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ACTIONS OF FUNCTIONS IN BANACH ALGEBRAS

FRANCES F. GULICK

This paper introduces the concept of a function / (defined
on the open unit disk U of the complex plane) acting in a
Banach algebra 2Ϊ. In general, / acts in % if there exists a
mapping x —»f(x) from {x e 21: a{x) c U} = %i into 5ί such that
for every maximal commutative subalgebra & of %, {f{x)' x €
% n ̂ } is contained in ^ and (/(#))" = fox (x e & n 8ti) on
the maximal ideal space of ^ . After some properties of
actions in general Banach algebras are established, attention
is restricted to a subalgebra 21 of the algebra Cp of compact
operators on a Hubert space such that ?ί contains a normal
operator of infinite rank. If 21 c Coo and $ί contains only normal
operators, then a necessary and sufficient condition for / to
act in % is that / be continuous at zero and /(0) = 0. For a
more restricted class of subalgebras of CPf 1 ̂  p < oo, it is
shown that / defines an action in 2ί if, and only if, / is Holder-
continuous at zero with /(0) = 0.

Let 21 be a commutative Banach algebra with identity e, let 2^
be the open unit ball in 21 and let x—>x be the Gelfand map. In
addition, let / be a function defined and analytic on the open unit
disk D of the complex numbers. Under these conditions a Banach
algebraic analogue of the Cauchy integral formula appears which
asserts that for each x e §IX, there is an element f(x) e SI satisfying the

equation f(x) = \ f(ζ)(ζe — x^dζ, where 7 denotes the boundary of
jΐ

D. This equation promptly yields the important functional equation

which verbally says that homomorphisms on 21 commute with /. All
this belongs to the basic theory of Banach algebras (see, for instance,
page 203 of [10]).

What is important for us is that if we are given a commutative
Banach algebra §ί with identity e, and a function / analytic on D,
then we can define a natural map x —> f(x) of Stj. into SI such that
(f(χ))~ — /°^ I* ίs this result which forms the starting point for
our paper. In order to transform the result into our final framework,
let us tamper with the hypotheses we have assumed and then we will
alter the conclusions so that they will make sense and be relevant.

The requirement that 21 possess an identity can be dropped if the
analytic function / has the property that /(0) = 0; then f(x) is still
in 21 and the functional equation remains valid and in the process one

657



658 FRANCES F. GULICK

need only alter the integral formula slightly (see p. 79 of [7]).
If 21 is not necessarily commutative, then of course there need

not exist complex-valued homomorphisms defined on the whole of 2ί.
Nevertheless, if we require that f(x) be in a maximal commutative
subalgebra ^ which contains x, and if the map x-+x denotes the
Gelfand map on the commutative algebra g7 rather than on 21, then
for/analytic on the unit disk D, the functional equation (f(x))~ = fox
holds and the map x —>f(x) of 2^ into 21 has the required properties.
Note that the Gelfand map in general depends upon the element x, a
natural circumstance if 21 is not commutative.

Finally, if we relax the condition that / be analytic, then it is
not clear that the integral formula need be defined at all, let
alone yield an element of 21. Indeed, we must ask if we can define
the map x—+f(x) satisfying the equation (f(x))~ = f°x, and for what
/ such a map exists. The question of existence is a difficult one and,
without restriction, much too general. Only in concrete cases can one
hope to conclude anything definitive about the existence of maps
x-^f{x) satisfying the functional equation. One such example already
studied concerns the algebra of periodic functions with absolutely
convergent Fouries series. Wiener [14] and Levy [6] began the study
and Katznelson [5] completed it. Later the quartet consisting of
Helson, Kahane, Katznelson and Rudin [4] studied the same question
for the group algebra over a locally compact abelian group.

In order to facilitate our discussion, let us say that / acts in 21
(or / defines an action in 21) if there is a map x —•» f(x) from the open
unit sphere 2ίx of 2ί into 21 such that for any maximal commutative
subalgebra i f of 21 and a; e i f n 2 ,̂ f(x) e i f and (f(x)Γ = /°^ This
paper is devoted to analyzing properties of actions and studying those
actions in algebras of operators on Hubert space.

More explicitly, in § 3 we show that if 21 is semi-simple and
commutative, then any action must necessarily be unique (Proposition
3.8). In addition, if 21 contains no identity, then either /(0) = 0 or
else 2Ϊ must contain a nonzero central idempotent (Proposition 3.6).
Finally, the action of one function in 21 gives rise to the notion of
an algebra of functions defining an action in 2Ϊ, as we mention at the
end of the section.

The remainder of the paper concerns itself with a study of actions
in certain subalgebras of compact operators on a Hubert space. Our
theorems concern algebras which contain at least one normal operator
of infinite rank.

