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ON SUBGROUPS OF PRIME POWER INDEX

L. F. HARRIS

Let G be an abelian group. A set S c G is a stellar set
if mx e S implies x,2x, , mx e S. Let pa be a fixed prime
power. It is shown that if S Π paG = 0 , G satisfies a mild
condition, and 5 intersects all the subgroups K of index
G:K = pa, then the cardinality of S is bounded below by
pa _j_ p«-i This bound is the best possible. The problem is
reduced to solving a number of congruence relations

λiXί + λ2X2 + + λnxn = 0(pa)

with lattice points (xίt Xz, •••,#«) in a stellar set S in Eu-
clidean %-space. This in turn leads to an interesting result
on congruence classes of subgroups and points which tells
something about the solution in integers of the above con-
gruence relation.

G. K. White [3] has shown that if G is an abelian group with-
out elements of order pβ, 1 < pβ < pa, and S is a stellar set as above,
then

\S\^pa + p if α :> 2

S\^p + 1 if α: = 1 .

{I S I is the cardinal number of the set S.)
We improve this to get

THEOREM 1. Suppose pa is fixed, G is an abelian group with-
out elements of order pβ, 1 < pβ < pa, and S is a stellar set satisfying
S Π paG = 0 which intersects all the subgroups K of index
G: K = p\ Then

S I ̂  pa + pa~λ .

J . W. S. Cassels [1] has shown that if a stellar set S intersects all
the subgroups of index ^ m in an abelian group without elements
of finite order than \S\^m. Our result is an improvement for
m = pa.

Let g. c. d. (au idk) denote the greatest common divisor of
a19 " ,ak. Let Va denote the Cartesian product of n ^ 1 copies of
Zp<*, the residue class ring modulo pa. Let ΛQ denote the free abelian
group of rank n. An %-tuple (in Λo or in Va) is said to be p-primitive
if p does not divide at least one coefficient of the %-tuple. An integer
x is said to be p-prime if g.c.d. (p, x) — 1. Let F * denote the set
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of those p-primitive elements of Va whose first p-prime coefficient is 1.

If x = (x19 , xn) e Λo and λ = [λ15 , λ j e V *

the dot product is λ x = Xίx1 + + Xnxn. Because of the one-to-
one correspondence between λG 7 * and the subgroup

{x\xeΛ0 and X x = 0 (pa)}

of index pa in Λo we may identify the two. Thus we write xeX to-

mean λ x = 0 (pa).

By the same reasoning as in [3], Theorem 1 follows from

THEOREM 2. Suppose that for fixed pa, n^> 2 every congruence
X x = 0 (pα), λG V%, has a solution x in a stellar set S satisfying
S Π paΛ0 = 0 . Then \ S \ ̂  pa + p*"1.

C. A. Rogers [2] has proved Theorem 2 for the case a = l. Two
7^-tuples λ and // are said to be congruent modulo pr if each com-
ponent of λ is congruent modulo pr to the corresponding component
of μ. If λ and μ are p-primitive elements of Λo and λ ^ kμ(p) for
all p-prime A: then

{x\xeΛ0 and λ a; = 0 (pa~ι) and ^ x = 0 (p)}

is a subgroup of index pa in Λo, so for a ^ 2 there are many more
subgroups of index pa in Λo than those we are considering in
Theorem 2. In order to prove Theorem 2 we need a result on con-
gruence classes of subgroups and points which has some interest in
its own right. If y is a p-primitive element in a stellar set T in Λo,
let

T(y) = {mxe T\x = y{p) and m = 1, 2, 3, •} .

Then T(y) is also stellar and we say T(y) is a p-class of points of

T.

THEOREM 3. Suppose that a ;> y ^ 2, %;>3 αwώ λ°G F
1/ /or each λ swfc ίAaί λ = X°(p) and λ e Fa* the congruence

X # = 0 (pr) λas a solution xe T where T is a stellar subset of ΛQ

satisfying T Π paΛ0 = 0 then either ( i ) all the congruences have a
solution in a p-class T (x°) of points of T for some x° e T and

\T\^\ T(x°)\ ^p~ι

or (ii) I T\ ^ p7'1 + max( | T(x)\, pr~2) for all xe T.

