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REARRANGEMENT INEQUALITIES INVOLVING
CONVEX FUNCTIONS

DAVID LONDON

Let a = (βi, •••,«») and b = (bίf , bn) be w-tuples of non-
negative numbers. Then

( 1 ) Π (flί+bί) £ Π (fli+bi) £ Π (flΐ+bi)
ί=ι ΐ=i ΐ=i

and

( 2 ) 2 α?6 ^ Σ αΛ ^ Σ aίbί .

a>' = (αί, , αi) and α* = (αf, , αϊ) are respectively the re-
arrangement of α in a nondecreasing or nonincreasing order.
(1) was recently found by Mine and (2) is well known. In this
note we show that these inequalities are special cases of
rearrangement inequalities valid for functions having some
convex properties.

Let x = (xly — , xn) be an n-twple of real numbers. We denote
by a?* = (#?, , Xn) the w-tuple x rearranged in a nonincreasing order
# ί >̂ #2* ̂  δ ^ί> a n d we denote by xr = (x[, , ^ ) the same t^-tuple

rearranged in a nondecreasing order x[^x[^ ^ x'n.

Recently Mine [2] proved t h a t if a = (αx, , αΛ) and 6 = (6i, , 6Λ)

are real ^-tuples such t h a t α*, δ< ̂  0, ϊ = 1, , w, then

( 1 ) Π (α{ + δί) ^ Π (βi + δί) ^ Π (af + b\) .
•=1 <=1 i = l

If α4 > 0 and δ4 ^ 0, ΐ = 1, , n> then (1) is equivalent to

( 1 ) '

(see also [4, Theorem 2] and [5]).

It is well known [1, Th. 368] that if a = (α1? ,αw) and 6 = (6L, ,δw)
are real ^-tuples, then

( 2 ) Σ α?6{ ^ Σ αiδ{ ^ Σ αίδί .

If α, > 0 and δ i ^ O , i = l, - - ^ n , then (2) is obviously equivalent to

( 2 ) '

In the present note we generalize (1)' and (2)' for more general
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functions. An inequality analogue to (1)' is proved for functions /(as)
such that f{ex) is convex (Theorem 1), and an inequality analogue to
(2)' is proved for convex functions f(x) (Theorem 2).

In our proof we use the following theorem of Mirsky [3]: Given
two ^-tuples x = (xlf , xn) and y = (yu , yn) such that â  ^ 0 and
yι ^ 0, i = 1, •••, n. If

then y lies in the convex hull of the set of vectors (^ r ( 1 ) , , δnxτ{n))>
where each 8t takes the values 0 or 1 and τ ranges over all permuta-
tions of (1, , n).

2* Two rearrangement inequalities*

THEOREM 1. Let a = (alf , an) and b = φ19 , bn) be n-tuples
satisfying a{ > 0 and &, ̂ > 0, i = 1, , ^ . Lei /(a?) δβ a real valued
function defined for x ^ 1 sue/?, that F(x) — f(ex) is convex for x ^ 0
and /(I) ^ /(a?) /or x ^ 1.

(3) Σ / ( 4 ) Σ / ( ) Σ / ( 4

If F(x) is strictly convex, then equality in the right inequality of (3)
holds if and only if b'/a* — φ[/a*f •••, br

njat) is a rearrangement of
b'/a = φ[/aly , K/bn), and equality in the left inequality of (3) holds
if and only if b'ja' = φ[/a[, , b'Ja'n) is a rearrangement of b'/a.

Proof. We first prove the theorem for n = 2. In this case the
theorem becomes: Let 0 < aι ^ α2 and 0 ^ bλ ^ δ2. Then

(4) /(l + »L) + /(l + *L) ^ /(l + k) + fίl + *i) .
\ aj \ α2/ \ α2/ V α ^

If jP(a?) is strictly convex, then equality in (4) holds if and only if
aι — a2 o r bx = b2.

Denote

aλ a2 a1

We have,

( 5 ) 1 <L uL ^ vu 1 ^ u2 ^

By (1) for n = 2, or directly, we obtain
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α2

V)(i + k) = ^ .
αj/V α2/

Denote

( 7 ) log Ui = u^ log Vi = Vi , i = 1, 2

From (5), (6) and (7) it follows that

v + U2^ V1 + V2 .