In § 4 we prove for the well-known class Cp (1 <Ξ p ^ °°) of com-
pact operators on Hubert space some elementary properties that we
need in the sequel and we discuss actions on closed subalgebras of Cp.
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This leads us to § 5, where we show that if §1 is a closed subalgebra
of Cp which contains a normal operator of infinite rank and if / acts
in SI, then / is continuous at 0 and /(0) = 0 (Proposition 5.1). The
converse to this theorem we prove for p — co (Theorem 5.2). On the
other hand, if 1 ^ p < °°, then we can show that if 21 is a closed
subalgebra of Cp which contains only normal operators, then a function
defined on the open unit disk, Holder-continuous at 0 with /(0) = 0
does in fact define an action in 21 (Proposition 5.3). Under additional
hypotheses on 21 we prove that Holder-continuity of / at 0 and /(0) = 0
characterizes all actions in 21 (Theorem 5.4). Thus we see that if
/(0) = 0, then continuity of / at 0 is in general too weak to ensure
that / act in 21, while Holder-continuity at 0 is stronger than is
usually needed to ensure that / act in 21.

Further results for functions acting in certain closed subalgebras
of Cv have been obtained. Some of these deal with the relationship
between continuous functions and a limit property of their action in
21. Since these were only by-products of the work to determine the
class of functions which act in closed subalgebras of Cp, they were
omitted for the sake of greater conciseness.

2* Preliminary discussion* Let 2t be a Banach algebra over
the complex numbers C. If 21 has an identity e, then the spectrum
of x in 21 is σ(x) = {λ: λβ — x has no inverse in 21}; if 21 has no inverse,
then the spectrum of x in 21 is σ(x) = {λ Φ 0: x/λ has no quasi-inverse
in 21} (see [11]). We let σo(x) denote the nonzero elements of σ(x).
One theorem we shall refer to repeatedly is that for each decomposi-
tion of σ(x) into nonempty, disjoint, relatively open and closed sets
σλ, σ2 there exists an idempotent eσi(x) defined by the Cauchy integral
formula such that the spectrum of xeOl(x) is precisely o\.

Throughout the paper the symbol U denotes the open unit disk
in the complex plane. For a given Banach algebra, we let 2^ be the
set {x e 21: σ(x) c Z7}, or equivalently, 2^ is the open unit ball in the
topology generated by the spectral radius seminorm.

We write the maximal ideal space of a commutative Banach
algebra 21 as M,2V and we let x —> x be the Gelfand map on 21 defined
by x(h) = h(x), he M%, for each xe2ί. We note that if 21 has an
identity, then the range of x is σ(x), while if 2ΐ does not have an
identity, then σ(x) = x(M^) U {0} [10, 11]. Let C0(M%) be the space
of all functions continuous on M^ and vanishing at infinity.

Let H be a Hubert space with norm || ||. Denote by L(H) the
Banach algebra of continuous linear operators T: H —> H under the
operator norm || Γ||. We let C^H) be the norm-closed two-sided ideal
of compact operators in L(H). If we fix the H, then we usually will
abbreviate C^H) to C«>. The subalgebra Co of C^ which consists of
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operators of finite rank is dense in the operator-norm in CΌo.

3* Definition of action and properties of actions* We now

present the definition basic to the entire paper.

DEFINITION 3.1. If a function / is defined on the unit disk, then
/ acts in the Banach algebra 21 if there exists a map x—*f(x) of 2ίx

into 21 such that whenever ^ is a maximal commutative subalgebra
of 21 and x e <£f Π 2tx, then f(x) e ίT and (f(x)Γ = f°$ on M&. The
mapping x—>f(x) (xe^) is called an action of f in 2t.

We depart from previous usage of "/ operates in 21" in order to
have a name for the mapping x —> f(x) and yet keep our terminology
related.

Examples of actions are well-known as we see by the following
examples.

EXAMPLE 3.2. Let 21 be a Banach algebra with an identity e and

/ a function analytic on U. For each α? e Sίj. define f(x) by means of

the Cauchy integral formula f(x) = \ /(ζ)(ζe — x)~ιdζ, where 7 is
2πi Jr

a circle of radius r with σ(x) in its interior. As a result of the
homomorphism theorem [10, p. 203] the mapping x—+f(x) is an action
of / in 21.

EXAMPLE 3.3. Let 21 = L^G), G a locally compact abelian group,
and let Γ be the dual group. In this case Definition 3.1 reduces to
the statement that / acts in 2ί if for every & e 2Ily there exists f(x)
in 21 such that (f(x))~ = f°x on Γ. This is essentially the definition of
a function operating in LL(G) given in [4], [5], [13]. It is shown in
[4] and [13] that a function / with domain the interval ( — 1,1) oper-
ates in L^G) if, and only if, / is real-analytic and /(0) = 0 when G
is not compact. Thus a function / defined on the unit disk acts in
LX(G) if, and only if, / is analytic.

EXAMPLE 3.4. Let T be a normal, bounded, compact linear oper-
ator defined on a Hubert space and let 21 be the C*-algebra generated
by T. Let / be a function defined on the unit disk which is continuous
at zero with /(0) = 0. Since σo(T) and M<% are homeomorphic with
zero and the zero homomorphism corresponding [10, p. 202] we can
regard/as an element of CQ(M%). The algebra C0(M<%) is isometrically-
isomorphic to 21 [10, p. 230] and hence for every Se^ there exists
/(S)e2ί such that (f(S)Γ=fo§ on il%. (For a characterization of
functions acting in 21 see § 5.)
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In the definition of / acting in 31 we require that / be defined
on the unit disk U. All theorems we prove hold if U is an arbitrary
complex domain with only minor modifications in the proofs.

