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RANK PRESERVERS OF SKEW-SYMMETRIC MATRICES

M. J. S. LIM

It is possible to study the structure of rank preservers on
w-square skew-symmetric matrices over an algebraically closed
field F by considering instead the linear transformations on
the second Grassmann Product Space Λ 2 < ^ ( ^ a n ^-dimensional
vector space) over F into itself, which preserve the irreducible
lengths of the products. In this paper, it is shown that
preservers of irreducible length 2 are also preservers of all
irreducible lengths of the products. Correspondingly, rank 4
preservers are rank 2k preservers for all positive integer
values of k. The structure of the preservers in each case is
deduced from the fact that these preservers are in particular
irreducible length 1 and rank 2 preservers respectively, whose
structures are known.

A nonzero vector in Λ 2 ^ is said to have irreducible length k if
it can be written as a sum of k and not less than k pure (decom-
posable) nonzero products in Λ 2 <^. The set of such products is
denoted by £^k and z e J*?k if and only if ^f(z) = k. A linear trans-
formation ^~ of Λ2 ^ into itself is an £f-k preserver if and only

if JH^S-S^.
A linear transformation Sf which takes the set of rank 2k n-

square skew-symmetric matrices into itself is a p-2k preserver.
In [7], it is shown that Jϊfk is isomorphic to the set of all rank

2k ^-square skew-symmetric matrices. If this isomorphism is denoted
by φ, then ό^ = cp^~cp~l is a p-2k preserver if and only if ^~ is a
£f-k preserver.

To obtain the results of this paper, much use is made of j^-2
subspaces of Λ2^Λ An £f-k sub space of Λ 2 ^ is a vector subspace
whose nonzero members are in J?fk. An J*?-2 subspace H is called a
(1, l)-type subspace if there exist fixed nonzero vectors xΦ y such
that each nonzero feH can be written

1* Intersection of (1, l)-tyρe subspaces*

LEMMA 1. If Vlf V2 are distinct (1, l)-type subspaces of dimens-
ion ^ 2 and dim Vt ΓΊ V2 ^ 2, then the 2-dimensional subspaces of <%/
determined by Vly V2 are equal.

Proof. Let f19f2 be independent in Vι Π F 2. Then f = x A xι + y A yί9
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f2 = x A x2 + y A y2 in VΊ; and fλ = u A ux + v A v19 f2 = uAu2 + v
A v2 in V2. Now ζx, y} c ζu, ul9 v, vty Π ζμ, u2, v, v2y which has
dimension 2 or 3 (Theorem 5 of [2], and Lemma 5 of [3]), and hence
dim ζx, yy Π </&, v) ^ 1 . Without loss of generality, let x be in this
intersection in fact, we can take x = u; and ζul9 v, vλy — <(xι y, yλy
and ζu2 v, v2y = <(x2 y, y2y (Lemma 9 of [2]). Since x A y A A — 0,
i — 1, 2, then yeζv, vxy and yz<y, v2y (proof of Lemma 7 in [3]). If
ζv, vzy = ζv, vλy, then some linear combination of fγ and f2 has ir-
reducible length at most one, which is impossible since flf f2 are in-
dependent in ^f-2 subspaces. Hence <( y y — ζy, vxy Π ζv, v2y, and
<( y y — <̂  v y, which implies (x, yy = <(u, vy.

2. The £f~2 preservers. The structure cf =5̂ -1 preservers is
known. In fact, in [8], it is shown that if ^ is an £f-\ preserver,
then ^" is a compound (i. e., if xAyeJZfΊ, then there exists a
nonsingular matrix A such that Sf (x A y) — Ax A Ay), except when
dim <%? = 4, in which case it may possibly be the composite of a
compound and a linear transformation induced by a correlation of the
2-dimensional subspaces of <ĝ . Thus if ^ ~ is an =2̂ -1 preserver, it
is also an ŜP-k preserver for all k.

We shall show that if ^~ is an =2̂ -2 preserver, then it is also an
oSf-1 preserver. Since we shall make use of =2f-2 subspaces and
these are varied (see [3]), it will be necessary to consider several cases.

2a. dim ^ ^ 7. In [3], it is shown that if d i m ^ = n^7,
then the maximal Jt?-2 subspaces have dimension (%-3) and are all
(1, l)-type subspaces.

LEMMA 2« Let ^ be an =5^-2 preserver, dim ^ ^ 7. Then
J^U {0}.

