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FAMILIES OF Lp-SPACES WITH INDUCTIVE AND
PROJECTIVE TOPOLOGIES

HENRY W. Davis, F.J. MURRAY AND J. K. WEBER, JR.

Let (X, .97, 1) be a measure space, and S c [1, ). This
paper investigates basic properties of LZ(S) = N:es L:(¢) and
LI(S)= span of U:es L:(1), when they are endowed with ap-
propriate projective and inductive topologies.

If X is p-finite or ¢ is a counting measure, then L7(S),
L7(S) are projective and inductive limits in the usual sense.
In this case the extensive abstract theory of inductive and
projective limits applies. In the general case, however, this
theory does not appear applicable, Using special properties
of L,-spaces a basic duality is established between L7(S) and
L1(S"), for the general case, where S’ is the set of conjugates
to elements of S.

Next such properties as metrizability, normability and
completeness for LZ(S), L’(S) are considered. The question of
when L7(S) = L?(T) is also considered, and it is shown that
there is a certain maximal set 7 for which this is true.
Similarly for L’(S).

In §4 we compare the weak topology for L’ (S) with its inductive
topology obtained by giving each inductee the weak topology. We
are unable to make a complete comparison but do show that the two
topologies are quite close. The corresponding problem for L*(S),
mentioned in Proposition 2.2. is simple.

Let us give some basic definitions. By a measure space is meant
a triple (X, .o, ) in which .o is a o-algebra of subsets of the set
X and p¢ is a measure on .. _ is the set of all .o/-measurable
complex-valued functions on X and L,(¢), 1 < p < o, is defined as
usual.

If (E,E’) is a dual pair of vector spaces we use the symbols
oc(E,E"), t(E,E') and B8(E, E’') in the usual fashion to denote the
corresponding weak, Mackey and strong topologies for E (cf., [3] or
[5]). If f,ge .« and fge L,(yn) we write

<fig>= S‘Yfgd#-

For Sc[l, =] we let S"={s"1<s" < ,1/s+ 1/’ =1 for some
seS}. If fe _#, Rf, If denote, respectively, the real and imaginary
parts of f and, if f is real valued, f*, f~ denote its positive and
negative parts. For Ae.s” yx, denotes the characteristic function
of A.

619



620 HENRY W. DAVIS, F.J. MURRAY AND J. K. WEBER, JR.

DEFINITION 1.1. Let Sc[1, ], S# ¢@. Define
L’(S) = span in .7 of | L.(p) ,
tes

and

L7(S) = O L) -

tes

For each te S define

U, 1 Ly (ﬂ) — L(S),
v, 1 LP(S) — Ly(p)

to be the natural injections. Let &, 977, respectively, be the
strong (norm) and weak topologies for L,(y), 1 £t < oo.

Let .<#/(S), 9#7/(S) be the inductive topologies for L'(S) with
respect to the families {(L.(y), 7w, : te S} and {L,(y), 277, w,) : te S},
respectively. (See [5, p. 54]. In [3, p. 79], L’(S) is called an “ inductive
limit” with either of these two topologies; however, this phrase is
used differently in [5].)

Let .&72(S), »77"(S) be the projective topologies for L*(S) with
respect to the families {(L.(y), &7, v,) : t€ S} and {(L,(r), 277, v,):te S},
respectively. (See [5], p. bl], or [3, p. 84]. Again a difference of
terminology exists.)

2. The basic duality. We give here proofs for the basic duality
between L?(S) and L*(S’).

ProposiTION 2.1. (i) Suppose X vs p-o-finite. If S cC[1, <],
then 7 71(S), <24S), are separated. If S C [1, ), then the dual of
L'(S) under either of 77 (S), N (S) consists of the maps g— < g, f >,
where fe L” (S') is unique.

(ii) Suppose X is mot p-o-finite. If S C[1, ), 277 4S), FS)
are separated. If S C (1, o), then the o7 '(S), (S)-dual of L(S)
consists of the maps g — <g, f >, where fe L°(S') is unique.

Proof. For the second statement in either (i) or (ii) recall that,
as .o748S), 7 "/(S) are inductive topologies, a linear form F on L(S)
is continucus if and only if F o u, is continuous for each t¢ S ([3, p.
74]). Using Riesz representation and the fact that the simple functions
of p-finite support are dense in all of the spaces (L,, %77), (L, 7),
teS, it is not hard to show that such F's are exactly those of the
form F'(g) = <g,f > for some unique fe L”(S’).

For the first statement take 0 == g e L’(S). Suppose, for example,
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that (Rg)* # 0. As the support of g is p-o-finite, there is a set
B c {xeX: Rg(x) > 0} such that 0 < p¢(B) < c. Let F be the linear
form on L’(S) given by

F(h) = Lhdy .

Then F(g) = 0. As Fowu, is both 977, SJ-continuous, teS, F is
continuous. Thus %77/(S), &“/(S) are separated.

Suppose LP(S’) is the dual of L’(S) as in 2.1. A separated in-
ductive topology formed from barrelled spaces is barrelled ([3, p.81]);
hence, &#/(S) = ©(L/(S), L°(S’)) = B(LX(S), L*(S’)). Clearly o (L*(S),
L2(S") c o7 7(S)c.2”%(S); but it is not so clear as to whether or not
the first containment here can be replaced by equality.

