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ON A SET OF POLYNOMIALS SUGGESTED BY
LAGUERRE POLYNOMIALS

TiLAK RAJ PRABHAKAR

Generating functions, integrals and recurrence relations
are obtained for the polynomials Z; (x; k) in z* which form
one set of the biorthogonal pair with respect to the weight
function e~?x2 over the interval (0, ), the other set being
that of polynomials in 2,

A singular integral equation with Z, (v;k) in the kernel
is solved in terms of a generalized Mittag-Leffler’s function
and a unified formula for fractional integration and differ-
entiation of the polynomials is derived,

It is known [7] that the polynomials Z;(x; k) of degree n in x*
for positive integers k¥ and Re a> — 1 are characterized up to a
multiplicative constant by the above requirements. Konhauser [8]
discussed the biorthogonality of the pair {Z;(x; k)}, {Y2(x; k)} in the
basic polynomials 2* and 2, over the interval (0, ) and with the
admissible weight function e~ 2 of the generalized Laguerre poly-
nomial set {L2(x)}. Indeed the polynomials have several properties of
interest and Konhauser [8] obtained among other things some recur-
rence relations and a differential equation for the polynomials Z2(x; k)
which are our primary concern in this paper. For k = 2, Preiser
[11] obtained for these polynomials a generating function, a differ-
ential equation, integral representations and recurrence relations.
Earlier Spencer and Fano [13] also used these polynomials for &k = 2.

For &k =1, all the results proved in this paper reduce to those
for LZ(x); in particular the integral equation (3.1) either reduces to
or contains as still more special cases the integral equations solved
by Widder [14], Buschman [1], Khandekar [6], Rusia [12] and Prab-
hakar ([10], (7 - 1)). For k = 2, the results are essentially the same
as those in [11] or [13].

2. Some properties of Z;(x3k). We now obtain a generating
function, a contour integral representation and a fractional integra-
tion formula for Z2(xz;k). In §8, we need the Laplace transform
and in § 4 derive a more general class of generating functions for the
polynomials. Recurrence relations and a few other results will follow
as natural consequences. We shall freely use the closed form ([8],
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for Re « > —1; naturally the results may be established from alter-
native characterizations of ZZ(x;k) but such a discussion does not
seem to be of sufficient interest.

(i) A generating function. We obtain the generating function
indicated in
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where ¢ (a, b; 2) is the Bessel-Maitland function ([15], (1.3);[3], 18.1
27)).
From (2.1), we have
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and (2.2) is established.

Denoting e’ g(k, @ +1; — a*t) by f(z,t) we at once find that
f(x, t) satisfies the partial differential equation
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Substituting for f(x,¢) from (2.2) and equating the coefficients of ¢”,
we obtain the differential recurrence relation
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also obtained by Konhauser ([8], (6)) by direct calculations.
(ii) Schlafii’s Contour integral. It is easy to show that
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using Hankel’s formula ([3], 1.6(2))
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finally (2.8) follows from (2.1)
For k& =1, (2.83) reduces to the known result ([2], p. 269)
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If « is also a positive integer than the integrand in (2.3) is a
single-valued analytic function of ¢ with the only singularity ¢ = 0.
Hence we can deform the contour into |¢| = b|x| and the substitution
t = xu then leads to
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where C denotes the circle |u| =0b. Indeed C may be replaced
by any simple closed contour surrounding the point # = 0. For
k=2, (2.5) reduces jto the integral representation by Preiser ([11],
(5.22)).

Using (2.5), it follows that
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which leads to the pure recurrence relation
2.6) 2*Z:r@;k)=(kn+a+1),Z2@x;k)—(n+1)Z2,(x; k).
For k = 2, (2.6) reduces to ([11], (5.39)).

(iii) Fractional integrals and derivatives. We show that
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for Rea> —1 and Rep > — Re(l + @) where for suitable f and
complex t, I* f(x) denotes the pth order fractional integral (or frac-
tional derivative) of f(x) (see [10], § 2).