The spectral mapping theorem [1, p. 569] shows that for the action
of Example 3.2 the spectrum of f(x) is the set {f(X):Xeσ(x)}. The
following proposition shows that in general we have σ(f(x)) ~ {/(λ): X e
σ(x)} if 21 has an identity.

PROPOSITION 3.5. Let f be a function which acts in 31. Then f
acts in any maximal commutative subalgebra of 21. If 31 has an
identity, then for each xe 3tx, o(f{x)) — {/(λ): Xeσ(x)}. If SI does not
have an identity, # e 3IX and ^ is a maximal commutative subalgebra
of SI such that xerέf, then σ(f(x)) = {f(h(x))ι h e M^} U {0}.

Proof. The fact that / acts in any maximal commutative sub-
algebra of 21 follows immediately from Definition 3.1. If xe$ίL and
^ is a maximal commutative subalgebra of 21 such that xe^, then
f(x)e^ and σχ(f(x)) = σM(x)) = (f(x)Γ(M*) (U{0} if SI does not
have an identity), while σ^(x) = x(M&) (U {0} if 21 does not have an
identity).

PROPOSITION 3.6. Suppose 31 does not contain an identity but does
contain an element with nonzero spectrum. If f acts in SI, then
either ( i ) /(0) = 0 and the image of 0 e 31 is in the radical of SI or
(ii) SI contains a nonzero central idempotent.

Proof. Choose x e SI such that σ(x) Φ {0} and let ^ be a maximal
commutative subalgebra of SI such that x e ^. Since 0 e <g% /(0) is
in i f and σ(f(0)) = {/(0), 0} (Proposition 3.5). If /(0) Φ 0, then /(0)
is an isolated point of σ(f(0)) so there exists an idempotent e e 31
which commutes with all elements of SI since /(0) commutes with all
elements of 31 [10, p. 203; 1, p. 568]. On the other hand, if /(0) = 0,
then σ(f(0)) = {0}. To show that /(0) is in the radical of SI we need
to show that /(0) + yf(0) has a quasi-inverse for all ye%, [1, p. 55].
This follows from the fact that /(0) is in every maximal commutative
subalgebra of SI and that in each such algebra its spectrum is {0}
[11, p. 112].

Suppose y and x commute and that f(x) is defined. Then do y
and f(x) also commute? If SI is a *-algebra and x is normal in 31,
then is f(x) normal? These questions are answered by the following
proposition and its corollary.

P R O P O S I T I O N 3 .7 . // / acts in 31 and xe^ commutes with y e 31,
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then f(x) and y commute.

Proof. If x e 2IX and y commute, then there exists a maximal
commutative subalgebra ^ of 2ί which contains cc and y. By defini-
tion of action f(x) e ^ and hence f(x) and ?/ commute.

COROLLARY 3.7.1. If 'Si is a *~algebra, f acts in 21 and x e 2IX is
normal, then f(x) is normal.

Proof. As a result of Proposition 3.7 f(x) and x* commute. But
then (f(x))*x = (&*/(&))* = (f(ΦΎ = »(/(»))*• Since (/(a?))* thus
commutes with #, /(a?) and /(a?)* commute (Proposition 3.7).

A natural question to ask about the action of a function in an
algebra is whether a mapping satisfying Definition 3.1 need be unique.
The answer is given in part in the following proposition (which is an
immediate consequence of the definition of a function acting in SI)
and two examples.

PROPOSITION 3.8. If Wί is a semisimple, commutative Banach
algebra, then a function f can act in SI in at most one way.

To emphasize the importance of the hypothesis in Proposition 3.8
we present two examples which show that it is possible to define
more than one action of a function in an algebra which is commuta-
tive but not semisimple or an algebra which is semisimple but not
commutative.

EXAMPLE 3.9. Let §1 be the algebra of 2 x 2 matrices of the

form (fl ), a, beC. Then §1 is a commutative algebra which is not
\u a)

semisimple (e.g., (Q Λ has zero spectrumj. Choose a differentiable
function feC(U) and a function g: U—*C. Regard / to be a function
of two real variables and set fγ(z) = df/dx. Define the mapping T—>
fg(T) on 21, by setting

fg(T) = f(a)I + A(fl)9(p)(T - α/) ( Q

for T = (J J) e 8tlβ Clearly, fg(T) e Si and (fg(T)Γ = f°f on

EXAMPLE 3.10. Let 21 be the full algebra of 2 x 2 matrices. Then
SI is simple (and hence semisimple) but not commutative. Let feC(U)
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be differentiable. For each function g: U—*C define a map T—>fg(T)
on 31, as follows: if σ(T) = {X} c U, set fg(T) = f(X)I + f(X)g(X)(T - XI),
while if σ(T) = {λ, μ) c , X *= μ, set /,(Γ) = (λ - ^ [ / ( λ X Γ - /£J) -
f(μ)(T - XI)]. For each #: £7->C the mapping T—Λ(T), Te%,, is
an action of / in 31. Thus, in this example, as well as in Example
3.9, we have defined many different actions of / in St.