Let Sc[1, ==]. Both 2°7(S) and .&#"(S) are separated ([3, p. 85])
and " 7(S) = o(L*(S), D)), where D, is the dual of (LZ(S), 27°*(S))
([31 p. 99])'

PROPOSITION 2.2. Take S C [1, o]. Then each fe L*(S’) defines
a continuous linear form on (L¥(S), 277 F(S)) and on (L*(S), &*(S))
by g — <g,f>. Now suppose S C [1, =) and that either X is p-o-
Jinite or that 1 €S. Then L*(S’) is the dual of (L¥(S), 27°%(S)). In
this case 7" 7(S) = o(L"(S), LY(S")).

Proof. 1If f= X, fie L(S"), where f,e L, (), t;€S’, 1 <1 =,
then the linear forms ¢ — <g,f;> are continuous on L.(zx),
1t + 1/t; = 1. As v,: L"(S)— L,, () is continuous, 1 <i=n, g —
<g,f > is continuous.

For the second statement, note that in this case a local base at
0 in (L”(S), »»""(S)) is formed by the sets of the form {x:x ¢ L7(S),
<wx,y>| <1 for all ye F'} where F runs through the finite sets in
U:iess Lize). Equivalently we may let ¥ run through the finite sets
in L’(S’). Thus »#"?(S) is precisely the weak topology induced by
L'(S’) and L*(S’) must be the appropriate dual.

Take S c[1, --) and let D, be the dual of (L”(S),.<”?(S)). By
the above, D, = L'(S’) and we would like to know when equality
holds. If 1eS and X is not p-o-finite, then we cannot expect equality
for the general case (cf., [4], Chapter 11, problem 46). On the other
hand, it turns out that equality holds if either 1 ¢ S or X is pu-o-
finite. If the L,-spaces are linearly ordered under containment, for
example if X is p-finite or if g is a counting measure, this is easy
to see: In this case (L7(S), .&9%(S)) is a projective limit in the sense
of [5, p.52] (let the g,; be identity maps here). It follows from [5,
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Chapter IV, Th. 4.4], that D, is algebraically isomorphic to L’(S’).
The proof that D, = L’(S’) in the general case appears to require
use of special properties of L ,-spaces.

THEOREM 2.3. Let (X, ., ) be a p-o-finite measure space,
S c[1, ). Then the dual of (L”(S), S7°(S)) consists of the maps
g— <g,f >, where fe L'(S") is unique.

Proof. The argument parallels the classical argument for Riesz
representation, differing at certain crucial points (cf., [4, chapter 11,
§7]). The uniqueness of f follows from the usual considerations. We:
divide the rest of the proof into three parts. Let F be an S7%(S)-
continuous linear form on L7(S).

I. We first show that there is a measurable function f such that
F(g) = <g,f>, for all ge L”(S). Let {X,} € .o be an increasing
sequence such that U, X, =X and p(X,) <, n=1,2,---. As
M(X,) < o= we may apply our earlier remarks to conclude the existence
of a unique f, e L’(S’) whose support is contained in X, and such that
F(g9) =<y, f,> forall ge L?(S) which vanish outside X,. Then f,.,
agrees a.e. with f, on X,, n =1,2, ---, and we may suppose f,..=f,
on X,. Define fon X by f=f, on X,, »n =1,2, -.-.. Take any non-
negative ge L”(S). Let g, = gxx, so that g, [ ¢ and |[g—g,|,— O
for all te S. As F is continuous,

F(g) = lim F(g,) = lim | g.,dp
= lim g gnfap
= lim S GIR*T — (R~ + iIf)* — iLf)ldse
— gg fdy, by monotone convergence .

If ge L7(S) is arbitrary, we break its real and imaginary parts into
positive and negative parts and use the linearity of F to complete
the proof of I.

Now for te S, 0 > 0 define

Vit 0)={ge L"(S): llgll. <o} .

As F is continuous it is bounded on some .&°%(S)-neighborhood of 0..
Hence there exists 6 >0 and ¢, ---, t,€S8 such that 1 ¢, <¢t, <.+
<t, and F' is bounded on N,V (¢, 9).

II. We now show that fe L‘(S’) under the assumption that
1<t. For ge L7(S) define ||g]| = max [lgll:, so that || | is a norm
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on L?(S) and F is then || [|-continuous. If n =1, then fe L, (#)C
L’(S’) because F' is then || ||, -continuous on L*(S) and L*(S) is
dense in (L,, %) (e.g., L*(S) contains the simple functions of p-finite
support). We suppose n > 1. By breaking f into real, imaginary,
positive and negative parts it suffices to show fe L(S’) under the
assumption f = 0.

Let A, ={zeX: f(®) =1}, A, ={wvecX: f(x) <1}. Let fi = fYa,
and define the linear form F; on L?(S) by Fi(g) = <g,f;i>, t=1,2.
Each F; is || ||-continuous so there exists M; > 0 such that

1) | srdp | < mig) for all s L7(S) .

To show fe L*(S’) we show each f;e LY (S"), 1 =1, 2.
If f, =0 a.e., f,e L/(S"). Otherwise let {y{"}7., be a sequence
of simple functions of p-finite support such that 4" (x) = 1 or " (x)
=0 for all xe X and v | fi», where 1/¢; + 1/ti = 1,1 <i <n. Let
W = (y®)itn, § = 1,2, +++, 50 that ¢, & ¢ L?(S). Then
ol = | eyt < [

SO
1/t
@ el <[ fwe [ S 1zizni=12. .

