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DERIVATIONS AND ACTIONS

FrRANCES F. GULICK

This paper continues the study of functions which act in
a Banach algebra containing compact operators on a Hilbert
space. In particular, a strong action of a function f in ¥ is
considered, that is, an action T—f(T) from %, ={T e W:6(T)c U}
into U such that f(T) commutes with all operators of finite
rank which commute with 7. Let E\(T) be the projection of
the Hilbert space onto ker (A — T)*V such that ker E\(T) =
(I — Ty»VH. 1If f defines a strong action T — f(T) in ¥, then
for each Tc¥Uy and 1€ 0,(T) there exist ay, a1, -+, @,0-1€C
such that f(T)EXT)=332""1/i0a;(T—AI)¥E\T) (Theorem
3.4), If an algebra .# of functions defines what is called a
D-action ¢ in ¥, then, in fact, there exists a system of deriv-
ations {D;: 0 < k<m} from _# into the algebra of all functions
on U such that o(f, T)EXNT) = 587" (1/§)D;fONT — ADEXT)
for all fe #Z, TeWUy and 2€0,(T) (Theorem 4.2), Finally, it
is shown that if _# defines an action ¢ in %, the function
2(t) =t is in .#Z and ¢(z, -) is a D-action of x in ¥ which is
continuous when restricted to {Te: ¢(T)<[|z]| < r]}, then for
every analytic function fe_# o(f, T) is defined by a sum
involving the Cauchy integral formula and terms of the form
AgDD;f AT — AL ENT).

In this paper we continue the study of the concept of what we
call the action of functions in Banach algebras, a study which we
began in [2]. Generally speaking, let 2 be a Banach algebra, U the
open unit disk of the complex plane, 2, the set of all elements of A
with spectrum contained in U and f a complex-valued function with
domain U. Then we say f acts in U or f defines an action in 2 if
there exists a mapping «— f(x) of U, into U such that for every
maximal commutative subalgebra & of U, a complex homomorphism
h on & and xe & Ny, f(x) is in & and k(f(x)) = f(h(x)). An algebra
# of functions defined on U acts in U if there exists a mapping
@: # x Wy, —A such that for each fe_~ x— @(f, x) is an action
of f in A and for each x € Ay, f — @(f, x) is an algebra homomorphism.

In addition to defining the concept of functions acting in general
Banach algebras and establishing some properties of such actions, we
also described the algebra of functions which acts in certain Banach
algebras containing only normal compact operators on a Hilbert space
H, the functions being determined by the algebra of operators. This
paper extends that study of actions of functions in Banach algebras
of compact operators to algebras which contain nonnormal operators.
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While we do not characterize those functions which can act in such
algebras, we do describe the restriction of f(T) to certain finite-
dimensional subspaces of H.

Let 20 be a Banach algebra which has as its elements compact
operators on a Hilbert space H. Since Te 2 is compact, the spectrum
of T consists only of eigenvalues and each nonzero eigenvalue has
finite index y(\). There is a projection E,(T) of H onto ker \I — T)*®
such that the kernel of E,(T) is the range of the operator (\I — T)**.

If f is analytic on the unit disk U with f(0) = 0, then for every
Te %A, the Cauchy integral formula defines an operator f(T)e U and
the mapping T — f(T) from 2, into A satisfies the definition of f
acting in 2 (see p. 568 of [1]). In addition, for each nonzero eigenvalue
N of Te Uy, f(T) can be described on ker (\] — T)*» by the equation

SIVEAT) =8, 90T ~ ME(T)

[1, p. 559]. If f and g are both analytic on the unit disk and Te %,
then the coefficient of (T — M)’E,(T)/j! in the sum expressing
(f + 9)EN(T) is the constant f“(\) + ¢ ”(\) while the coefficient in
the sum expressing (f9)(T)E,(T) (fg the pointwise product) is the
constant (fg)9() = Sie ().FC (Mg (V).