Suppose two functions / and g act in SI with actions x —> f(x) and
x —> g(x), x e Sti, respectively. Then the mappings x —• αf(x) + #(&)
(α: G C) and a? —> f(x)g(x) from 3ίx into Si are actions of the functions
αf+g and fg (pointwise product), respectively, in 31. Thus the set
of all functions which act in 31 is itself an algebra ^ C . Is there a
map from ^t x 3IX into SI which is an algebra homomorphism on
when restricted to the set ^ x {x} (xe%) and an action of fe
in 31 when restricted to {/} x 3IX? These questions lead to a conside-
ration of the problem of functions with finite range and the next
proposition.

PROPOSITION 3.11. Let f be α function which acts in 31. Let a
be an isolated point of the range of f with a Φ 0 if SI does not have
an identity. Then the characteristic function χa of the set f~ι(a) =
{t e U: f(t) = a} acts in SI and the action is uniquely determined by
the condition χa(x)2 — χα(#)

Proof. If σ(x) c U and aeσ(f(x)), then a is an isolated point
(different from zero if SI does not have an identity). Hence there
exists an idempotent ea(x) e 31 such that if ^ is a maximal commuta-
tive subalgebra of 31 with xe^ then ea(x) e <& and (ea(x))~ is the
characteristic function of the set {h e M&: f(h(x)) = a}. Thus (ea(x))~ =
χaoχ on M*. (cf. §2). Define χa(x) (a? e Stx) by setting χa(x) = ea(x)
if a e σ(f(x)) and χa(x) = 0 otherwise. This mapping x —> χa(x) (x e SIX)
is an action of χα in 31 such that χa(x)2 = χa(x) for all x e 3IX.

If x—»e(x) (^G3I X ) were another action of χa in 31 such that
(e(x))2 = e(x) for all x e 3t1? then we would have (e(x))~ = (χa{x)T o n

M^ for any maximal commutative subalgebra ^ of 31 such that
x G ̂ '. Thus e(x) — χa(x)e(x) and χa(x) — χa(x)e(x) are commuting
idempotents with zero spectrum; hence e(x) = χa(x) for all x e 3^ [9,
p. 41].

COROLLARY 3.11.1. If a function f with finite range {alt α2, ,
an} acts in 31, then for each xe^ there exist pair wise orthogonal
idempotents e^x), e2(x), , en(x) suck that the mapping x —> X?=1 a^e^x),
x G Sti, is an action of f in SI with the property that (Σ?=i a<iei(%))k =



664 FRANCES F. GULICK

Σ?=i cfiβiix) for all x = 1, 2,

Proof. For each α o i = 1, 2, , w, the characteristic function χ$
of the set f~\a^ defines an action x-+βi(x) in 21 which is uniquely-
determined by the condition (e^x))2 = β^x). From the construction in
the proof of Proposition 3.11 we see that ei(x)e3>(x) is zero if i Φ j .
It then follows that the map x-^^i=1aiei(x)9xe^l1, is an action of /
in SI with the desired property.

If / has finite range {aly α2, , αn}, then the characteristic function
of each set /"^(α,) is in the algebra of polynomials in / and the action
of this characteristic function is uniquely determined by the idem-
potency which is consistent with multiplication. Thus for a function
/ which has finite range and acts in SI, the action of Corollary 3.11.1
is the only one which is consistent with multiplication.

Now we return to the question of extending the action of a func-
tion /o to a mapping φ from ^fέ x %x into 31 which is an algebra
homomorphism on ^ when restricted to ^ x {x}. While we may
not be able to obtain the mapping φ for all of ^£ we can obtain the
desired type of mapping for subalgebra of ^f'.

Let ^ be the algebra of all functions which act in SI. Choose
/ O G ^ ^ and an action x—+ fo(x) of f0 in SI. If/0 has finite range
{α,, α2, , an}, choose the action x —>fo(x) = Σ?=i aΦi(%) where βi{x)es{x) =
δijβiix) (δi3' the Kronecker delta). A standard Zorn's lemma argument
shows that there exists a subalgebra ^t0 of ^£ and a mapping φ0:
^fQ x Sli —> SI such that the pair {^/ί^ <p0) is maximal in the set of
all pairs (£f, ψ) with the properties (1) ^ is a subalgebra of ^ Ύ

/ o G ^ and f is a mapping from ^£ x Stx into SI; (2) ψ(f0, x) = fo(x)
for all ajeStiJ (3) for each fe^f the mapping ψ(f, •): Sd —> St is an
action of / in SI; (4) for each xe% the mapping φ( , x): £? —>SI is
an algebra homomorphism on Sf.

If 31 is a commutative, semisimple Banach algebra, then the action
x—*f(x) of each / e ^ C is unique. In this case we define φ: ^£ x
Sti — SI by setting φ(f, x) - f(x) for all (/, x) e ^ x SI,.

In this way we see that if f0 acts in SI, then there is an
algebra ^Co of functions and a mapping φ: ^fQ x Sί, —• SI such that
/o e ^#Ό and ^f0 and φ satisfy conditions (2)-(4) above. Thus we can
make a meaningful definition of an action of an algebra of functions
in SI.