Also ¢ fi = ¢ (¢i)ia = 4P, 5 =1,2, --- and, hence,

@) [ve < {orr = miiery,

by (1). For some t€{l, ---,n} there exists a subsequence {j.} of
the integers such that |[¢{)[| = |6/, k=1,2,---. Hence, by (3)
and (2)

1/t;
FEEr A AR
or
(v =mi k=12 ..
By monotone convergence this implies
[ £ = m
so fie Ly (1) € LX(S).

To show f,e L(S’) we take {v?}> to be a sequence of simple
nonnegative functions of p-finite support such that @ 1 fii. Let
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6% = ()", §=1,2, ---. Then

o5 [l = S(q/f;.ﬂ)tim < g ®

SO
1/t, .
@ ol =] (v | 1=isni-12 .

As before, ¢ f, = ¢P(v)'1 = P so

®) | v = Vo= iiopl,

by (1). Again, for some 7€ {l, ---, n} there is a subsequence {j,} of
the integers such that ||¢® || = [| 6§ (|, 7= 1,2, ---. By (5) and (4)

R ArTAPES A RETA

or
Wﬁgmw

By monotone convergence of the }2’/’s we get f,e L,(p) L' (S),
completing the proof of II.

III. We now show feL’(S’) when ¢,=1. Let B, ={xeX:
f@)y=m}, m=1,2,---. For some m p(B,) < c for suppose the
contrary. Then for every m there exists C,c.o” such that
1=<pm(C,) < - and f(x) =n for all xeC,. Let g, = [0/21(C,)] xc, SO
that || g,|l, = 6/2 for all te[1, -=). Then F is bounded on {g,}. But

0 no
= dy =—
S gufape = 21(C,) Scnn # 2

which is unbounded. Therefore we may choose m such that p(B,,) <eo.
Let f, = fxsn and f, = f — f.. Then f,e L.(¢) c L’(S’) and we must
show that f, e L’ (S’) also.

The argument now proceeds as in the third paragraph of part
II. A difficulty occurs in the event that ||¢f || = |61l = Il 65 Il
k=1,2, ..., because then the inequalities which follow are not valid.
‘We modify them as follows :

| v dpe < 91 = ML BT L 5 e,

<K [ S YL dpe ]Utn, K = M, [i(B,)]""/

SO
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[vians K k=12,

yielding, as before, f, e L, (y1) © L'(S’). This completes the proof of
2.3.

THEOREM 2.4. The conclusion of 2.3 s walid if (X, 57, p) s
an arbitrary measure space and S C (1, =2).

Proof. We apply the previous theorem and the constructs which
occur in I, IT of its proof. Given the linear form F we fix a neigh-
borhood 7, V(¢;, 6) on which F is bounded, 1 < ¢ < -+« <t,, t; (S).
Take any p-o-finite Ee .7/, There exists a unique f,e L’(S’) whose

support is contained in E such that F(g) :S gfzdyp for all ge L”S

which vanish a.e. on X~ FE. We write f, = f¥ 4+ if?, where f7
are real. Let

41— )
.fEl =JE X[f};/"gﬂ’
e _ )
f% —fE X[ogf(/<
s )
- fE [—l<fl/J§0] ’
Sy ol
JE

—JE X[f};/)gwll ’

where, for example, [0 < £ <1] denotes {xe X: 0 < FV(z) < 1},/:1,2.

If ACE, Aec.v/, thenf/ﬂt—fﬂae on A, /=1,2,m=1, --- 4.

Also we have seen that fy™eL,, (r) if m=1,4 and féme L, (/1,) if
=2,3; 7=1,2. Now for any pt-o-finite Ee .~/ define

3 | f4m ‘ | pzm |1
/\(E)—/Z me f d”“‘“ga 1fi3 I dpe .
Since the M;’s of equation (1) of 2.3 may be replaced by the norm
[[F']| of F' with respect to the norm | || = max {|| [[,} on L”(S),

we get from the proof of II that
ME) = 8max{|| F||', || F ||’}

for all p-o-finite Ee .2 The argument now proceeds along the clas-
sical lines which appear, for example, in [4, Ch. 11, Th. 7.30]. We obtain
a p-o-finite set H on which A achieves its maximum value. If H, is
any p-o-finite set containing H we get that f,,o fé'" a.e. on H,
so fuy = fu, a.e. on H,. Setting f = f, one obtains F(g) = <y, f>
via the usual argument ([4, Ch. 11, 7.30]).

3. Some properties of L*(S), L’*(S). In this section we
examine some basic topological properties of L”(S), L‘(S). We also



626 HENRY W. DAVIS, F.J. MURRAY AND J.K. WEBER, JR.

consider the question of when L7(S) = L?(T) and L*(S) = LY(T). If
S is a subset of the real line S° shall denote its convex hull.

THEOREM 3.1. (L7(S), .&7%?(S)) is a Fréchet space when S [1, «].

