidence. This is
done in the next two lemmas. (Note that if X = T and if φ is the
identity and ψ = f: X—>X is a map, then E reduces to {x e X | x <;/(#)},
a set that has been used in the proofs of a number of fixed point
theorems for functions on ordered spaces.)

LEMMA 4.2. If the use functions φ, ψ: X—+ T have no coincidence
and if φ: X-»T is onto, then E is closed.
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Proof. We show that the set

T\E = {yeT\ M(y) Π Ψ(x) = 0 for every xe φ~\y)}

is open. Choose a y0 e T\E and take any x e φ~ι{y0). Then M(y0) Π ψ(x) = 0 ,
and hence

{y0} x f{x) aTxT\G,

where G = {(a?, 2/) e Γ x T\ x ^ ?/} denotes the graph of the partial
order of T. As G is closed in T x T [6, Lemma 1] and as f(x) is
compact there exist open sets V^x) and V2(x) in T such that

O/o} x Ψ(x) c F ^ ) x F2(a?) c Γ x T\G ,

and as ^ is use we can find an open set U(x) containing x such that
ψ(U(x)) c V2(x). The set φ~\yQ) is compact in X as 9? is use, hence
the open cover {U(x) \ x e φ~ι{y<)} has a finite subeover

{U(xi)\xieφ-I(yo);i = 1,2, ...,rc} .

Then U = U?=i ^(»i) is open and φ~\yQ) c ?7.
As φ\X-»T is use the function φ~lm. T-»X is also use (see

Lemma 3.1, (in)). Thus there exists for the open set U a X with
φ~ι(y<z) c U an open set F containing #0 such that ^" '(F) c U. Define
70 = 7 ί l [Π?=i Vι(χj)]- Then Fo is open, contains y0, and ̂ "'(Fo) c U.
We show that Fo c T\E.

lϊ ye Vo is arbitrary then φ~\y) c C/, so that every x e φ~ι{y) is
contained in an U(xό) for some 1 ̂  j ^ n. By construction of U(x/)
we have t(») c F2(%). But y e Fo c 7i(a?y) and F x (^ ) x V%{xs) c Γ x Γ\G.
Hence ikf(i/) Π f (α) = 0 and Fo c T\E.

LEMMA 4.3. If φ, ψ: X —>T are coincidence free and if ψ is open
and ψ is either continuous or use and connected-valued, then there
exists for every yeEa point zeE such that y < z.

Proof, (i) We first assume that ψ is continuous. As φ and ψ
are coincidence free there exists for every y e E an x e φ~~\y) such that
[M{y)\{y}\ Π ψ(x) Φ 0 . C h o o s e awe [M{y)\{y}\ Π ψ(x), t h e n y < w a n d
we can find a t such that y < t < w. As | is lsc there exists an
open U containing x such that [M(t)\{t}] Π ψ(xf) Φ 0 for all x' e U.
But ψ is open and hence <p(U) = V is an open set containing y. It
follows from Lemma 2.4 that there exists a z e V with y < z < t.
Choose &'e C7 such that zeφ{xf). Then [ilf(ί)\{ί}] Π ψ(x') Φ 0 implies
i/r(χ') n M(z) Φ 0 , hence zeE.

(ii) The proof can now easily be adjusted to the case where ψ
is use and connected-valued if we keep in mind that Lemma 2.3 implies
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here that if [M(y)\{y}] f] ψ(x) Φ 0 then f (x) c M(y)\{y}. We define
w as the zero of ψ(x) which exists according to Lemma 2.2, and
determine an open set U containing x so that ψ(U) c M(t)\{t}, which
is possible as ψ is use. The rest is completely analogous.

Proof of Theorem 4.1. As φ is onto the set E contains the zero
of T and hence is nonempty. If ψ and ψ have no coincidence then it
follows from Lemmas 4.2 and 4.3 that E is closed but has no maximal
element. But this contradicts Lemma 2.1.

We now consider the case where φ is monotone instead of open.

THEOREM 4.4. If φ:X-»T is use and monotone and ψ:X—*T
is either continuous or use and connected-valued then φ and ψ have
a coincidence.

Proof. The theorem can be proved in the same way as Theorem
4.1 by studying the set E. Hence it is only necessary to prove the
counterpart of Lemma 4.3, which we shall do now.

LEMMA 4.5. If φ, ψ: X —>T are coincidence free and if φ is use
and monotone and ψ is either continuous or use and connected-valued,
then there exists for every yeEa point ze E such that y < z.

Proof, (i) Again we assume first that ψ is continuous. Take
any yeE and let B = φ~ι(y). As φ is use and monotone B is closed
and connected. Further y g Ψ(B) as φ and ψ are coincidence free.
As ye E we have [M(y)\{y}] Γ) f(B) Φ φ. Choose ve [M{y)\{y}\ Π Ψ{B),
then y < v. As ψ is use ψ(B) is closed, hence if m is the maximum
of [y, v] Π Ψ(B) then y < m. Choose t such that y < t < m. We next
show that [M(t)\{t}] Π f(x) Φ 0 for every x e B. Define

Bf = {x e B I [M(t)\{t}] n Ϋ(x) Φ 0} .

