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ON A SET OF POLYNOMIALS SUGGESTED BY
LAGUERRE POLYNOMIALS

TILAK RAJ PRABHAKAR

Generating functions, integrals and recurrence relations
are obtained for the polynomials Zlix k) in xk which form
one set of the biorthogonal pair with respect to the weight
function e~xxa over the interval (0, <χ>), the other set being
that of polynomials in x.

A singular integral equation with ZZ(x;k) in the kernel
is solved in terms of a generalized Mittag-Leffler's function
and a unified formula for fractional integration and differ-
entiation of the polynomials is derived.

It is known [7] that the polynomials Z%(x;k) of degree n in xk

for positive integers k and Re a> — 1 are characterized up to a
multiplicative constant by the above requirements. Konhauser [8]
discussed the biorthogonality of the pair {Z%(x;k)}> {Y%(x;k)} in the
basic polynomials xk and xf over the interval (0, oo) and with the
admissible weight function erx xa of the generalized Laguerre poly-
nomial set {Ll(x)}. Indeed the polynomials have several properties of
interest and Konhauser [8] obtained among other things some recur-
rence relations and a differential equation for the polynomials Z% (x k)
which are our primary concern in this paper. For k = 2, Preiser
[11] obtained for these polynomials a generating function, a differ-
ential equation, integral representations and recurrence relations.
Earlier Spencer and Fano [13] also used these polynomials for k = 2.

For k = 1, all the results proved in this paper reduce to those
for Ll{x); in particular the integral equation (3.1) either reduces to
or contains as still more special cases the integral equations solved
by Widder [14], Buschman [1], Khandekar [6], Rusia [12] and Prab-
hakar ([10], (7 1)). For k = 2, the results are essentially the same
as those in [11] or [13].

2. Some properties of Z«(x;k)» We now obtain a generating
function, a contour integral representation and a fractional integra-
tion formula for Z£(£;k). In §3, we need the Laplace transform
and in § 4 derive a more general class of generating functions for the
polynomials. Recurrence relations and a few other results will follow
as natural consequences. We shall freely use the closed form ([8],
(5))

(2.1) Z (x k) = Π*» + « + D ± j{
n! ion! i=o Γ(kj + a + 1)
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for Re a > —1; naturally the results may be established from alter-
native characterizations of Zl(x;k) but such a discussion does not
seem to be of sufficient interest.

( i ) A generating function. We obtain the generating function
indicated in

(2.2) eι φ (k, a + 1 - xH) - v Za

n{x\k)t^—
" Γ ( k Λ- a + 1)

where φ (α, b; z) is the Bessel-Maitland function ([15], (1.3); [3], 18.1
(27)).

From (2.1), we have

^o Γ(kn -fα + 1) έ ί έ̂ o ml(n - m)l Γ(km + a

=̂0 m=o mini Γ(km + a + 1)

~ 2-Λ r 2-J
! m̂ o ml Γ(km + a + 1)

= e*φ(k,a + 1; - xk t)

and (2.2) is established.
Denoting eι φ(k, a + 1 — xk t) by f(x, t) we at once find that

f(x, t) satisfies the partial differential equation

xJUL - at^L + atf= 0 .
d x d t

Substituting for f(x, t) from (2.2) and equating the coefficients of tn,
we obtain the differential recurrence relation

x Z>:(x ;k) = nk Zϊ(x; k) - k f ( k n + a

Γ(A:?̂  + a — k + 1)

also obtained by Konhauser ([8]? (6)) by direct calculations,

(ii) Schlάfli's Contour integral. It is easy to show that

(2.3) Zn(x, k)

For — — ^ ~ g ^ e ftt = Σ ( - I)5' (ΐ) »*y — — \ ί-'*ί+β+1) e( dt

i^o Γ(kj + a + 1)

using HankeΓs formula ([3], 1.6(2))
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i i r(o+)

(2.4) — ί — - —i-τ- \ e< ί- dί
Γ(z) 2π% J-~

finally (2.3) follows from (2.1)
For k = l, (2.3) reduces to the known result ([2], p. 269)