When Re ¢ >0, we write [10]
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hence for Re #>0 and Rea > — 1, we obtain
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But (2.8) may be written as
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the inversion being valid for Re ¢ > 0 and the assumptions made.
Putting ¢/ = —p, &’ = a + p, we obtain for Re ¢/ <0
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which is (4.1) with the letters «, g accented. Ignoring the accents
we can write

F(k’n+a+l) atp Fatpy L
TkntatprD) wrws k)

2.10)  I*[x*Zi(z; k)] =

for Re# <0, Rea>—1 and Re (o + g¢) > —1.

When Re ¢t = 0, we write [* = I+ I and the result easily follows;
thus (2.7) is established for all complex ¢ with Re #>—Re (1 + a).

REMARK 1. When g is a negative integer say—m, then (2.7) is
written as

F(k’n +a+1) a—m ga—m .
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which can also be proved by direct differentiation provided
Rea>m—1.

REMARK 2. For k =1, (2.7) unifies the results ([3], 10.12(27))
and ([4], 13.1(49)) for Laguerre polynomials.

3. A singular integral equation. We show that the convolution
equation
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for Rea > —1 admits a locally integrable solution f given by
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provided I~' g exists for Re I >Rea + 1 and is locally integrable in
0,0),0 <2 <0< oo,
The function
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is a very special case of the generalized hypergeometric functions
considered by Wright [16] and is also expressible as a Fox’s H-
function [5]. On the other hand FE:,(2) is a most natural generali-
zation of the Mittag-Leffler’s function F,(z)([3], 18.1;[9]) and also
contains the confluent hypergeometric function ,F, (c; d; 2) ([3], ch.VI),
the Wiman’s function E,,(2) ([3], 18.1(19)) and several other fuctions
as special cases. It is an entire function of order (Rea)™* and indeed
has a number of properties which may be of independent interest. A
fact of immediate interest to us is that the polynomials Z¢ (x; k) bear
to E:,(x) a relation which is analogous to that which the Laguerre
polynomials LZ(x) bear to the confluent hypergeometric function ,F,;
evidently

3.9) Zi(wi k) = £ (’“";:,“ 1 B @b .

As usual let
3.5) LI O] = o) = [ e F at Rep>0

denote the Laplace transform of f. Then it is easily verified that for
Ren, Rep >0,

(3.6) L[ E5, ()] = 5=+ (p*—\%)—° Reb>0,

3.7 Litezeo; b)) = LEn+a+ 1) e sepm Rea>—1.
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We next note a general result on the Laplace transform of the

r-times repeated indefinite integral as well as the » th order derivative
of a function; in fact, we observe that

(3.8) p* f(p) = LI+ f(t)]

for suitable f, complex ¢ and p with Rep>0. Evidently both ([4],
4.1(8)) and ([4], 4.1(9)) are included in (3.8) as special cases.

We are now prepared to solve (3.1). From (3.1), (3.4) and using
(4], 4.1(20)), we have
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For Rel>Re(a + 1), (8.9) can be written (compare with [1]) as
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and we finally get
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using ([4], 4.1(20)), (3.6) and (3.8).

4. A general class of generating functions. For arbitrary A,
we prove the generating relation
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For k=1, x=1+ «a, (4.1) yields the well-known generating
function ([3], 10.12(7)) for the Laguerre polynomials.
From (4.1) we obtain, on applying Taylor’s theorem

), Z5(x; k) — 1 Sl_t—aEz —z* ¢ —n—1
“2) Fkn +a+1) 2w A "’““< 1—t>t b

C being a closed contour surrounding ¢ = 0 and lying within the disk
|t] <1, Putting v = a*/1—¢,

(4.3) 2+ Zs (0 k) = I'(kn + « + 1) g W B o (o —u) du
A i

where C’ is a circle |4 — «*| = o of small radius p.
Choosing » = 1, we have in terms of Wiman’s function
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Also evaluating the integral (4.3) by the Cauchy’s residue theorem,
we obtain for arbitrary )\ with Rex > 0,

Clen + a +1) i 0"
), 1! ou*

Since E!, (z) = (1/I'(b))e?, for k=1 and » =a +1, (4.5) reduces to the
Rodrigues for the Laguerre polynomials.

(4.5) Zi(x; k) = [ B (@0F — W)]u=sk »

I am grateful to Professor U. N. Singh for his encoragement and
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