DEFINITION 3.12. An algebra ^ f of functions defined on the unit
disk Z7 acts in a Banach algebra SI if there exists a mapping φi

x SI, -* SI such that
(1) for each / e ^ ί % the mapping φ(f, •): 2li —• SI, is an action



ACTIONS OP FUNCTIONS IN BANACH ALGEBRAS 665

of / in SI;
(2) for each αeS^, the mapping φ( , x): ^J? —»SI is an algebra

homomorphism on ^€.
The mapping φ is called an action of ^ ^ in 31.

EXAMPLE 3.13. Let SI be a Banach algebra with identity e and
the algebra of functions analytic on the open disk U. The map-

ping φ: ^/ί x Stx —• SI defined by setting

φ(f, *) = ~^-r \ /(O(Cβ -
2πι J\ζ\=r

where (/, x) e ^ x SIL and 1 > r > max {|λ|: λ e σ(x)}, is an action of
^ in SI. If SI does not have an identity, let ^ Ό be the algebra of
analytic functions on U which vanish at zero and restrict φ to ^€^ x
Sti This restriction is an action of ^/^ in SI.

4* Preliminary properties for subalgebras of Cp. The concept
of functions acting (or operating) in a Banach algebra was first pre-
sented for the group algebras of locally compact abelian groups. For
these algebras a complete characterization was obtained of the func-
tions which act in the algebra. The trace class of compact operators
serves as a fairly manageable noncommutative analogue of these group
algebras and hence a logical choice for a study of functions which
act in noncommutative Banach algebras. The classes Cp9 1 ^ p ^ °°,
which have been studied in [1] and [8] are amenable because of the
properties of compact operators (for example, a countable point spec-
trum with zero as the only limit point, finite index for every nonzero
eigenvalue). If we restrict our attention further to subalgebras of
Cp which contain normal operators, then we can describe the elements
in terms of their eigenvalues and orthogonal projections and we can
obtain an explicit expression for the C -̂norm of each normal operator.
With these properties available we are able to characterize those
functions which act in certain classes of subalgebras of Cp. (In a later
paper [2] we consider actions of functions in more general subalgebras
of Cp.)

In this section we present notation, definitions and propositions
which will be needed in the sequel.

If ΓGCOO is normal, then the index of Xeσ(T) is one, the spaces
ker(λl— T), Xeσ(T), are pairwise orthogonal and for each Xeσ(T),
H is the orthogonal sum of the subspaces ker (λJ — T) and (λZ — T)H
[1, p. 563]. We call the orthogonal projection Eλ(T) onto ker (λl - T)
the Riesz projection onto ker(λl— T). For Xeσ(T), Eλ(T) is an
element of the closed algebra generated in CL by T [1, p. 573]. If
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21 is a closed commutative subalgebra of L(H) containing T, then
(EX(T)Γ is the characteristic function of the set {heM%:h(T) = λ}
(§ 2). I t is an easily checked consequence of the spectral theorem for
normal operators (seep. 897-899 of [1]) that if ΓeCL is normal, then
T = Σα(r)λJE^(Γ), with convergence in the operator norm.

Suppose Tec* and μ^T), μz(T), are the distinct nonzero
eigenvalues of the self-adjoint operator VT*T. Let &Λ be the dimen-
sion of ker (μn(T)I - VT*T). For each pe [1, oo) the set Cp = {Te
Co*. Σin=ι (μn(T))pkn < oo} is a *-subalgebra of CΌo which contains the
algebra Co of operators of finite rank. Setting

(4.1) I T\, = Γ£ (μ.(T))>kl*

for each Γ e Cp, 1 ^ p < oo, and | T U = || Γ || for Te CO, defines a norm
on Cp, 1 ^ p < oo, which has the following properties:

(1) \T\P = \T*\P= \VWΨ\P for l^p^ oo;
(2) I TS\P £ \\S\\ I T\p and | S T | , ^ | | S | | | Γ|p for all SeL(H),TeCp;
(3) I Γ|ff ^ I Γ|, for all Te Cp, 1 ^ p ^ g ^ oo.

The algebra Cp is complete with respect to the norm | |p [1, p. 1088

ff: 8].
If TeC*, is normal, then VT*T = Σσ(Γ> I ^ | ^ ( T ) and the dimen-

sion of ker (μjl - V"WT) is the sum Σ {dim J^(Γ)JΪ: λ = μs). Thus
a normal, compact operator T is in C9, 1 ^ p < °o, if, and only if,
Σσ(D |λ|?>(dim£ r;(T)ίi r) < oo, in which case

2_i ΛJ a i m Λ2jχ\i )±i
σ(T) J

We denote by ^ίp(T) the closed subalgebra of Cp generated by
TeCp.

The spectrum of T in Cp is again the set σ(T) [1, p. 1014]. If
SI is a closed subalgebra of Cp, 1 ^ p ^ oo, then ^ ( Γ ) = ff(T) because
the spectrum of T does not separate the plane [11, p. 34]. For every
operator TeCpwe identify σo(T) and the maximal ideal space of 2tp(T).

L E M M A 4.1. Let TeCp be normal with σo(T) = {\, λ2, •••}, Eά

the Rίesz projection onto ker (X3J — T) and k3- = dim E3H. Then

Se%(T) if, and only if, S = ΣΓ=i S(λy)JS7y and ΣΓ=i l ^ i ) l p ^ < °°
if 1 ^ p < co or lim^co S(λ., ) = 0 i/ p = oo.