2. Lemmas. Theorem 3 is proved by induction. We need two
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lemmas for the inductive step and one for the case 7 = 2. Assume
a ^ 7. Let μe V% and define

Ar(μ) = {X\X = μ{va~r)} = {μ + λ Γ r I 1 ^ λ4 ^ p*} C F α * .

Then 4(/£) Π Λr^{v) = 0 if μ ~έ i; (pα-0

Thus

Since each Λr(μ) is a set of λ e F J and each λ can be regarded
as a set of xeAQi the α? are in some sense "second level" elements
of Λr{μ). We write x * Λr(μ) if a e λ for some XeΛr(μ).

Suppose C is a family of Λγ(μ). We define ordered pairs

, a ) = {Λr(μ) \ Λr(μ) e C and x * -4r

B(Λr(μ), x) = {λ I λ e iίr(^) and a? € λ}

, Γ) = U B(Λr(μ), x) .
xeT

We say T covers Λr{μ) if and only if B(Λr(μ), T) = Aτ(μ).
We wish to cover Λr(X°). Without loss generality take

λ° = [1, 0, , 0] and let A7 = Λγ(X°). Now x * Ar if and only if

x . x = (χ° + p α - α ) . x = o (pα)

for some

λ° + pα-^ λ = [1, λ2 p«-r, , \n pa~r] e Ar .

This implies

λ° x = w1 pa~γ (pa) for some w1

wx + λ a? = 0

(1) w1 + Σ λ ί a ? i =

Thus Γ covers 4̂r if and only if the congruence (1) is satisfied for all
[1, λ2, , λ j by points (pa~r w19 x2, , xn) e T. By (*) we may write
(1) as

(2) wx + ± (μi + v, p) x, = 0 {pr)

and T covers A^X0 + μ' pa~γ) if and only if (2) is satisfied for all
vt. To simplify notation let A{μ') = /ί^^λ0 + μf pa~r).

Since λ° - [1,0, , 0] implies x\ = 0 (p), ( 4 , p) = 1

for some k > 1, without loss of generality take k — n, x°n — 1 and
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a suitable coordinate transformation will take x° into (0, , 0,1) but
leave λ° = [1, 0, , 0] fixed. Thus we shall work with

T * = Γ(0, . . . ,0 ,1) - T(x°)

Λ r = Λ r ( [ l , 0 , . . - , < > ] )

but our results hold for all T(x) and Λr{μ). Now xe T* and x * Ar

implies

(3) wt
2

so a e T* and α * Λ (μ') if and only if

(4) wx + ^ = 0 (p) .

Because of (4) we can define subsets Tc of T* which are in
A(μ'). At the same time we define families of congruence classes
A {μ') c Aγ which we shall need for the lemmas. In the following
c = 1, « , p .

Tc = {mx e T* I x = (cp*-7 + x, pa~r+1, x2 p, , xn^ p, 1),

Xi mod pr~\ m = 1, 2, •}

Q' - {ikfc I 5(^(/i')» T7*) = il(/i') for some Λ(μ') e Me}
R> - {Mΰ I Mc g Q'}

TedA0; Mc is a collection of classes Λl(μ')> etc.
Notice that if A(μ')eR then B(A(μ'), T*)ΦΛ{μ'), but the converse
is not necessarily true. 'Also T* is the disjoint union

r = ΰ r.
C = l

and P is the disjoint union of Q and R. Hereafter suppose

| Γ * l < p r

and

(0,0, . . . , 0 ) g T , .

LEMMA 1. (a) If μ'n ^ -c (p) then B{A{μ'), Tc) = 0 .
(b) // Γ* covers a A(μ') then

I Γβ I ̂  p 7 " 1 <md c + ^L Ξ 0 (p) .

(c) I/ίfce A{μf) covered are from / distinct Mc, (0 ^ • = |Q' | <
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I Q I = / p n ~ 2

and

(5) \R\ = v%~1 ~ • Pn

Proof, (a) follows from (4).
(b) Define a set F e, wo£ stellar, by

Γβ I if pbyeTc then b<β,y ^-primitive} .

Then

I Γβ I ̂  Σ Pβ and £ ( ^ ' ) , Γβ) - B(A{μ% Vc) .