Now suppose we change the hypotheses somewhat. Suppose f is
any function which defines an action T— f(T) in our algebra U of
compact operators. Then is the operator f(T) (Te¥,) still defined
on the finite-dimensional subspace ker (A — T)*?(» == 0) by a formula
of the form

(0.1 AT =" 3, <a(T — MYE(D)?

Ji=

Let us assume for the moment that the answer to our question

is yes for some Te %, and a nonzero eigenvalue N of T and that a
second function ¢ defines an action S— ¢(S) in U such that g(T)E(T) =
A ANb;(T — M) E(T). The mappings S—f(S) + g(S) and S—
J(S)g(S)(S € Ay) are actions of the functions f + ¢g and fg, respectively,
in 9. A straightforward calculation shows that (f + ¢)(T)E(T) and
(fo)(T)E(T) are defined by formulas similar to (0.1) but with a; + b; and
Sk o(®)a;b._;, respectively, replacing a; in (0.1). Thus the coefficients
of (T— NI E,(T)/7! in these two sums expressing (f + g)(T)E,(T) and
(fO)(TE,(T) bear the same type of relationship to the coefficients in
the sums expressing f(T)E(T) and g(T)E(T) as they did when f
and g were analytic. In fact, the coefficient of (T — M)/ E,(T)/4! for
the product looks very much like the Leibniz rule for higher-order
derivatives or for a system of derivations (see [3]). Suppose .7 is
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an algebra of functions which defines an action @ in U and suppose
o(f, TYE(T) (Te Uy, v a nonzero eigenvalue of T) is defined by an
equation similar to (0.1). Is there a system of operators {D,: 0 < k < m}
(m possibly infinite) defined on _# such that D, is linear, D,(fg) =

ko OWD;N(Dy—_;9) for each integer k < m and f, ge # and such
that ¢(f, T)E,(T) is defined by equation (0.1) with a; = D;f(\) for
j=0,1,-,5(0) — 17

For that matter, is it possible for an algebra _# of functions
to act in 2 if there is a system of derivations defined on _Z? Is
equation (0.1) the guide to defining the action?

These are some of the questions we tackle in this paper. We
show that if a function f defines an action T — f(T') in 2 such that
Sf(T) commutes with every operator of finite rank that commutes with
T, then f(T)E,(T) is, in fact, given by an equation of the form (0.1)
(Theorem 3.4). Moreover, if 2 contains an element with nonzero
spectrum and the mapping (f, T) — f(T) is what we call a D-action
in 2 of an algebra _# of functions, then there exists a system of
derivations <D,> from _# into the algebra of all functions on U such
that f(T)E,(T) is defined by equation (0.1) with a; = D;f(\) (Theorem
4.2).

In answer to the last question above we show that if 2 has as
its elements only operators of finite rank and _# is an algebra of
functions defined on U, then every member of a restricted class of
systems of derivations from ._# into the algebra of all functions on
U determines a different action of _# in 2 (Theorem 2.5). Note
that for such an algebra Theorem 4.2 is a converse to this theorem.

The action of an analytic function f in 2 defined by the Cauchy
integral formula has the property that whenever a sequence {T,>C 2,
converges to T, then the sequence {f(T,)> converges to f(T) (see p.
1101 of [1]). We show that if a D-action of a function f has this
limit property, then the associated function D,f are continuous
(Theorem 5.4). Finally we prove that if T— a(T) is a D-action which
has this limit property when restricted to the set {T¢ 2: o(T)C[|z| < 7]}
for some 0 < # < 1, then there exists a natural action (f, T) — f(T)
of the algebra of functions analytic on U vanishing at zero (Theorem
6.1). In fact, if Te N, o(T)C[|2| < 7], then the image of T is

AT = 5= F@ET - a(T) e .

1. Notation and terminology. Throughout this paper R and
C denote the real and complex numbers, respectively. All algebras
are complex algebras. If X is a topological space, then C(X) is the
algebra of all continuous complex-valued functions defined on X while
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C\(X) is the subalgebra of C(X) containing all functions which “vanish
at infinity—f is in C,(X) if, and only if, for each ¢ > 0 there exists
compact KX such that [f(t)| < e for t¢ K.