As ^ is lsc there exists for every xe Bf an open set Uf containing x
such that [M(t)\{t}] Π t(.τ') Φ 0 for every x' e Uf. Hence U' Π B S &',
i.e. β' is open in B. As ^ is use there exists for every x e B\Br an
open set U" containing x such that ^r{Urf) c T\M(t). Hence
U" Π -B S 5\5', i.e. SVB' is open in B. Therefore Bf is both open
and closed in the connected set B, and as Br Φ 0 it follows that
B' - 5.

Hence if x is an arbitrary point of B then [Λf(£)\{£}] Ω Ψ{x) Φ 0 .
As ψ is lsc there exists an open set U(x) containing x such that
[M(t)\{t}] (Ί ψ(x') Φ 0 for every xre U(x). Define Z7= \j{U(x) \xeB},



COINCIDENCES AND FIXED POINTS OF MULTIFUNCTIONS INTO TREES 765

then U is an open set containing B. Now choose w such that y <w < ί
and let A = φ~ι[y, w]. Lemma 3.2 shows that A is a closed and
connected set, and it contains β a s a proper subset.

If UΠ(A\B)=0, then B = UΠ B - (UΠ B) U (U f] (A\B)) =
U Π A is open in A. But it is also closed in A, and A is connected.
As this is impossible we have Uf] (A\B) Φ 0 . Now take any
xe Uf] (A\B). Then φ(x) Π {[y, w]\{y}) Φ 0 , and we can choose a
z e φ(x) such that y < z ^ w. As x e ϋ7 we have [ifcf(£)\{£}] Π ̂ (α;) Φ 0
and hence Λf(z) Π ψ(x) Φ 0 . Therefore z is in 2£ and y < z.

(ii) We now adjust the proof to the case where ψ is use and
connected-valued, using, again that here Lemma 2.3 shows that
ψ(x) c M(t)\{t} if [M(ί)\{£}] Π f(x) Φ 0 , and that Lemma 2.2 shows
that i/φ) has a zero. For any yeEwe choose an xeφ^iy) with
ψ(x) c Λf(2/)\{τ/} and take w as the zero of ψ(x). In order to show that
B' is open in B we can use the fact that if x e Bf then ψ(x) c ikf(ί)\{£}.
As ψ is use there exists then an open set U' containing x such that
Ψ{U') c M(t)\{t}, so that U' Γ) J5 S β'. The argument that E' is closed
in J5 needs no change. In the construction of the open cover U =
U{U(x) \xe B} of B we use the fact that ψ is use and connected-valued
to choose the open set U(x) containing x such that ψ(U(x)) c M(t)\{t}.
The rest does not need any modification.

Following [4] we say that the function φ:X—>T is coincidence
producing for all functions ψ: X—»T if every pair φ, ψ has a coinci-
dence. Using this terminology we can sum up the results of this
paragraph as follows.

THEOREM 4.6. Any use function φ: X-» T from α compact Hans-
dorff space X onto a tree T is coincidence producing for all functions
ψ .X—>T which are either continuous or use and connected-valued if
it is either open or monotone.

5* Applications to fixed points* A fixed point of a multifunc-
tion φ:X—>X is a point x such that xeφ(x). The close relation
between the existence of fixed points and coincidences is shown in the
following lemma.

LEMMA 5.1. Let φγ\ Y—>X and φ2:X—>Y be multifunction.
Then the composite function φ^ψγ\ Y—>Y has a fixed point if and
only if the two functions φτ1:φ1(Y)-»Y and φ2 \ φ^Y): φ^Y) —>Y
have a coincidence.

The proof is immediate from the definitions of fixed points and
coincidences.
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THEOKEM 5.2. The product <p = Λ . W T-*T of a

valued and use > function φx\ T-+X from a tree T into a compact

* * * « « - * ~? essr*"* "*u s c} *«*"
9y. X—+T has a fixed point.

Proof. φx(T) is a compact Hausdorff subset of X as φι is usc.
Hence it follows from Lemma 3.1 and (φ"1)"1 = <p that φzu. <Pι{T) -*> Γ
is usc and open if and only if φx\ T—+X is continuous, and that
<PΓlm Ψi(T) -»Γ is usc and monotone if and only if <?γ. T—>X is usc
and connected-valued. Therefore the theorem is a consequence of
Lemma 5.1 and the coincidence Theorem 4.1 and 4.4.

With X = T and either <̂ 2 = identity map or ^ = identity map
we obtain from Theorem 5.2.

COROLLARY 5.3. Any continuous or usc and connected-valued
function of a tree into itself has a fixed point.

The case of continuous functions was proved for dendrites (i.e.
metric trees) by Plunkett [3] and extended to topologically chained,
hereditarily unicoherent and hereditarily decomposable continua by
Ward [8]. The case of usc and connected-valued functions is the
fixed point theorem of Wallace [5] and Capel and Strother [2]. We
see how Theorem 5.2 composes these two cases.
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