Let

a = po-1''*-^ = I B(Λ(μ'), x \ for any p-primitive x * Λ(μ') .

iτ.|:> Σ y = Σ l^(AO,3^y)l = J_lB(Λ(μΊ, Vc)l

pβyeVc pβyeV0 (X C&

= J-\B(Λ(μ'), T.) I = -i-
α α

(c) By (a) and (b), | Γ* | ̂  • p ^ 1 . Since

Because P is the disjoint union of Q and R, and

| P | = p - 1

we have

This completes the proof of Lemma 1.

Of course T\T* denotes {xeT\x$T*} .

LEMMA 2. (a) \A(P,x)\=pn~2 for any xeT. If xeT\T*,
yeT* then

(b) I A(P, x) ΠA(P,y)\ = pn~5 and
(c) the number of Λ(μ') e R with x * Λ(μ') is

(6) \A(R,x)\ = p«~2 - / p«-3, /= I Q'\ .

Proof, (a) If x e T and x * Λr then (x2, , xn, p) = 1 implies
there are pn~2 choices for μϊ, , μ'n.

(b) follows from the fact that x =έ y (p) and Λr is fixed.
(c) lίyeT* then y e Te for a unique c. By Lemma l(a) A(P, y) =

A(MC, y)(zMc and counting shows A(P, t/) = Λfc. Now it is easy to
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see that \A(Q,x)\ = / pn~\ Since P is the disjoint union of Q and
jβ, I A(R, x) I = I A(P, x) I - I A(Q, x) \ = pn~2 - / pn~\ This completes
t h e proof of L e m m a 2.

I n T h e o r e m 3 if 7 = 2, λ° = [1, 0, , 0] , t h e n xeT m u s t sa t i s fy
t h e c o n g r u e n c e

2
%i = o(p2)

for some λ2, , λΛ. Thus

xι = 0 (29), xι — pw1 for some wι ,

and

Wi + Σ M i = 0(p)
2

so (x2, , a?Λ, p) = 1 and a? * Λ

LEMMA 3. Suppose n^Z and for each λ = [1, λ2, , Xn] the
congruence

has a solution xe T, where T is a stellar set of points, such that if
x e T and for some integer m

x = m(w19 x2, , xn) then g.c.d. (x2, , xn, p) = 1 .

Denote x = (a?2, •••,»»).
Lei

ΓO/o) = ίml/ e y l V = VO(P)> m = 1, 2, 3, •} / o r some p-primitive

Vo-

T h e n e i t h e r ( i ) | T | ^ | Γ(2/ o ) | ^ p f o r s o m e y o e T
or (ii) \T\^p + max(|T r(i/)|,l) /or αίZ 2/eΓ.

Proof. If I T(2/o)I ^ ί> for some ί/0GΓ we are done. Assume
I TO/) I < p for all τ/e Γ. Then Γ is a p-primitive set since pβyeT
implies

y,2y, -- ,pβye T(y) .

T Φ 0 implies Γ(τ/0) ^ 0 for some y0 e T.
Some calculations show, if ye T\T(yQ), then

(a) I At\B(A19 T(yQ)) \ = p - 1 - | Γ(τ/0) | p ^ 2 ,

(b) I B(Al9 y)\{B(Al9 y) n 5 ( ^ , Γ(»o))} I = Pn~2 - I Γ(»o) I Pn~3.
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If yj = (y(, • ••, y°n),j = 1,2 are two distinct points in T\T(y0) then

\J*(A19 y) Π # ( ^ , 1/) I - jp n-8 otherwise .

Substituting the above, together with (a) and (b), in

Σ I B(A, y)\{B(Λιt v) Π B(A, T(y0))} \= Σ 1
yeT\T(y0) λ<£ B{AvT{yQ))

gives

3* Proof of Theorem 3* We prove Theorem 3 by induction on
7. The case 7 = 2 was settled in Lemma 3 where we noted satisfying
the congruences (mod p2) was equivalent to covering Λx. Similarly
satisfying the congruences (mod pr+1) is equivalent to covering Λr. The
λ e Λ play a similar role to the Λr^(μf) c Λr (a) and (b) in Lemma 3
play a similar role to (5) and (6) in Theorem 3,

We assume Theorem 3 true for some 7 ^ 2 and will show it holds
for 7 + 1. Thus we will be concerned with covering Ar, and shall
consider it in terms of the Λr-L(μ') c Λr. We must distinguish two
cases:

Case 1. pr > \ T* \ ̂  pf~\
Recall the families Q', R', Q, R and P defined in § 2. Λ{μ') e R implies

B{Λ{μ>), TJ Φ Λ{μ')

and the induction implies the number of points of T in Λ(μf) is

I TI ^ p?-1 + max (| Γ* |, pr~2) for each A(μ') e T .