We denote by [|z — M |< 7] the open complex disk {ze C: |z — N |<7}.

Let H be a Hilbert space, L(H) the Banach algebra of continuous
linear operators on H with the operator norm || T'||. We denote by
C.. the set of all compact operators in L(H), a closed two-sided ideal
of L(H) with the algebra of all operators of finite rank dense in it.
We denote by C, the algebra of operators in L(H) of finite rank. If
T is in C., then the spectrum of T, d(T) = {AeC: A — T is not in-
vertible} is at most countable and zero is the only possible cluster
point. Each neo(T) is an eigenvector of T [12, p. 219]. For each
Te L(H) we denote by o,(T) the nonzero elements of o(T).

For each Te L(H) and neo(T), the index v,(\) = v(x) of N for
T is the smallest integer k (if it exists) such that ker W[ — T)* =
ker W — T)***. The index of A = 0 for compact T is finite, the sub-
space ker (AW — T)*® has finite dimension and H is the direct sum of
ker W — T)**® and (\ — T)*"H [12, p. 219]. We call the projection
E(T) of H onto ker (W[ — T)*** with ker E(T) = (\[ — T)**H the
Riesz projection onto ker WI — T)*P,

Suppose T'e C., and e o,(T). Of great use in determining the
behavior of an operator on E,(T)H is what we call a Jordan basis
of E)(T)H. This is a basis {#,:1<i1<m,1<j=<n}of E(T)H
such that y(\) = r, = r,=.--Z2r,=1,r, +7r,+ -+ 71, = dim E,(T)H
and

Ty, for 1=j<r,1<1=m

(T — N)x;; = . .
0 for j=r,1<i1<<m.

Such a basis is constructed in the same manner as the basis for the
Jordan canonical form of a matrix (cf. [1], p. 563).

Let <# be a subalgebra of C. such that (i) <& contains C,; (ii)
& is a Banach algebra with respect to a norm |-| and ||T|| = |T|
for all Te &, (iii) 0.(T) = o(T) for all Te =z We call such an
algebra a Banach algebra of compact operators and it is to such
algebras that we restrict our attention. The algebras C,,1 < p £ oo,
[1, 9] are Banach algebras of compact operators.

If H is finite-dimensional, then <% = L(H) as a consequence of
(i). If &# is closed under the usual involution 7— T7*, then the
condition || T'|| = | T'| above is redundant; the identity mapping 7'— T
of &7 into L(H) is a *-homomorphism and hence a norm-reducing mapp-
ing [10, p. 208].

For a commutative Banach algebra U we denote by My the
maximal ideal space of 2 regarded also as the space of nonzero com-
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plex homomorphisms on A with the relative weak*-topology. The
Gelfand mapping x — Z of U into C,(My) is defined by setting Z(h) =
h(x) for all he My, xe A

For each set ScU the commutant of S in 2 is the set Sj =
{ye W oy = yx for all xe S}. If S = {z}, then we write {a}y = (2)y.
The second commutant of S in 2 is the set (S'y)y = Sy.

Throughout the paper the symbol U denotes the open unit disk
of the complex plane unless stated otherwise. If 2 is a Banach
algebra, 2, denotes the set {x ¢ 2: og(x) = U} or, equivalently, the open
unit ball in the topology generated by the spectral radius.

2. Functions which act in algebras of compact operators. We
first present the definition basic to this paper.

DEFINITION 2.1. A set .&” of complex-valued functions defined on
U acts in A (or defines an action in ) if there exists a mapping
@:. x Uy — A such that (i) for every maximal commutative sub-
algebra & of A and xe Z NY, f(x) is in & and [f(®)]" =f-Z on
M,.; (ii) whenever f,g and af + g are in .&” (or f, g and fg are in
&), then p(af + g, x) = a@(f, %) + P(g, ») (or P(fg, ) = P(f, ©)P(g, x))
for all xe Ay, If fe.&, we say f acts in A. The mapping o(f, -):
Ay — A is called an action of f in U while @ is called an action of
& in A [2].