Proof. Let u A v e JZl. Then u A v is expressible as u A (ocxι —
x2) where {u, x1 x2} is independent in ^ and 0 Φ aeF, aΦ\. Now
{u, x19 x2} can be extended to a set {u, xlf •••, 6̂} of seven indepen-
dent vectors in ^ . Then the following 2 subspaces :

Vι = <u A xι + v A x^u A x5 + v A xQ, U A x3 + v A x4y ,

F 2 = <u A x2 + v A oίx^ u A Xrύ + v A x*, u A #3 + v A £4>

are both Jϊ?-2 subspaces and dim Vx Π V2 = 2. Moreover

Λ Ί;) = ^"(w Λ α»i - x2)

Λ <̂ î + <̂ ^ Λ ^4 — u A x2 — <xv A xd

A ax, + av A x4) — ̂ (u A x2 + ocv A a?4)
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The first vector is in ^(VΊ), the second in.^"(F 2). Now F l f V2 can
be extended to (w-3)-dimensional Jϊf-2 subspaces (necessarily of (1, 1)-
type). Hence ^(VΊ), ^~(V2) are (1, l)-type subspaces of dimension
(n-3) since j ^ ~ is an S?-2 preserver, and their intersection has dimension
at least two. Hence the 2-dimensional subspaces (of <?/) determined
by ^(VΊ) and ^~(V2) are equal, implying that ^~(uΛv) has ir-
reducible length ^ 2.

THEOREM 1. Let dim ̂  = n ^7 . Then <^~ is an £f-2 preserver
if and only if ^~ is an £f-\ preserver, and ^~ is a compound.
Moreover, ̂ ~(Jtfk)c:JZk for all k.

Proof. Suppose ^~ is an =2̂ -2 preserver. I f / e ^ and
0, then there exists g e &[ such that £f (f + g) — 2 (use Theorem 7
of [2]). Then jT~(/+ ΰ) = ̂ ~(ΰ) e £έ\. Hence it is sufficient to show
^ " ( = ^ ) does not intersect ^ .

Suppose ^ A ^ e ^ and J7~ (xx A xn) e Jif2- Consider the subspace
V generated by {zγ = x, Λ a?Λ, ί ^ ^ Λ a?ί+i + ̂ 2 Λ xi+2}, 2 <L i <: n-2,
where <%s — ζxly , xn}. Any linear combination z = ]Γ)*zf ^ ^ has
irreducible length 2 except when α2 = = α:%_2 = 0, in which case
z — axzt and ̂ "(a^) has irreducible length 2. Hence ^~(F) is an
Jέf-2 subspace of dimension (n-2), which contradicts the fact that the
maximal S^-2 subspaces have dimension (w-3). Hence J^~(^) £ =2 .̂
The converse is easy to see (cf. beginning of § 2).

2b. dim ̂  = 4, 5* By Theorem 7 of [2], it is clear that ^ ,
k ^ 3, is trivial when dim ̂ / <̂  5. The following lemma is immediate.

LEMMA 3. Let dim W <; 5, ^~ an βSf-2 preserver. Then

THEOREM 2. Lei dim ̂  = 4. ϊ%ew ̂ " is απ ̂ - 2 preserver if
and only if J7~ is an Jίf-1 preserver.

Proof. Suppose ^~ is an £?-2 preserver. Suppose x1 A x2 € «St

and ^""(a?! Λ a?2) = 0. Extend {a?x, a?2} to a basis {x19 •••, a?4} of ^ .

Then D i Λ ^ + ^ Λ ^ 4 has irreducible length 2 and hence

^(x, Ax2

JrX^A x4) = ^~{Xz A x4) .

has irreducible length 2. Hence the above and Lemma 3 imply it is
sufficient to show only that J7~ (j*%) H £?2.

Suppose ^(x.Ax^) has irreducible length 2 for ^ Λ ^ e ^ .
Consider the subspace V generated by the products zx — x1 A x*

z2 = xx A x2 + ̂ 3 Λ x± where ^ = < 1̂? , #4> .
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Then any linear combination z = az1 + βz2 has irreducible length 2
unless β = 0, in which case ^~(z) — ^~{az^) which has irreducible
length 2 by assumption. Hence ^~( V) is an Jϊf-2 subspace of dimension
2. But this contradicts the fact that the βSf-2 subspaces have dimen-
sion one and no more (Theorem 10 of [2]). The result follows. The
converse is easy to see.

THEOREM 3. Let dim ^ — 5. Then J7~ is an Js?-2 preserver
if and only if J7~ is an &?-\ preserver.

Proof. As in the proof of Theorem 2, it is sufficient to show
£f2. L e t <%f = <uly , u5y. Suppose u, A u5 e ^fL and ^

(uλ A u6) e JZl. Then consider t h e subspace V generated by t h e
products

zι = uγ A n5 ,

z2 = uλ A u4 + u2 A us ,

£3 = uL A uz + u-z A uδ ,

£4 = u2 A u± + u2 A uδ .

Then z = X)t=i «•«» has irreducible length 2 except when α2 = 0 = a3

— α4, in which case z = aλzx and ^{a^ e J?f2. Hence J7~{ V) is an
Jϊf-2 subspace of dimension 4. But this contradicts the fact that the
maximal J^-2 subspaces have dimension 3 (see Theorem 1 of [3]).

2c* dim OS — 6. The following lemma is clear from Theorem 7
of [2].

LEMMA 4. Let dim ^ = 6, ^~ an £f-2 preserver. Then

It is thus necessary to consider also the £f-% subspaces.
If z e Jzfk, then we can associate a unique 2k-dimensional subspace

[z] of <%/ with z (Theorem 5 of [2]).