Proof. Let S, = (S~{=})° and let S, be a countable subset of
the interval S, such that S = S,. Let S, be S, if « ¢S and S, U {e}
if e S. S, is countable and we claim that .#7(S) is generated by
the norms {|| |[[;};cs,. Let {f.} be a net in L”(S) such that f,—0
in S77(S). Take te S,. If ¢ = o, then «~ eS8 and ||f,||,—0. If t#oo,
there exist finite ¢, ¢,€ S such that ¢, <¢ <t,. Letting

¢.(7) = log (I[f.117)

we get 4,(t) < a,¢,(t) + (1-a,) 6, (t,), where 0 < «, <1 ([1, 13.19]) so
$u(t) = Bu(t) + ¢.(t)——co as m gets large. Consequently || f,|[.—0
for all teS,. In a similar fashion one can show that if || f,|,— 0
for all te S, then || f,||;—— 0 for all te S, ie., f,— 0 in SE(S).
Thus .&#7(S) is generated by a countable family of norms and is con-
sequently metrizable.

To prove completeness suppose that {f,}> is an .&#%(S)-Cauchy
sequence in L?(S). Then for each t€S {f,} is || |,-Cauchy so there
exists fe L,(p) such that ||f, — f*[,—— 0. It suffices to show
that if ¢, ¢, S then f% = f® a.e. For then we define f = f a.e.
on X and evidently f,—— f in 77(S). Take ¢,t,€S. As
| fa=Fl,, — 0, there is a subsequence {f,} of {f,} which con-
verges to [ a.e. But || f,, —f"*|,,—— 0 so there is a subsequence
{fuw} of {f.} converging to f'*? a.e. Hence f'W = f2 a.e.

COROLLARY 38.2. Take S C [l1, ) and assume that either X s
p-o-finite or that 1¢S. Then S7(S) = t(L?(S), L (S") = B(L"(S),
Li(S)).

Proof. By 8.1, (L®(S), .&¥%S)) is a Fréchet space and hence
barrelled. Theorem 2.3 and 2.4 apply.

COROLLARY 3.3. (LI(S), .<#*(S)) is complete if S < (1, ).
Proof. The strong dual of a metric space is complete.

Given S c [1, <), there is a maximal subset S of [1, ) such
that LZ(S) = L?(S), &7(S) = .#(S) and %7 2(S) = 7 7(S). S8
and is even an interval. Similar statements hold for L’(S). We now
establish these facts.
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DEerFINITION 3.4. Let (X, .o, ) be a measure space, S C [1, o).
Let s, = glb S, s, = lub S (we allow s, = «). We consider the following
conditions on (X, .o7, p):

(i) 1=t <t < implies L, () D L,(p);

(ii) 1=t <t < c implies L, () C Lyy(12) .

If (i) but not (ii) holds define S =[1,s)US and S = (s, ) U S.
If (ii) but not (i) holds define S = (s, «)US, S=1[1,s)US. If
both (i) and (ii) hold, define S = § = [1, «) and, if neither (i) nor
(ii) hold, define S = S = §°.

It is easy to see that 3.4(i) may be replaced by the condition.

(i) For some ¢, t, such that 1 <¢ < ¢, < o it is the case that

Lo(#) > L.
For suppose (i) holds and that 1 <s, <'s, < . If there exists fe L,,(zx)
such that feL,(n), take s =glb {¢: S||f|1‘d,u<oo}. Then s,<s=<s,
apply [1,18.19]). Now take e [s, s,] “such thatg \fl*dp < o and
ut,/t, < s. Letting

g = ISl

gives ge L, but g¢ L., a contradiction. Thus no such f exists and
3.4(1) holds. Similarly 3.4(ii) is equivalent to
(ii)’ For some t, ¢, such that 1 <t <t, < <« it is the case that

L, () © Ly,(p0)-

THEOREM 3.5. 3.4(1i) is equivalent to

(1)" Every p-o-finite set in .o/ 1is p-finite.

3.4(ii) 1s equivalent to

(ii)” Every member of L,(y) is essentially bounded.
If 3.4(1) 1is false, then, given 1 S u < oo and 1 < v < <o, there exist
measurable functions f., f, on X such that

fieN L, fieY Lip)
and

Je %grlw L!(xu)’ S elgttJ<v Lt(ﬂ) .

If 3.4(%t) s false, then, given 1 S u < o and 1 < v < <, there evist
measurable functions g, g, on X such that

g€ L, .U _Lip)
and
g:cN L), 0.€U L) .

Proof. If (i)” holds then every function in U<ic.. L () has
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u-finite support so 3.4( i) holds. Suppose (i)” is false. We shall
show that the functions f,, f, then exist. This, in turn, shows that
3.4(1) implies (i)”. If (i)” is false, then there exist pairwise dis-
joint sets A,, 4,, --+- €. such that p(A4,) = \,, where 1 =<\, < oo,
n=1,2,---. One now defines

[ 1 ]Uu i A
1I ¥ N
f1(m) =< X”/n’ ca
0 it ¢ UA,
and
1 1/v 'f ‘EA
folx) = 1 [X.n(n—l-l) [log(nj_l)lz] , if x .
0 if weU4,

For example, to see that f,¢ U L.(y), take te[l,v) and note that
?\;L—t"v g 1 S0 1St<y

S sz (n+1) [lgg (n+1)]2]m

oo,

(ii)” implies 3.4(ii) because

Jirrap = 0sa 7 i de.