Definition 2.1 can be set for functions whose domain is an arbi-
trary set UcC but the results and proofs are essentially the same
for arbitrary sets as for the open unit disk with the exception of
those in §6. In §6 we can replace the open unit disk by a simply-
connected open set and obtain similar results. Throughout the paper,
therefore, we assume all functions are defined on the open unit disk
of the complex plane.

Several examples of functions which define actions in Banach
algebras are given in [2]. The next theorems establish the existence
of algebras of functions which act in Banach algebras containing
compact operators.

Unless stated otherwise < denotes a Banach algebra of compact
operators, 2 a closed subalgebra of <& and A(T) the closed subalgebra
of A generated by Te, or by T and I if dim H < co.

THEOREM 2.2. Let &° be a set of functions analytic on U with
J(0) =0 4f dim H = . Then & defines an action @ in any closed
subalgebra W of <& such that (1) for each Te Wy, o(f, T) is wn (T)%
and (2) if a sequence {T,>C U converges to TeWy, then for large n
o(f, T,) is defined and <p(f, T,)> converges to @(f, T).
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Proof. 1If (f, T)e.” x Ay choose r < 1 such that » > max {|\]:
neo(T)} and define @(f, T) by the Cauchy integral formula

@.1) o, T) = 5| FEGI = T)de

27 Jiz
Then o(f, T) is in A(T) and in (7)) [1, p. 1101]. Since T'e A, A(T)
is contained in ¥ and consequently @ maps ¥, into 2. Conditions (i)
and (ii) of Definition 2.1 follow quickly from the continuity of homo-
morphisms and the “homomorphism theorem” [1, p. 568, and 11, p.
203]. The proof of (2) of the theorem can be adapted from the proof
in [1] (p. 1101) for sequences in C, and the details are left to the
reader.

If TeA, Neo(T) and fe.&; then

(-

P 1) = 3 = PONT = MY EAT)

[1, p. 559]. Using this equation as a prototype we can define many
actions of a function on some Banach algebras by means of higher-
order systems of derivations.

DEFINITION 2.3. A set of m + 1 linear operators {D,, D,, +--, D,}
from an algebra _# into an algebra .&© is a system of derivations
of order m (from _# to &¥) if for every pair z,ye _# and integer
k=0,1,.--,m Dxy) satisfies the Leibniz rule

Lok
2.2) Dyey) = 3 (%) D)D) -
i=0
A sequence of linear operators D;: .#Z — <&,j =0,1,2, ---, is a system

of derivations of infinite order if {D,, D,, ---, D,} is a system of order
k for each integer k = 1. [3].

ExXAMPLE 2.4. Let
A = C"R) = {feCR): fecC(R),7=0,1,2---,m},

where f* = d*f/dt*. Choose functions i,, h,e C(R) and set D.,f = f,
D.f =hf® and D,f = hif® + h,f™. It is easily checked that
(D,, D,, D,) is a system of derivations of order two from C"(R) into
C(R). (For further examples and properties see [3].).

THEOREM 2.5. Let _# be an algebra of functions defined on U
and A a subalgebra of <& which contains only operators of finite
rank. Set m = sup {v,(\): Te A, neo(T)}. Then every system of
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derivations {D,:0 < k < m} of order m — 1 (infinite order if m = oo)
Sfrom _# into the algebra of all functions on U such that D, is the
identity operator on _# defines an action @ of #Z in N if dim H < o
or of Ay={fe#Z:f0)=0} in A 4if dimH = . For each
(f, TYe # x Uy, (f, T) is in the second commutant of T in 7.

Proof. Suppose {D,: 0 <k < m} is a system of derivations from _~
into the algebra of all functions on U with D, the identity operator.
For each (f, T)e # x 2, set

@3) o(f, T) = z{%mmw — MVE(T):0 < < 300, ne o(T)} .