Proof. Suppose S = ΣΓ=i i"y^i w ί t h ΣΓ=i \μλ*h < °° if 1 ^ P <
oo or lim^co/i,. = 0 if p = oo. Then lim,,^ \S - Σ?=i jM?il* = ° s o

that S is the limit of the sequence <Σ?=ijM7/><=Sίp(Γ). Thus S e Stp(Γ)
with §(κj) = μj. Conversely, if Se%(T), then SeSL(T) so that
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S = ΣΓ=i SiX^Ej as a consequence of the spectral theorem for normal
operators [1, pp. 897-899]. The sum or limit condition follows from
the fact that Se%p(T).

Our second lemma allows us to construct normal operators in Cp

with given multiplicities for their eigenvalues.

LEMMA 4.2. Suppose ζk^ is a sequence of positive integers, p e
fl, co), H an infinite-dimensional Hilbert space and ζXny a sequence
of nonzero complex numbers such that Σ ϊ U \^n\p K < °°ifl^P< °°
or lim^oo Xn — 0 if P — °° Then there exists a normal operator Te Cp

such that σo(T) = {Xn: n = 1, 2, •} and dim ker (XI — T) — Σ {kά: Xά =
λ} for each Xeσo(T). If ζP^ is a sequence of pair wise orthogonal
self-adjoint projections and dim PnH = kn, then the operator T ~
Σ~=i XnPn has the desired properties. For each sequence ζk^} of non-
zero integers there exists a normal operator T = Σ ί U λ Λ G Cp (1 =
p ^ co) such that <[Pny is a family of pair wise orthogonal self-adjoint
projections, \Xn\ > |λΛ+1 | > 0 and dim PnH = Kn = dim ker (λJΓ — T)

Since the proof of the lemma is straightforward, it is left to the
reader.

If 21 is a closed subalgebra of Cp and Te % is normal, then T* e 21
(Lemma 4.1) and whenever f(T) is defined, f(T) is normal. The fol-
lowing proposition establishes a useful expression for f(T) in terms
of the Riesz projections Eλ(T).

PROPOSITION 4.3. Let 91 be a closed subalgebra of Cp, T a normal
operator in 21, and f a function which defines an action S—*f(β) in
St. If SeStpίΓJΠSί,, then f(S) = Σ ^

Proo/. Suppose Se 8^ n SΪP(Γ), cro(Γ) = {̂ , λ2, ...} and En is the
Riesz projection onto ker (XnI — T). Since S is normal, f(S) is normal
(Corollary 3.7.1) with

{4.2) f(S) - Σ {μEμ(f(S))ι μ 6 ^

and σ(/(S)) = {/(S(λn)): w = 1, 2, •} U {0} (Proposition 3.5 and Lemma
4.1). Therefore /(£)* e 21 and there exists a maximal commutative,
^-subalgebra ^ of 2t such that S e 9^ and hence /(S) e ^ (Definition
3.1). The projections Eμ(f(S)), μ e σo(/(S)), and J f̂t, n = 1, 2, , are
in <jgf. Moreover, [Eμ(f(S))P is the characteristic function of the set
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{heM^:h(f(S)) = μ} (μΦO) but the function Σ {E»* f(S(K)) = μ}
also is the characteristic function of this set. Since ^ is semisimple
[10, p. 309], we have Eμ(f(S)) = Σ ί^ f(S(K)) = μ) for each μe
σo(f(S)). On rearranging terms in (4.2) we obtain f(S) = Σn=i/(S(λΛ))2£n

The equation for the C -̂norm of /(£) follows from this equation and
Lemma 4.1.

5* Functions with actions in subalgebras of Cp. Suppose 21 is
a subalgebra of Cp which contains only normal operators of finite rank.
Let / be any function defined on U with /(0) = 0 if dim H = co. For
Te 21, set f(T) = Σ {/(λ)^(Γ): λ e σo(T)}. Then the mapping T-+f(T),
TIe2X1, is an action of / in 21. Thus we see that if 21 contains only
normal operators of finite rank there are no restrictions on functions
which can act in 21 except the condition that /(0) = 0 if dim H = co
which is necessary if 21 contains no nonzero central idempotents.

The case when 2t contains a normal operator of infinite rank is
of more interest. Our first proposition shows that not all functions
can act in a subalgebra of Cp which contains a normal operator of
infinite rank.

PROPOSITION 5.1. // / acts in a closed subalgebra 2ΐ of Cp, 1 ^
p <Ξ oo, and if 21 contains a normal operator of infinite rank, then
f is continuous at zero and /(0) = 0.

Proof. Let Te% be a normal operator such that σo(T) = {λ1?