We shall show that if (ii)” is false, then the functions ¢, ¢, exist.
This shows that 3.4(ii) implies (ii)” and completes the proof of the
theorem. If (ii)” is false then L,(y) and, hence L,(y) contains an
essentially unbounded function f. As

0<S | flrdp——0,

[fzn]
there exist pairwise disjoint sets A4,€ .2 such that
0 <SA flrde<e™, n=1,2 -
and [f(x)] =1 for all e Uy, A,. Let
b =[], wrae]”
s0 b,>1, n=1,2,+--. Define

0:) = F@)[ 3 b2, [for all we X .
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Then for a =0
[l dpe = sy isoean
=xul Ifrdp=e.
For 0 >0
Vlop=rdpe = b | i7" a

| 17 dp

o/v
-s[f, ]
: AR
An
éfv
= [ 1]
< 2 e-—nﬁ/v < oo .
Thus g, satisfies the required conditions.
To obtain g, take ¢, | u. By the above, there exists &, € M,<e<e, Lo(22)

such that &,¢ L, (1), » = 1,2, ---, and for all xe X either 7,(x) =0
or h,(x)=1. Let

a, = 2—”[sup{[gh}: dp]S:% gsgl}]i1

Define S, = 3% ah,, k=1,2,---. For k> m we have
k
gi 27" ——0, as m,k— o .

Hence there exists ¢, € L,(¢) such that [|S,—g,[[, —— 0. There exists
a subsequence {S,,} of {S,} such that S, , — g, a.e. As (S} is a
pointwise increasing sequence, g¢,(x) = S,(x) for all xe X, n =1, 2,---.
To see that g, ¢ Uucic. Li(pt), take te(u, ). Take ¢,€(u,t). If
g, € L, then, since g, € L,(yt), we have g,¢ L, (). But

[10.0edp = | Sto dpe 2 ate | 0ie ap

:OO’

a contradiction. Therefore g, ¢ U,<i<.. Li(z). On the other hand, if
te[l, w] then 1ju <1/t <1. As h,(v) is either 0 or =1, we have
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Ms

9.1l = ) @l lle

of ]’

27" <L oo,

n

i\
Ms

2
]
—
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Me
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-

This proves the theorem.

Incidently, it is not hard to show that 3.4 (ii) is equivalent to
(ii)"”". For every pairwise disjoint sequence {A4,} <. such that
H(A,) >0 for all =, it is the case that liminf p(4,) > 0.

But we shall not use this in the sequel.

THEOREM 3.6. Take S, Tc [1, ). Then

(@) L*(S) = L*(S), L'(S) = L'(S).

(b) LZ(S) = L*(T) if and only if S = T; L'(S) = L (T) +f and
only if S =T.

(¢) S is the largest subset of [1, co) determining LF(S), i.e.,
L7(T) = L*(S) implies T C S. Similarly for S and LA(S).

(d) If L*(S)=L"(T), then 27 *(S)=27""(T) and *(S)=.*(T).

() If L(S)=LXT), then 277 (S)=%""(T) and ¥ (S)=7"(T).

Proof. (a) It suffices to show that L”(S) = L”(S°) and L(S) =
L*(S8°. Clearly, L*(S) D L”(S°) and the reverse containment follows
from the fact that L, (z) N L',(¢) © Li(yt) whenever 1 <¢, <t <¢, < oo
(11, 13, 19]). It is also clear that L’(S°) D L’(S). The reverse con-
tainment  follows from the fact that if feL,(y), where
15ttt <e and ¢,t.€S, then fy, €L, (#) and fy,,¢< L.(x),
where A, = {xe X: |f(x)| =1}, 4, = {xe X: |f(x)|<1}.

(b) The sufficiency follows from (a) and the necessity from Theorem
3.5: For example, suppose neither 3.4(i) nor (ii) hold and S=[a, b),
1<a<b< . Take v = a and f, according to 3.5. Now take v=2>b
and g, according to 3.5. Then f, + g,€ L,(¢) if and only if ¢< [a, b).
Consequently, L7(T) = LP(§) implies f, + g.€ L?(T) which, in turn,
implies 7 = S.

(¢) For example, if L?(T) = L?(S), then Tc T = S by (b).

(d) It suffices to show that 97 °7(S) = 92 7(S) and 7(S) =
#7(S). Clearly .&#7(S) o #7(S). To show equality it suffices to
show that for each te S the injection

v (L7(S), Z7(S)) — (L), )

is continuous. (It is well-defined since L*(S) = L* (S) by (a).) The
argument of 3.1 shows that v, is continuous for all te S°. If 3.4(1i)
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holds, there may exist ¢,¢ S such that 1< t,<t for all teS. We
must show that in this case v, is continuous. Take {f,} < L”(S)
such that f,—— 0 in °7(S). Take t,€S. Then 1=t <t and
[ fally —— 0. The support of each f, is p-o-finite so the union U of
these supports is p-o-finite. By 3.5, #(U) < « and we may suppose
#(U)>0. Then

152k, S £ 1720l —= 0

80 v, is continuous. If 8.4(ii) holds, there may exist s, ¢ S such that
1=<s<s, for all seS. We must show that in this case v, is con-
tinuous. Again let {f,} < L?(S) be such that f,—— 0 in S77(S) and
take s,€S. Then 1<s, <s, and || f,|l,, — 0. We claim that {f,}°
is uniformly essentially bounded. Otherwise, for each » there exists
k, such that |f, (v)| =2 for x in some set A, with u(4,) > 0.
Letting f = 3, (1/2") | f,,| we get

1

11l = 20—

Sy llsy, < oo

while f (z) = 2" for x€ A,. Thus f*e L, but is not essentially bounded.
By 3.5, this cannot happen. Thus there exists M >0 such that
Hfulle < M for all n. It follows that

|1 flode < Mon {1l dp— 0,

so v,, is continuous.