That @(f, T) is well-defined and an element of U if dim H < < and
fe # orif dim H = « and fe _#; follows from the fact that y(\) < m
for ne a(T), (T — M) EXT) is in A for 0 <5 < v(\) and E(T)e U if
dim H < . Since E,(T) is in the second commutant of 7 in <%
@(f, T) also must be. Condition (ii) of Definition 2.1 follows from
the properties of systems of derivations (linearity and the Leibniz
rule).

It is shown in §4 that what we call a D-action in ¥ of an algebra
7 of functions determines a higher-order system of derivations on
_#. The action @ can then be described on EX(T)H (Te %Ay, M€ o,(T))
by equation (2.3).

ExamMpPLE 2.6. Let ¥ = L(C”). Denote by _# the algebra of all
polynomials in the functions ¥, ¥,, -+, ¥, defined on U. For each
polynomial f in n variables denote by f; the partial derivative of f
with respect to the j-th variable. Define D,: #Z—_#,k=0,1, -+, m>
N —1 by setting D.f=f,D.f=237fi¥, ¥ -+, ¥,) and D.f =
D/(D,_.f) for each fe _#. It is easily checked that (D, D, ---, D,)
is an m-th order system of derivations on _#Z. Thus for each
(f, T)e # x Uy we define ¢(f, T) by formula (2.3) and the mapping
@ is an action of _#Z in .

ExampLE 2.7. Although Definition 2.1 is stated for the unit disk,
we present this example of an action of a function defined on an
interval (a, b) because it is well-known.

Let %A = L(CY) and .#Z = C™(a, b), m = N — 1, with D, f = f® for
fe# and k=0,1,---,m. An action ¢ of _# in U is defined by
equation (2.8). If we regard the operators on C¥ as N x N matrices,
we find that o(f, T) is the matrix corresponding to fe C™ (a, b) and
Te A, defined by Gantmacher [4].
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For Banach algebras of compact operators on infinite-dimensional
Hilbert spaces we have the following generalization of Theorems 2.2
and 2.5. Note that C, is the set of operators of finite rank.

THEOREM 2.8. Let _# be an algebra of functions defined on U
such that fe _# 1is analytic on a disk [|z| < d;] and f(0) = 0. Sup-
pose (Dy, Dy, «++) is an infinite order system of derivations from _#7
wnto the algebra of all functions on U such that D, is the identity
operator on _Z and for each fe _s and |z| < s D, f(R) = f¥(2).
Then _#Z acts in every closed subalgebra of .

Proof. Let U be a closed subalgebra of <& If TeAN<Z,, then
each operator in (7) is of finite rank so that the mapping @,
A X WT)y; — A defined by equation (2.3) is an action of _~Z in the
algebra 2(T') (Theorem 2.5). For each fe._# the mapping @,(f, -):
{TeAa(T)c[|2| < 6s]} — A defined by the Cauchy integral formula
2.1) lim,_.. || T"||M* < r < d;) is an action in 2 of the restriction of f
to [|2] < 6;] (Theorem 2.2). Note that if Te, o(T)C[|z]| < §;] and
o is a finite subset of o(T), then

@Y Pl DFET) = 5, SO0 — MYB(T)
= S o(f; TE(T)E(T)

A€o

D;f =9 on [|z] < ds]). Moreover, if Te, and P = 3 {E\(T):
IN| = 04}, then @ (f, T — TP) = ¢(f, T — TP)(I — P) as a result of
the homomorphism theorem for the Cauchy integral formula [1, p. 568].

Finally, we define @: _#Z x 2, — A as follows: for (f, T)e . #Z x Uy
set P= 3 {E(T): [Nz 0} and @(f, T) = @f, T — TP) + ¢(f, TP)P.
The fact that ¢ satisfies conditions (i) and (ii) of Definition 2.1 follows
from Theorems 2.2 and 2.5. The proofs that @ is linear and preserves
products are essentially the same so we prove that ¢ preserves products.