} =
p (1

nl 2πί J— v t

If a is also a positive integer than the integrand in (2.3) is a
single-valued analytic function of t with the only singularity t = 0.
Hence we can deform the contour into 11 | = b \ x \ and the substitution
t = xu then leads to

(2.5) xa Zl (x k) = Γ^kn + α + 1 ) [ (u

k-l)n exu

 u-
{kn+«+1) du

n! 2πi ic

where C denotes the circle \u\ = b. Indeed C may be replaced
by any simple closed contour surrounding the point u = 0. For
k = 2, (2.5) reduces |jto the integral representation by Preiser ([11],
(5.22)).

Using (2.5), it follows that

Vnlx«+kZ«n

+k(x;k)Ί_ nlx'Zjjx k)
LΓ(kn + k + a + l)Λ Γ(kn + a + ΐ)dxk

and (J— - ί) \nlxa+kZ:+k(x;k)Ί = (n + 1)! xaZl+ι(x; k)
\dxk ) L Γ (kn + & + α: + 1) J Γ (kn + k + α + 1)

which leads to the pure recurrence relation

(2.6) xk Zl+k (x k) = (kn + a + ΐ)k Zl (x k) - (n + 1) Zl+1 (x k) .

For k = 2, (2.6) reduces to ([11], (5.39)).

(iii) Fractional integrals and derivatives. We show that

(2.7) P [x« Zl (x k)] = Γ{^n + α + ^ α;α^ Z«+^(α; fc)
Γ( to + α + μ + 1)

for Re a > — 1 and Re μ > — Re (1 + a) where for suitable / and
complex μ, Iμ f(x) denotes the μth order fractional integral (or frac-
tional derivative) of f(x) (see [10], §2).

When Reμ>0, we write [10]

P[x°Zl(x;k)] = [ {x~l\μ~l FZl(t;k)dt
Jo Γ{μ)

Γ(kn
n ! Γ{μ) kr(kj + a



216 TILAK RAJ PRABHAKAR

CC+μ

hence for Reμ>0 and Reα> — 1, we obtain

/9 β\ Tμ \rr<* ι/a („ . VM _ Γ (kn + a + 1)

But (2.8) may be written as

/O Q\ /y α ^α//y. ^ \ — Γ(UΠ + <% + 1) τ - « Γ α + /y *7oι+μ/„ . L.\l

the inversion being valid for Re μ > 0 and the assumptions made.
Putting μ! = —μ, a! — a + μ, we obtain for Re μ' < 0

which is (4.1) with the letters a, μ accented. Ignoring the accents
we can write

(2.10) I>l*-Zl(x;k)) [ ^ « l \

for Re μ < 0, Re a > - 1 and Re (a + μ)>-l.

When Re μ — 0, we write Iμ = Iμ+ι I~γ and the result easily follows
thus (2.7) is established for all complex μ with ΐleμ>— Re (1 + α).

REMARK 1. When μ is a negative integer say —m, then (2.7) is
written as

z ; (x fc)] - Π ^ + α + i) χa_m (χ

Γ(kn + a m + 1)
y [s z ; (x fc)] ^

dx I Γ(kn + a — m + 1)

which can also be proved by direct differentiation provided
Reα> m—1.

REMARK 2. For fc = 1, (2.7) unifies the results ([3], 10.12(27))
and ([4], 13.1(49)) for Laguerre polynomials.

3* A singular integral equation* We show that the convolution
equation

(3.1) \\x-tyZZ{X{x-t);k) f(t) dt - g(x)
Jo

for Re a > — 1 admits a locally integrable solution / given by
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(3.2) f(x) =

provided I~~ι g exists for Re I > Re a + 1 and is locally integrable in
(0,δ),0<£<3<oo.