As before it is clear that 27 7(S) c 9%7°7(S) and to show equality
it suffices to show that each v, is 92°7(S), #;-continuous, te S. If
X is p-o-finite or 1¢S then the dual of L?(S) is L’(S’) under both
7°F(S) and 7(S). Also %7°7(S) = o(L”(S), L(S’)). The 9777(S),
% i-continuity of each v, now follows from their &%(S), .%%-con-
tinuity (cf. [3, p. 39]). If X is not p-o-finite and 1€ S, then it is not
clear that L”(S) has the same dual under both 277°7(S) and .&#%(S),
so this argument does not apply. In this case we take a typical
subbasic 57°7(S)-neighborhood of 0, say

Vg ={fel?(S):|<f,9>|<1}

where ge L.(t), ' e (S). If ¢ = co, then #'e S’ and V(g)e % 7(S).
For ¢ + < take te S such that 1/t + 1/’ = 1. Suppose there exists
t,eSsuchthat 1 <t=<¢. Let 4 = {z:|g(x)| =1}, 4, = {x:|g(x)|< 1}
and g; = 9)4,1=1,2. Then g =g, + g, ¢.€ Ly () and g, L.(1)
giving that
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V’z{feL”(S):i<f,gi>|<%,?::1,2}

is in 27°7(S). But V'c V(9) so V(9)e 27 7(S). If such a ¢, does
not exist then 8.4(ii) must hold. In this case g is essentially bounded
so ge L.(y) and again V(g)e %777(S). It follows that 7777(S) =
7 E(S).

() As before it suffices to show that .&°/(S) = .57(S) and
77 1(S) = 977 /(S). Let us show the former, for example. .#%(S) is
a locally convex topology for L’(S) such that

w, : (Li(p), 7)) — (LA(S), <°4S))

is continuous for all teS. As Sc S each wu,teS, is continuous
when L’(S) has the topology .&#/(S). But .&7/(S) is the finest locally
convex topology for L’(S) such that u,, t€S, is continuous. Hence
1(8)>.~7(S). But since SOS a direct comparison of the basic
neighborhoords of 0 gives .&77(S) ©.<7%(S) (cf., [3, p. T9)]).

THEOREM 3.7. Let (X, .o, p) be a measure space, ScC [, o],
and let (i), (ii) refer to the conditions of Definition 3.4.

(@) If (i), (ii) hold, &7 (S) is normable.

(b) If (i) holds and « €8, S7(S) is normable.

(e) If (ii) s false and < ¢S, FF(S) is normable if and only
if S is closed and bounded.

(d) In all other cases S°7(S) 1is mormable if and only if
lub Se S.

Proof. If teS, € >0 we let
Vi, e)={feLS):||fll.<e}.

We apply frequently, below, the considerations which occur in the
proof of 3.6 (d).
(a) If (i), (ii) hold and o= ¢ S, then the considerations of the proof
of 3.6(d) show that || ||, generates .°°(S), which is therefore nor-
mable. If <« e§,.o?(S) is generated by || |, and || ||l.. In this
case V(1,1)N V(eo, 1) is a bounded .&°”(S)-neighborhood of 0 and
&7(S) is normable.
(b) In this case .7/(S) is generated by || |, and || |l. and hence
normable.
(¢) We suppose (ii) is false and « ¢S. If S is closed and bounded,
say, S = [w, v], where 1 < u < v < oo, then || |l,, || ||, generate 77 (S)
(since {u, v}~ = §), which is therefore normable.

Now suppose (ii) is false, «~ ¢S and S77(S) is normable. We
must show that S is closed and bounded. S is an interval with left
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and right end-points, u, v, say, where 1 <4 <v < . If (i) holds,
then w = 1e 8. Suppose (i) is false and that w¢S. We show that
in this case every .5”%(S)-neighborhood of 0 is unbounded, yielding
a contradiction. Let W = N~, V (¢, ;) be an arbitrary basic .&7*(S)-
neighborhood of 0. Then there exists teS such that u <t <¢,
1=i=mn. By 3.5 there exists a nonnegative fe M., L. () such
that f¢ L(p). There exists 6 >0 such that |[of], <&, 1=i=mn.
Set g = df. As f has p-o-finite support there exists a sequence {g,}
of simple functions with p-finite support such that 0 <g, 1 g. Then
{9.} < L*(S) and |[gn—9ll;; —> 0, 1 =i=mn. Thus {g,}n-yC W for
some N. But g¢LJy) and 0=y, | g imply that ||g,[,— =.
Consequently,

mVE1)2 W, m=1,2,---

and W is not bounded. This contradiction assures that ue S.