Suppose f,ge.# and TeA,. Set &= min(d,,d, d;), P=
SHEAT): M|z ¢} Pr={E(T): N[z 65} and Py =3 {E(T): [N = d,}.
We assume, without loss of generality that ¢ = 0, < 0, < 0,. Then,
in view of the definition of ® and equation (2.4) we have

P(f, T)pg, T)
= [@1(.]0: T— TPf)‘}'@o(f’ TPf)Pf][g)l(g, T- TPy) + P9, TPg)PgI

= [p(f, T — TP) + (f, TP)Pllpg, T — TP) + @9, TP)P]
= o(f, T — TP)pi(g, T — TP) + (S, TP)Pi(g, TP)P
= ¢.(fg, T — TP) + ¢(fg, TP)P = ¢(fg, T) -

The action defined in the proof of Theorem 2.8 is the action de-
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fined by the Cauchy integral formula when _# is an algebra of funec-
tions analytic on U which vanish at zero and D,f = f% for
k=0,1,2,.--.

ExAMPLE 2.9. Let _#Z be an algebra of functions which are
analytic on the disk [|z| < =] for some r < 1 and have infinitely dif-
ferentiable real and imaginary parts defined on U (considered as a
subset of the real plane R?). If fe . # and f(2) = u(x, v) + w(x, ¥),
set D.f =rf®@®) for |z|<r and D,f(z) = (0*/0x*)(w + w)(x, y) for
r=<|z/|<l(®=a+1). Then {D;:k=0,1,2,---} is a system of
derivations on _#. The action of _# in U of Theorem 2.8 is then a
generalization of the action defined in Theorem 2.5.

3. Form of the operator f(T)E,(T). We have seen that an
algebra _# of functions with domain U and a system of derivations
of order m from _# into the algebra of all functions on U can define
an action of _# in subalgebras of L(C¥), N <m + 1, via equation
(2.3). In the next sections we show that under certain conditions an
action of _# in U determines a higher-order system of derivations.
As a first step we prove that for each T¢ % and e o(T), there exist
constants a,, 0 < k < v(\), such that

[03)

(3.1) ADEAT) ="5 l'jl,a,(T — MYE(T) .

In order to do so we need operators which may not be elements of
A although they always belong to <# since they have finite rank.
Thus we note that each of the actions defined in §2 has the property
for Te U, f(T) is in the second commutant of T in <& and set the
following definition.

DEFINITION 3.1. Let <7 be a Banach algebra, 2 a closed sub-
algebra of <& A set & of functions defined on U aets strongly
(defines a strong action) in 2 if . acts in 2 in the usual sense and
if the action ® has the additional property that for every (f, x) € .&° x %y,

P(f; ©) € (@)%

If <# is a Banach algebra of compact operators, then <z contains
all operators of finite rank and as a result has no nonzero central
idempotents [10, p. 165]. Thus if dim H = < and f acts strongly in
A, then f(0) = 0 [2].

In order to obtain equation (3.1) not only for Te % and re o (T)
but also for Te ANC, and all xe o(T) we make use of the following
lemma.
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LEmMMA 3.2. If T is a monzero operator of finite rank and
a(T) = {0}, then for any monzero NcC, there exists an operator S
of finite rank such that Neo(S) and T = (S — N)E(S).

Proof. Since dim TH < oo, the index of zero must be a finite
integer n; otherwise for k& > (dim TH) + 1 there would be « ¢ ker T —
ker 7% and the set {T%, T%, .., T* 'z} would be linearly independent.

The spaces TH and ker T* are orthogonal with THcker T
and H = TH@ker T*. Therefore we can choose by induction ele-
ments ¥, ¥, --- satisfying the following conditions: ¥, < ker T*,
Ty, = 0; y; € ker T"7, where », = n and 7;,5 = 2, is the largest in-
teger such that ker 7" @sp{T* 'y 1 <1 <J, 1=k <r;—7;_,} is a
proper subspace of H. This process must end after a finite number—
say m—of steps. Set x;; = T"'y;. Either ker TP sp {x;;: 1 < 1 < m;
1 <j <7} = H or there exists a largest integer £ (2 < k < r,) such
that ker 7" @Psp{w;:1 =it =m;1 =5 <r} is not all of H and a
vector y orthogonal to this subspace such that T%y = 0 and T 'y == 0.
Then the vectors y, Ty, «++, T" 'y and {&;: 1 <1< m,1 < j < r;} form
a linearly independent set. The vector T is in TH and hence a linear
combination of the vectors x;;, a contradiction.