By the theorem of Mir sky stated above, it follows from (8) that
u = (u19 u2) lies in the convex hull of the set of vectors (δJJΊ-u), δ2vτ{2))9

where δx and δ2 take the values 0 or 1 and τ is a permutation of
(1, 2). As Fix) — f{e*) is convex for x ^ 0, F(xλ) + jP(α?2) is convex in
the quadrant x± ̂  0, x2 ^ 0 and thus obtains its maximum in the above^
convex hull on one of its vertices. Hence,

/(l + £*) + /(l + A) = /(O + /(iθ - F^) + F(u2)

max {F(δ#r(1)) + F(dzvTl2))} ̂  F^) + F(v2)

f(vύ = / ( l + ^) + / ( l + b)
V α2/ \ aj

Here we used the fact that F(0) ^ JP(X) for x ;> 0. (4) is thus proved.
It is obvious that if aγ = α2 or δL = 62 then equality holds in (4).

We have to show that if Fix) is strictly convex and if

( 9 ) 0 < αx < α2 and 0 ^ \ < b2

then the inequality in (4) is strict. As F(x) is strictly convex, it is
enough to show that if (9) holds then u does not coincide with one
of the vertices (δ1vτil)1 <?2#r(2)) From (9) follows ux < v1 and u2 < vt.
Therefore if u = (β l f β2) is a vertex, then βx = 0 or u2 = 0. But b2 > 0.
Hence, ^ = 0 and (w15 u2) coincides with the vertex (0, v2). But from
u2 = v2 it follows that bx = 62, which contradicts (9).

The theorem for n >̂ 3 follows now by induction on n as in [2].
We prove the right inequality of (3) together with its equality

statement.
If α! = αf then the result, including the equality statement, follows

by the induction.
Assume now that αL = at and at = αf, where k, I Φ 1. Using

the proved result for π = 2 and the induction hypothesis for n — 1,
we obtain
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(10)

4
and the right inequality of (3) is proved.

If equality holds in the right inequality of (3), then equality holds
in all the inequalities of (10). Hence, using the proved equality state-
ment for n ~ 2 and the induction hypothesis for n — 1, it follows
that

(11) α? = at = a1 = αz

or

(12) δj = δ{

holds, and

I—, '' , — ) is a rearrangement of
Vα2* αί/

(13)
'δ; .. δu 6; δί+ι

— — —
Combining (11) or (12) with (13), it follows that δ'/α* is a rearrange-
ment of b'/a, and the proof of the right inequality is completed.

The proof of the left inequality is similar.
For fix) = logo;, (3) reduces to (1)'. We note that although

F(x) — x is not strictly convex, the statement of equality appearing
in (3) holds true for this case too. This follows from the fact that
the general equality statement for n ̂  3 was derived only from its
validity for n = 2, and for f(x) = log x it is easy to check directly
that it holds for n — 2.

THEOREM 2. Let a — (aly , an) and b = (δx, , bn) be n-tuples
satisfying αt > 0 and b{ ^ 0, ί = 1, , n. Let f(x) be a real valued
function defined and convex for x ̂  0 and satisfying /(0) ^ f(x) for
x^O. Then

(14) Σ/ra^Σ/p)^Σ/(^).

•if /(^) ^ s strictly convex, then the same equality statement as in
Theorem 1 holds.
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Proof. For n = 2, (14) becomes: Let 0 < ax ^ a2 and 0 ^ 6 ^ δ2.
Then

(15) / ( ) f ) f

As before, we first prove the theorem for n = 2. Denote

& 1 - r & 2 - r δ * - v & 1 - ?v
— — Λ/j, — — Λ,2, — — y19 — — yz

α x <x2 di α2

Using (2) for n = 2, we obtain

< 1 6 ) , ^ <, _u
I Ύ -4— Ί* <^ 01 —I— 'ϊ/
\tlΊ Π ^ »Λ/2 = = έ / l ^ £/2

From (16) it follows that # = (α̂ , χ2) lies in the convex hull of the
set of vectors (δjyrω, δ2yτ{2)).

From here on the proof proceeds very similar to the proof of
Theorem 1, and we omit the details.

For f(x) = x, (14) reduces to (2)'. The equality statement of
Theorem 1 holds, as before, also in this case, although f(x) is not
strictly convex.

We bring an additional example. The function f(x) = x log (x + 1)
is strictly convex for x ̂  0 and satisfies /(0) ^ f(x). Hence, applying
Theorem 2, we obtain

or

(17)' Π (% + 1) ύ Π P + l) ^ Π ft + 1)
i=ι\al / i=ί\ai / <=i \ α * /
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