We now argue that c >wve S in an analogous fashion, showing
that the contrary would imply that no .5”7(S)-neighborhood of 0 is
bounded. For suppose v¢S. Let W = N, V(¢t;, ;) be an arbitrary
basic .5°7(S)-neighborhood of 0. Then there exists te S such that
t<t<w,i=1,2---. By 3.5, there exists a non negative fe ;. L, (1)
such that fe L,(y). As before we take simple functions g, with p-
finite support such that 0 <g, | 6/, for appropriate 6 > 0. One ob-
tains {g.}p-vr< W for some N while |/g,l|l; — <, showing that W
is not bounded, a contradiction. This completes the proof of (c).
(d) Suppose (ii) is false and «eS. If (i) is true, case (b) applies
so we may suppose (i) is false. Let s, =lubS. If s, €., it is not
hard to show from the considerations in the proof of 3.6(d) that
Il 1l [] lle generate .&77(S) so &7”(S) is normable. On the other
hand suppose .7(S) is normable. One can show s, €S by the argu-
ment which occurs in the second paragraph of the proof of (c). This
works even if some ¢, = oo because the function f obtained from the
proof of 3.5 is essentially bounded and ||g,|l.=]|l¢g|l.. If all ¢’s
are <, [ may still be chosen to have p-o-finite support by the
negation of 3.5(1i)".)

Suppose (ii) is true and again let s, = lub S. By (a) we may as
well suppose (i) is false. Suppose s,eS. If ¢S, || ||, generates
&7(S) and if €S, || ||;; and || ||. generate .&°7(S) so, in either
case, .(S) is normable. If $77(S) is assumed normable, one argues
that s, € S as above. This completes the proof of 3.7.

The conditions of 3.7 also determine when (L*(S),.&”(S)) is
metrizable for the case when Sc (1, «). For then (L/(S), &'(S)) is
the strong dual of the metrizable space (L7(S’), .&°7(S’)) and so is
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metrizable if and only if the latter space is normable. In this case,
of course, (L*(S), &*(S)) is normable.

THEOREM 3.8. Take Sc (1, ). Bc L*(S) s 7 (S)-bounded if
and only if there exists a finite set Fc S such that BC L*(F) and
B is bounded in the morm of (L*(F'), SZ'(F)).

Proof. Let “0” denote polar and let V (¢, &) c L¥(S”) be as in
the proof of 3.7. As B is bounded, there exists ¢ >0 and ¢, ---,
t. €S’ such that B°D> N, V(t, ). (LF{t}), () is normable (by
3.7) with norm || | =sup{|| [l.,;:1=7=mn}. Letting 1/t; + 1/t; = 1,
1<i<n, we set F={t, ---,t,) so that Fc S. S/(F) is normable
by

Nyl =sup{|<w,y>|:we L°(F), [z =1}.

Also
Bc B C [ Vit o
={yeL!(S): sup |<y,x>|=¢}
xe L*(S")
s <1
1<1=n
(*) c{yeL(S): sup |[<y,xz>[=¢}
ve LP(F")
=z =1

because L?(S’) is dense in (L7(F'), SF(F"’)) (e.g., L¥(S’) contains the
simple functions of p-finite support). But the right-hand set in (x)
clearly consists of elements from the dual of (L7(F"), &“?(F"’)). Hence

Bc{ye L'(F):llyll=¢e},

establishing the necessity of the condition for B to be bounded. The
sufficiency is clear since the natural imbedding <: (L!(F'), & !(F))—
(L'(S), &7(S)) is continuous.

Suppose that X is p-finite so that 3.4 (i) holds and L(S) is an
inductive limit in the usual sense. Then it is known that a sequence
{w.)7 &!(S)-converges to 0 if and only if for some se S [z,[[,—0
([2, p-454]). We do now know if this is true in the general case.

4. The weak topology in L*(S). If L!(S) and L?(S’) are dual
we have seen that o(L(S), L7(S’))c27%(S). In this section we
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attempt to compare these two topologies. Our results indicate that
they are quite close. However even in the case when S consists of
two elements and (X, .97, p) is the real line with Lebesgue measure
we do not know if they are equal.

THEOREM 4.1. Take Sc (1, =) and suppose that either 3.4(1)
or (ii) holds. Then a bounded mnet in L*(S) converges to zero im
7 I(S) if and only if it converges to zero in o(L'(S), L*(S’)). By
bounded s meant with respect to any topoloqy of the dual pair
(LX(S), L*(S"))-

Proof. Let (¢4,de D, =) be a bounded net in L’(S) converging
to zero in o(L'(S), L(S")). To show that ¢,—— 0 in 227%(S) we shall
show that for some t'e S’ <g¢, h>——0 for all he L,(y). (One may
then apply the corollary in [3, p. 79]). By 3.8, there is a finite set
Fc S such that {g,},., © L*(F) and is bounded there. By 3.4 (i)
and (ii) we may suppose F = {t}. There exists M > 0 such that
sl < M for all de D.

Now take any he L.(y¢) and ¢ > 0. The support A of % is p-o-
finite so we write A = U;., A4,, where p(4,) <, n=1,2,---. We
may suppose A,C A,;,, n=1,2,---. Let B, ={xeX:|h(z)|<n).
Finally let C, = A,N B, so that U7., C, = A and hy, € L*(S’) for
all n. Take N so large that

S.Y~Cn [RI"dpe < (E%f)t, .

As hy., € L"(S’), there exists d,e D such that
| < Bay hye, > 1< ¢/2 for all d=d, .