Let P be the projection onto H,=sp {z;;: 1 <¢=<m,1 <7 <} such
that ker P is the orthogonal complement in ker I' of sp(w,,, ***, ®u. ).
Then S = (T + M)P is the desired operator.

In an attempt to simplify Lemma 3.2 the orthogonal projection
onto TH was considered but if H = C* with the usual inner product
and if T(a,b,c,d)=G@F(—a+b+c+d),c—d, 4a—0>b+c+d),0),
then the orthogonal projection P onto the range of 7 is given by
P(a,b,¢,d) = (@, b,¢,0). It is easily checked that for N\ =0
TP — P —1I)=T.

If dim H < «, then the set {;:1=<41=m,1=<j7 <7} in the
proof above can be extended to a Jordan basis {;:1<i<m, 1<j5<r}
for H such that 3™, », =dim H, r;, =1 and Tz, = 0 for m < i < m,.
If T, is the matrix for T with respect to this basis, then we obtain
the matrix for S by substituting )\ for zero on the diagonal of each
nonzero block of T,.

COROLLARY 3.2.1. If TeC, and 0€ a(T), then for nonzero < C,
there exists an operator Se C, such that N e o(S), ker E(T)cCker Ey(S),
E(S)HCE(T)H and TE/(T) = (S — M)E(S).

Proof. The operator T, = TE/(T) satisfies the hypotheses of
Lemma 3.2. Therefore there exists S, e L(E,(T)H) such that \ e g,(S,),
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S, has finite rank and T, = (S, — M)E(S,). Define S by setting
SE(T) = S, and S(I — E(T)) = 0.

As a first step toward equation (3.1) we determine the form on
E,(T)H of any operator which commutes with 7.

LemMA 3.38. Suppose TeC.. and neo(T) with {x;:1 <j < m,
1<k <r;} a Jordan basis for ker W — T)*P, If S and T commute,
then there exist constants b%,j = 1,2, «++,r;k,s=1,2, -+, m, such
that

(3.2) b =0, for s<kl=<j<wr —mnr

(3.3) Swy; = S S bi iy, for 1<isml=<k=r.

s=1 k=g
If constants b¥*,1 <j <r,1 <k, s <m satisfy (3.2), then there ex-
ists Se C. such that S commutes with T and is defined on E(T)H

by (3.3).

Proof. If TeC,neo(T) and if S commutes with 7, then
SE(T) = E(T)S so that there exist constants b% such that Sz, =
S, S, b, Since S and T — Al commute and (7 — M), = 0
for r, —r, <t =71,k <s=<m,and a,; = (T — Al)i'x,, for 1 <1 < 7,
we have 0 = S(T' — M)y, = D30 3050 by°x,,,, ;. Therefore, b% = 0
forl1<j=s»r,—7r,1<s<k, and Sx,; is given by (3.3).

Now let b¥*,1 <j =< 7r,1 =<k, s < m, be constants satisfying (3.2).
Set S(I — E(T)) = 0 and define Sz,; by (3.3). It is a straightforward
computation to show that S and 7' commute.

COROLLARY 3.3.1. Let T = (R — pl)E(R), where RecC, and
reo(R), and let {2,;:1 <j =7, 1 <k=<m} be a Jordan basis for
E.(R)H. Then for every operator S which commutes with both T
and E,(R) there exist constants b¥*, 1 < j < r,,1 < k, s < m, satisfying
(8.2) such that S is defined on E.(R)H by equation (3.3). Conversely,
of Pl <5 = 7,1 =k, s < m} satisfies (3.2), there exists an operator
S which commutes with T and E,(R) such that Sx;;,1=i<m,1<j =,
18 defined by (3.3).