LEMMA 5. Let z e J*fk and xx e [z\. Then there is a representation
z = xι A u2 + u3 A u4 H + u2k^ A u2k where <>2, , u2k} = [z] — <^>.

Proof. L e t xt be extended to a basis {x19 •• ,^2&} of [z]. Then

z = X ^ α ^ i Λ a?y ( l ^ i < i ^ 2fc)

= «?i Λ (Ei=2^i jXj) + Σjai iχi A Xj(2 ^ i Aj ^2k) .

By Corollary 8 of [2] and the fact that ^f{z) = fc, the second term
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in the expression of z has irreducible length (λ>l). The result follows.

THEOREM 4. Let dim ^ = 6. H an £f-Z subspace. Then dim

H=l.

Proof. If uλe^ and / is any nonzero member of H, then ux e
[/]. Hence / can be represented / = ί ί 1 Λ % + i/, where ue^f and
y e JZfϊ, [y] c ^ — < ΐ θ ; (Lemma 5). This latter subspace has
dimension 5. Thus, if /„ f2 are any 2 nonzero members of H, then
/ ^ ^ Λ ^ + ^ Λ ^ + ^ Λ uQ, where ^ = < u19 , u6 >, and /2 can
be expressed as /2 = uγ A yι + ^ 3 Λ v% + ^ 5 Λ y3 where #< = Σ?=2 <%%,
using the fact that </„ /2)> is an =5^-3 subspace, Corollary 8 of [2]
and Corollary 1 of [3].

Consider / = yf + /2, 7 e F . Now / = ^ Λ [(7 + aι2)u2 + α1 3u3+
α14^4 + alδuδ + α16^6] + u 3 Λ [α22u2+ (7 + α24) u± + a25uδ + a2Qu6] +uδΛ [α3 2^2+
a33u, + auuA + (7 + am) u6] = wt A w2 + w3 A w4 + wδ A w6, putting w, =
Uu w2 = [(7 + α12)^2 + α13^3 + α14^4 + aίδuδ + a1Qu6], and so on. Then
Sf(f) = 3 if and only if the vectors w19 •••, w6 are independent
(Theorem 7 of [2]); i.e., if and only if the determinant of the matrix
(α^ ), where aiS is the coefficient of u{ in wό; i, j — 1, , 6 is non-
zero. However this determinant is a monic polynomial in 7 of degree
3 viz., (7 + α12)((τ + α24)(7 + α 3 6 ) - α34α26) — α22(α14(7 + α36) — a5iaίQ)) + α32

(aua26 — α16(7 + α24)), whose constant term must be nonzero since the
vectors uu u2 uz, ylf y21 yz are independent. Hence there is a nonzero
value of 7 in F for which the determinant is zero (since F is alge-
braically closed). For this value of 7, J*f(f) < 3. Hence there is at
most one basis member in H.

THEOREM 5. Let dim <%/ = 6. Then J7~ is an Jέ?-2 preserver if
and only if J7~ is an Sf-\ preserver.

Proof. It is sufficient to prove that J7" (=^) does not intersect
-2^ U -Sf? (cf. proof of Theorem 2 and use Lemma 4).

Suppose %? = ζulf - * -, u6y and S~ (nx A uQ) e L2. Consider V—
<>i, •••, ^4> where

zL = u, A u6; z2 = u, Au3 + u2A uέ; z3 = u, A u^ + u2 A uδ

z4 = ux A uδ + u2 A uQ .

Then J7~ (^") is an Sf-2* subspace of dimension 4, contradicting the
fact that the maximal =2^-2 subspaces have dimension 3 (Theorem 11
of [3]).

Suppose ^~ (uι A uΰ) e βSf 8. Let 7^ = <(ziy z2y where z1 = u1Λ ^5;
z2 = uλ Au4 + u2 Au$ + uQ A uδ. Then ^~ (y) is an =5^-3 subspace
of dimension 2, contradicting Theorem 4.
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3* The main results* We can now assert:

THEOREM 6. J7~ is an Jtf-2 preserver if and only if j?~ is an
oŜ -1 preserver. If J7~ is an Sf-2 preserver, then ^" is an £f-k
preserver, k = 1, 2, •••, [n/2], dim ^ = n, and J7~ is a compound
except when n — 4, in which case JΞf may possibly be a composite
of a compound and a linear transformation induced by a correlation
of the 2-dimensional subspaces of %f.

Using the results in [7], we can also assert the following.

THEOREM 7. S? is a pΛ preserver if and only if S^ is a ρ-2
preserver. If £f is a pΛ preserver, then S^ is a p-2k preserver,
k — 1, 2, , [n/2]. Moreover, if A is any n-square skew-symmetric
matrix, then 6^{A) = aPAP' or S^(A) — βPA! P' for a, β nonzero
in F and some nonsingular n-square matrix P except when n = 4, in
which case 6^ may possibly be of the form

= aP

0 « 2 3

0
— au

-ai3

au

0

- C L 1 2

&13

a12

0

where A = (aiS), aiά = -aόi.

REMARK. These results are not necessarily true when the un-
derlying field F is nonalgebraically closed (cf. § 2b. and end of [2]).
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