Thus for d = d, we have

i<¢d,h>!§|<¢d,hxcn>|+r§ gahdy |

X~C

< €2 + |[dalle || Bfxme, |l

&
2M

<eg2+ M =c.

Thus, when 3.4(i) or (ii) hold, o (L(S), L*(S’)) agrees with
27"1(S) on bounded sets. In particular, the same sequences converge
in a(L*(S), L*(S")) as in 277%(S).

THEOREM 4.2. Take SC[1, o) and suppose that either X is p-o-
Jinite or that 1¢S. Let (¢, de D, =) be a met of monnegative
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Sfunctions in L*(S). The 6,—0 in o(L*(S), LY(S’) %f and only
if 6a—0 in ZL(S).

Proof. Assuming that ¢,— 0 in o(L*(S), L?(S’), we shall show
that ¢, — 0 in 2#7/(S). By applying 3.6 we may assume S is coun-
table, say S = {t,, ¢, ---}. If te]l, =), t'€(d, <] denotes the con-
jugate of ¢. For each te S let F,, be a finite set in L,(y). Let

Vi={9eL(p): |<g,f>|<1 for all feF,}.

Let V be the convex hull in L*(S) of U..s V: so that V is a typical
basic 2777(S)-neighborhood of 0. To prove the theorem we shall show
that ¢, is eventually in V. For each ¢ =1,2, --- let

fi = max {(Rf)*, (Rf)™, UF)", Lf)™: feFu}.

Then f;(x) = 0 for all . It suffices to show that there exists d,e D'
such that the following holds:

(1) For all d = d, there exists positive ¢,, ---, ¢, (m=m(d)) such that

;=1 and g; = ﬁ, ¢; v, where ;e L/(S) and

0= <Wufo><—1
1 <7 < m and suitable integers £k, .

To prove (1) set ¢g; =min{f,: 1<k=<1}, 1=1,2,..-. Then
0=<gix) for all xeX and g;€ Nz Lef(r). Also g; | ¢ where
ge L*(S’). There exists d,e D such that

0§<¢d,g><—-]é— for all d = d, .

We shall show that this is the d, of (1). Take any d=d.. ¢,€ L. (1)
for some 7 so
0= <44 9;><co.

As ¢6,9; | 6.9 as ¢ — o, we have

2) 0= <4 0,>< —é— for some 7 .
(Actually (2) holds for all » sufficiently large but we shall not use:
this.)

Now set

A ={re X: filw) = filw), 1 =i = n}
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A, ={reX:xgA; filw) = filw), L =i = n}
A= @eX: veU A fulo) < filw), 1 =i =n}.

Then g, = 3%, fixs, and Ui, 4; = X.

Suppose first that in (2) we have < 44,9, > = 0. Then

S s fidp =0, 1<i¢=<n,
45

v

30
(3) S [noays] fidpe =0, 1=i=mn.
R

Writing ¢, = 3%, 1/n [n g4)4,], combined with (3), proves (1) in this
case,

Now suppose < 6,4, ¢, > >0 in (2). By renumbering the f; ’s, if
necessary, we may suppose

@ | sefidn>0, 12izm,
4,

-

where 1 <m <n, and

(5) S S fidr =0, m<i=Zn.
45

We suppose m < »; the case m = n is handled by an obvious adjust-
ment. Set

S ¢dfid#

(6) S=A ., l1sis=m.
2< ¢d7 gn>

By (4), (5)

7 S B, = -

(7 > B = 5

Now

® [ son [ = 2< 60 00>, by ©)

'<—}1—, by @), 1<i=<m

Also, by (5),



638 HENRY W. DAVIS, F.J. MURRAY AND J.K. WEBER, JR.

©) SX 2n—m)g,x . ] fidp =0, m <i<m.
We write
-3l L : 1 B
Pa Z{ Bz[ A, Pa XA,[] +i:%ﬂ ————2(n_m) [2(n—m) gaya,] -

This, combined with (7), (8) and (9), proves (1).

Let {¢;} be a net in L’(S) which converges to 0 in o (L(S),
L*(S"). If we know that {(R¢,)*} and {(I$,)*} also converged to 0 in
o(LX(S), L*(S")), then 4.2 would imply convergence of {¢;} to 0 in
771(S). We close with an example of a net in L’(S) to which neither
4.1 nor 4.2 are applicable even though 3.4(i) holds.

ExAMPLE 4.3. Let X = [0,27) and let ¢ be Lebesgue measure
so that 3.4(1i) holds. Take S = (p, ) for some 1 < p < . Let D
be the set of all finite subsets of L?(S’) directed by inclusion. Take:
arbitrary de D and let |d| denote the cardinal of d. Take n = n(d)
so large that

lgz,-.(sin nx)g(x)d;c(x)! <W1?’ for all ged .

Define ¢, L'(S) by ¢.,(x) = |d| sinnx. To see that ¢,— 0 in a(L*(S),
L*(S")) take any g€ L*(S’) and € > 0. Let d,e D be such that ged,
and d, contains at least 1/e¢ elements. Then

|< gy 9> < —2_ < e for all dDd,.

|d|

On the other hand, <g¢;,1> = <¢;,1 > =2|d]| for all de D so
¢ 0 in o(L'(S), L*(S")). Finally for any te S |[g,l], = ||dall, = 4|d]
for all de D so {¢,} is not eventually bounded. We do not know
whether or not {¢;} converges to zero in 277/(S).
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