The function

(3.3) El,b iz) = Σ Γ (

 {<ήjZ^ ., Re α > 0

is a very special case of the generalized hypergeometric functions
considered by Wright [16] and is also expressible as a Fox's H-
function [5]. On the other hand Ee

a,h(z) is a most natural generali-
zation of the Mittag-Leffler's function Ea(z) ([3], 18.1; [9]) and also
contains the confluent hypergeometric function 1F1{c; d; z) ([3], ch.VI),
the Wiman's function Ea,b (z) ([3], 18.1(19)) and several other fuctions
as special cases. It is an entire function of order (Re α)"1 and indeed
has a number of properties which may be of independent interest. A
fact of immediate interest to us is that the polynomials Zl (x k) bear
to Ee

a,b(x) a relation which is analogous to that which the Laguerre
polynomials L"(x) bear to the confluent hypergeometric function ^
evidently

(3.4) Zl (x;k)=
n!

As usual let

(3.5) L [f(t)] = f(P) = Γe~pt f(t) dt Rep>0
Jo

denote the Laplace transform of /. Then it is easily verified that for
Reλ, R e p > 0 ,

(3.6) L [ί6-1 EU (λί)β] - p~b+ac ipa-Xa)~c Re & > 0 ,

(3.7) L [t° Zl(λί k)\ = Γ ( f e ? \Z11} (Pk-λ&)% » Re α > ~ 1 .

We next note a general result on the Laplace transform of the
r-times repeated indefinite integral as well as the r th order derivative
of a function; in fact, we observe that

(3.8) PμfiP) = L[I~«fit)]

for suitable /, complex μ and p with R e p > 0 . Evidently both ([4],
4.1(8)) and ([4], 4.1(9)) are included in (3.8) as special cases.

We are now prepared to solve (3.1). From (3.1), (3.4) and using
([41, 4.1(20)), we have
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(3.9) Γ(kn + a + l) {pk _ χk)n p-kn-a f
n!

For Hel>Re(a + 1), (3.9) can be written (compare with [1]) as

(3.10) f(p) = n l {(pk - λ * ) - j r I + * +β+1} {pι g(p)}
Γ(kn + a + 1)

and we finally get

+ α' + 1) Jo

using ([4], 4.1(20)), (3.6) and (3.8).

4* A general class of generating functions* For arbitrary λ,
we prove the generating relation

V 1-t I =̂c
tn

From (2.1), we have

^ (X)nZ
a

n(x;k)tn ^
n=o Γ(kn + a +

oo

— V

n

V
2-Λ

{

(-i)"

Γ(km + a

-DO
Xk'>

n-

V

-m)!^!

m!

ml ^

For k — 1, λ = 1 + α, (4.1) yields the well-known generating
function ([3], 10.12(7)) for the Laguerre polynomials.

From (4.1) we obtain, on applying Taylor's theorem

(A 9\ (λ)^ Z*(x; k) __ 1 f (Λ j.\-x jpx f — x t \ ._w_i 1.

Γ(kn + a + 1) 2πι Jc V 1-t /

C being a closed contour surrounding t — 0 and lying within the disk
I ί I < 1. Putting u = xk/l-t,

(4.3) s"-*Z;(s;Jfe)= Afcn + « + l) f ^ ^ g j , g + 1 ( ^ - u )

where C is a circle \u — xk\ = p of small radius |O.
Choosing λ = 1, we have in terms of Wiman's function
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(4.4) ZUx)k) = Πfett + g + 1) f u*Ek,a+ι

nl 2πi )c> (u —(u — xk)n+1

Also evaluating the integral (4.3) by the Cauchy's residue theorem,
we obtain for arbitrary λ with Reλ > 0,

a + 1) ^k~k?. v \».?.+n-i -px /„.& ΊI\\
(4.0J Z / n ( X , t C ) X [U Jl/kta+1{X U)\u=xk .

(λ)ft n! dun

Since E\th (z) = (1/Γ(b))e% for k = 1 and λ = α + 1, (4.5) reduces to the
Rodrigues for the Laguerre polynomials.

I am grateful to Professor U. N. Singh for his encoragement and
interest in this work.
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