In other words, at least pJ~l points of T\T* are in each Λ(μ')eR.
Combining

Σ \A(R,x)\= Σ \{xeT\T*\x*Λ(μ')}\
%eT\T* A{μ')eR

with (5) and (6) gives

Case 2. For all xeT, pr~ι > | T(x) |.
By induction, the cardinality of the subset of points of T that

covers A(μ') e P is greater than or equal to pr~l + pr~2.
Notice that | P | = p*-1.
Lemma 2 (a) gives | A(P, x) \ = pn~2.
We have
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Σ,\A(P,x)\ = Σ, \{xeT\x*Λ(μ')}\
xeT Λ{μ>)eP

so that

I TI ̂  pr + v7-1 .

4* Proof of Theorems 1 and 2* As remarked earlier, it is
sufficient to prove Theorem 2 in order to conclude Theorem 1. Thus
we shall prove only Theorem 2. By [2] and [3] we may assume
n ^ 3 and a ^ 2.

We apply Theorem 3 with a = 7 :> 2. Thus we have a result
about covering the Λa^(μ) c Fα*.

Let JV= {Λa^{μ)\Λa^{μ)(Z Va*}. The number of Λa^(μ)cz Fα* is
|iVr| = l + ί 9 + + pw- χ and | A(N, x) \ = 1 + p + + pw~2 for any

We consider two cases corresponding to those in Theorem 3.

Case 1. I T* I ̂  p"'1.
Let M = {Λ^iμ) e N \ B(Λa^(μ), TJ = 0}.

Then

\M\ - \N\ - \A(N, Γ J | ^ p ^ - 1 .

By Theorem 3 each Λa_1(μ)eM will need at least p"-1 points of S\T*
to be covered by S.

If xeS\T*, ye T* then

, a?) Π A(N, y)\ = 1 + p + + p%~3 .

Thus

I A(Λff α)I = \A(N,x)\ - \A{N,x)C\A{N,y)\ = pn~2 .

Now

Σ A(M,x)\= Σ I{α? e S\Γ* I a? * / ί ^

so by Theorem 3

(\S\ -

and the result follows.

Case 2. For all α e S, p"-1 > | T(x)\.
By Theorem 3, to cover each Λa_L(μ)eN will require at least

of s. We have

Σ \A(N,x)\= Σ
a eS Aa_1(μ)eN
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| S | ( 1 + p + ••• + pn~2)^(l + p + ••• + v"-1)^1 + Pa~2) a n d t h e
theorem follows.

5* Bounds* Our bounds in Theorem 2, 3 and Lemma 1 are the
best possible in the sense that we can exhibit sets of minimum car-
dinality which satisfy the conditions. For Theorem 2 let

S = {(x, 1, 0, , 0)| 1 ̂  x ^ p*} U {(1, px, O , 0)| 1 ̂  x ̂  p*-1} .

Then

SI = pa + pa-γ

and S satisfies all the congruences. Notice that S is composed of
p + 1 disjoint sets T(x), each of cardinality pa~\ We expect this
because of the strict inequality in Case 2 of the proof of Theorem 2,
as compared with the inequality in Case 1.

For Theorem 3 we exhibit a T(x°) of cardinality p7"1 and a T of
cardinality p7"1 + pr~z containing no T(x) of cardinality greater than
pr~\ Without loss of generality, let λ° = [1, 0, , 0].

T(x°) = {(xp, 0, , 0,1) 11 ̂  x ^ pr-1}

T = {(0, , 0, xp + c, 1) 11 ̂  x ̂  pr~2,1 ^ c ̂  p} u

{(0, .. , 0 , l , ^ ) | l ^ a ; ^ 2 > r " 2 } .

All the congruences of Theorem 3 are clearly satisfied by each of
these sets.

Finally for Lemma 1 let c be fixed and

Tc = {(pa~rc + p«~y+1 x, 0, , 0,1) 11 ^ x ^ p?-1} .

Then

\TC\ =p^

and

B {Λ{μ'), Tc) = Λ(μ') for all A (μf) e Mc .

The author wishes to thank Dr. G. K. White for his advice and
encouragement in the preparation of this paper.
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