λ2, •} is infinite. Let En denote the Riesz projection onto ker (XnI— T).
Suppose limz_Q f(z) Φ 0. Then there exists ε > 0 and a sequence

<sn> such that | s n | < (n2kn)~llP (kn = dim EnH) if 1 ^ V < c o or \zn\ <
1/n if p = co and \f(zn) \ ̂  ε for n = 1, 2, . The sum ΣΓ^i znEn

defines an element S of 2IP(Γ) with σQ(S) = {zly z2, •} (Lemma 4.1 and
Lemma 4.2). Thus f(S) is defined and/(S) = Σ Γ = i / ( O K (Proposition
4.3). But for any integer N > 0 we have \f(S) \l = ΣΓ=i!/(«») IP ** ^
spN if 1 ^ p < co and |/(S) U ^ |/(2Λ) | ^ ε (π = 1, 2, •) if p = co.
Since /(S)eSIp(Γ) we arrive at a contradiction (Lemma 4.1). Thus

limβ_o/(z) = 0.
Choose Te 2^ such that T is normal and of infinite rank. Then

f(T)ellp(T) (Proposition 4.3). Hence f(T) is continuous at zero with
(/(Γ)Γ(0) = 0. But if /(0) ^ 0, we would have a contradiction.

Only for a restricted class of subalgebras of CΌo can we obtain a
converse to Proposition 5.1.

THEOREM 5.2. Le£ 21 &e a closed subalgebra of C^ such that the
elements of 21 are normal operators. Suppose 21 contains an operator
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of infinite rank. Then f acts in 21 if, and only if, f is continuous
at zero and /(0) = 0.

Proof. We have already seen that if / acts in 21, then /(0) = 0
and / is continuous at zero (Proposition 5.1). If / is continuous at
zero with /(0) = 0, then for each Te %,, foTis in C0(σ(Γ)), an algebra
which is isomorphic to 2L,(27) under the Gelfand mapping. Hence
there exists/(Γ)eSL(Γ) such that ( / ( T ) Γ = / o f on σo(T) and, in
fact, f(T) = ̂ {f{X)Eλ{T):\eσQ{T)}. It is easily checked that the
mapping T—>/(T), Te%, defined in this way is an action of / in 21.

The preceding theorem completely characterizes those functions
which act in a closed subalgebra of C* which contains only normal
operators if one of those operators has infinite rank. The correspond-
ing problem for Cp, 1 ̂  p < <*>, is not as simple as we shall see. We
can, however, show the existence of actions for a much larger class
of functions than those analytic on the unit disk.

A function / is said to be Holder-continuous at z0 if there exist
positive constants B and δ (both depending on z0) such that \f(z) —
f(Zo) I ̂  B13 — #o I whenever z e U and | z — z0 | < δ. For the algebra
of functions which are Holder-continuous at zero we have the follow-
ing proposition.

PROPOSITION 5.3. Let % be a closed subalgebra of Cp (1 <; p < oo)
which contains only normal operators. If f is defined on the unit
disk and Holder-continuous at zero with /(0) = 0, then f acts in 21.

Proof. If / is Holder-continuous at zero with /(0) = 0, then there
exist constants B > 0, δ > 0 such that \f(z)\ ^ B\z\ whenever \z\^Lδ.
Suppose Te % with σo(T) = {Xl9 λ2, ...}, En = EK{T) and kn = dim EnH.
Since

the operator f(T) = Σ Γ . , / 0 0 5 , is in %(T) (Lemma 4.1). It is easily
checked that the mapping that takes T = ΣΓ=i λκ£7B into f(T) =

E. (TeSt.) is an action of / in St.

Our main result in characterizing those functions acting in closed
subalgebras of Cp which contain only normal operators in a sense
completes Proposition 5.3 and we get that the functions which operate
in a restricted class of subalgebras of Cp are exactly those which
vanish at zero and are Holder-continuous at zero.

THEOREM 5.4. Let % be a closed subalgebra of Cp (1 <̂  p < oo)
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such that the elements of St are all normal. Suppose there exists
Γe 21 with σo(T) = {\, λ2, •} and constants Klf K2 > 1 and rlf r2 > 0
such that

(5.3) JSΓ[iί»+« > K?*

and

(5.4) XTi ^ dim ker (λ J - T) ̂  i q ^ + 1 )

/or w = 1, 2, •• . Then a necessary and sufficient condition for the
existence of an action of a function f in % is that f be Holder-
continuous at zero with /(0) = 0.

Proof. The sufficiency of Holder-continuity at zero with /(0) = 0
is proved in Proposition 5.3. We prove the necessity of this condition.

Suppose Te 31 satisfies the hypothesis of the theorem and En =
EXn(T). Since T is a normal operator of infinite rank, /(0) = 0 (Pro-
position 5.1).

If / is not Holder-continuous and / acts in 21, then there exists
a sequence ζzny c U such that

( M 1 \ ( P + l)/2>

^ ±λ K^lv (n ̂  2)
n /

(5.6) \f(zn)\ >n\zn\ for 7i = l,2, . . . .

Define mn to be the largest integer not greater than

As a consequence of (5.5) mn is a strictly increasing sequence of posi-
tive integers. Set R = Σn=i znEmn As a result of inequality (5.4)
with mn replacing n, iίeSC (Lemma 4.2). Thus f(R) is in 2ί and
f(R) = Σ*n=ιf(Zn)Emn (Proposition 4.3). But from condition (5.3) we
obtain rjr2 ^ logKl K2 and hence

oo "I
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which is an obvious contradiction. Therefore, / must be Holder-
continuous at zero.

It is clear that the hypothesis of Theorem 5.4 is satisfied if 2ί
contains an operator Twith oQ(T) = {λ̂  λ2, •} such that dim ker (XnI —
T) = Kr* for some integers K Ξ> 2 and r ;> 1. For the case of an
operator with bounded multiplicities we have the following corollary.

COROLLARY 5.4.1. Let % be a closed subalgebra of Cp (1 ̂  p < oo)
which contains only normal operators. Suppose Te St and that the
sequence {dim ker (λ/— T):XeσQ(T)} is uniformly bounded. Then a
function f acts in 31 if, and only if, f is Holder-continuous at zero with
/(0) = 0.

Proof. Choose Te 3t such that σo(T) = {λx,λ2, •} and <dimker(λw7-
Γ)> is a bounded sequence. Set kn = dim ker (λJΓ — T) and choose
ϋΓ ;> 2 such that K^kn for w = 1, 2, . Then we can choose by
induction two sequences <rn> and <mH> of integers such that mn =
Σ fa: rn_, < i ^ r.} and Kn+1-K < mn ^ j f + l . Set P. = Σ {̂ /
^-i < j ^ rn}, where 2^ = Eλn{T). Then there exists i2e St such that
R = Σ?=i n̂Pn> ̂ o(^) = {Si> ̂ 2» •} and dim ker (zj. — R) = mn (Lemma
4.2). This operator R satisfies the hypotheses of Theorem 5.4.

In studying the conditions of Theorem 5.4 one might ask whether
the bounds of (5.4) are as strong as possible. The following examples
show that the upper bound cannot be altered much before a larger
class of functions can act in St nor can the lower bound be omitted.

The hypothesis of Theorem 5.4 is satisfied by all subalgebras of
Cp which contain normal operators, one of which has multiplicities
kn = 2n2 for n = 1, 2, , N and kn = 2rn for some fixed r > 1 and
all n <£ N. The theorem, however, is no longer true if St is the
algebra generated by a normal operator Te Cp with σo(T) = {\, λ2, •}
and dim ker (λ J - T) = 2n2 for n = 1, 2, .

To see this let / be the function defined on the unit disk by setting
f(z) = 0 for IzI Φ 2~n2/p a n d / ( s ) = g(n)\z\ for \z\ = 2~n2/p

y w h e r e <g{n)y
is an unbounded sequence of positive numbers and lim^β g(n)2~n2]Ί> = 0.
Then / is continuous at zero but not Holder-continuous at zero.

If the sequence ζg(n)p2~2ny is summable then / acts in St. To prove
this we need only consider operators Se% such that S = Y^=ι^nEmn,
where En is the Riesz projection onto ker (λnI — T), \zn\ = 2~rnlP for
some positive integers rn, and mι < m2 < . Since Se St, there exists
N > 0 such that rn — mn ^ 1 for n^ N (Lemma 4.1) and we can
assume without loss of generality that this inequality is true for all
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n. But then we have

On the other hand, if the sequence ζg(n)p2 2ny is not summable,
then / does not act in 31. To see this let zn = 2~{n+1)2'p and S =
Σ«=i ZnEn- Then S is in 21 (Lemma 4.1) but

2 2 -*

Σ 1/(2-)I*1" = Σ (g(n)y*~(n+1> 2"2 = i f ; 2->e(ff(w))' = -

so that /(S) cannot be in Cp (if it were, then f(S) would be the
operator Σ»=i/(s«)-E» a s a consequence of Proposition 4.3).

Now suppose we delete the lower bound condition of Theorem 5.4.
In this case we construct an algebra and a function / such that the
multiplicities of elements of the algebra are bounded above by 2n and
/ acts in the algebra and is not Holder-continuous.

Denote by [n] the integer in the interval (Vn —l,Vn\. Let
T be a normal operator in Cp (1 <S p < oo) such that σo(T) = {λlf λ2, •},
and kn = dimker(λ%l— T) = [nf (Lemma 4.2 ensures that T exists).
For each integer n we have kn ^ 2n but kn2^ = 2(w-1)2 < B^2"1 for
n = 2, 3, «...

Let 3ί be the algebra Stp(Γ). Denote by J&Λ the Riesz projection
onto ker (Xj - T). Define f(z) to be 0 for | z \ Φ 2~n2lP and (n2-n2)llP

for \z\ = 2~n2iP. Obviously, / is continuous, but not Holder-continuous,
at zero.

As before we need consider only operators S e 21 such that S =
ΣZ^znEmn with \zn\ = 2~r>. If Se%, we must have rn ^ [mj + 1
for all large n and we can assume the inequality is true for all n > 1.
Since the function g(t) = ί2~ί2 is decreasing for t ^ 0 and there are
2^ + 1 integers in the sequence <&,•> equal to 2^2, we have

Σ \f(Zn)\pKn ^ Σ ( N J + i)2-([

1 % = 1

^ ΣΣ 2-25(2Q- + l)(g + 1) <

In view of Lemma 4.1 the operator /(S) = ΣΓ=i/(^)ίmw is in 21.
We have determined the algebra of functions which acts in certain

classes of subalgebras of Cp (1 <̂  p ^ oo). The problem of character-
izing those functions which act in other classes, however, is still open.
For example, which functions act in the algebras 2tp(Γ) if T is a
normal operator with multiplicities kn2 for some k ^ 2?
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