THEOREM 3.4. Let f be a function with domain U and a strong
action T — f(T) in a closed subalgebra A of a Banach algebra <Z of
compact operators. Then for each Te WAy and veo(T), or TeU,NC,
and nea(T), there exist constants a,, a,, -+, a,_, (n be the index of
N for T) such that a, = f(\) and

(.9) ADE(T) = 5 —;,-am — \I)E(T) .

k=
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Proof. Choose Te 2, and neo(T) and let n be the index of A
for T. Let {x;;:1 <7 <m,1 =k =< m} beaJordan basis for E,(T)H.
Set E = E(T). Since f(T) and T commute, there exist constants
b, 1 <7 <r,1=<k, s <m, satisfying (3.2) such that f(T)x, is de-
fined by (3.3).

Let P,, 1 <k < m, be the projection onto the span of {z,;: 1 <¢ < r,},
such that ker P, =ker ET)Psp{x; 1l =t=m,1=j5=7r,1+ k)
Since T and P,(1 <k < m) commute, f(T) and P, commute. Thus
ATy = 35k, bY@

As a consequence of Lemma 3.3 the operator S defined by setting
S(I — E) =0 and Sx,; = >\™, %,; commutes with 7. But then S and
f(T) commute so that for 1 <k <m,1 ¢ =7,

AT)Sxy; = >, :]bji—i+1xsj

s=k ]
and SfA(T)x, = >S5k, S, bk, . x,; are equal. Thus we must have
bty = byl for k<s<m,i<p =7,

Set a, =k!bi},k=0,1,---,n — 1. It is easily checked that
F(DEAT) = 32 Ai)a(T — M) E(T). If € is a maximal com-
mutative subalgebra of 2, Te & and h is a C-homomorphism on &
such that 2(T) =, then

709 = WATE(T) = W(E, 50T = MYE(T)) = ay

If TeA,NC, and » =0 is in o(T), then there exists Re C, and
preoy(R) such that TE(T)= (R — pl)E.R), ker E|(T)cCker E.(R),
E(R)HC E(T)H (Lemma 3.2). The proof of the existence of constants
Oy Qyy *, 0, (n the index of 0 for T) such that a, = f(0) and
f(TYE.(R) = >3 1/iYa; T'E(R) is similar to the proof for Te 2,
rea(T). Since f(T)eAN(T)% and £ contains C, we have
ATVE(T)YI—E.R)) =0, (T)E(T) = f(T)E.R) while TE(T) = TE.(R).

When f is analytic on U and the action of f in 2 is defined by
the Cauchy integral formula, then for each T e, and »ed(T), we
have f(T)E(T) = 3387 Q/iNFPONT — M) E(T) (cf. §2). The coef-
ficients of (T — M) E(T),0 =<7 < v(\), depend only on A\ and the
function f—i.e., for any Se A, with x e a,(S), A/7)f(\) is the coef-
ficient of (S — M) E,(S) in the sum expressing f(S)E,(S). The fol-
lowing example for 2 x 2 matrices demonstrates that in general the
coefficient of (7' — NI)E(T) in the sum expressing f(T)E(T) depends
not only on ) and f but also on 7.

ExaMpPLE 3.5. Let 9 be the full algebra of 2 x 2 matrices, re-
garded as operators on two-dimensional Hilbert space, and f a function

defined on U. If T = ((cz 3> and o(T) = {\}c U, define f(T) by
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O + bla — N B )

(3.5) A(T) = fI + &(T —A) = ( be JO) + (d — M)

If T= (g' 3) with o(T) = v, gl U (N = o), set

AT) = — i ﬂ[f(k)(T — pI) — f(e) (T — \I)] .

It is easily checked that the mapping 7 — f(T) defined in this way
is an action of f in 9. Obviously, the coefficient of (7T — A\I) in (3.5)
depends on 7.

There are actions of analytic functions other than the one defined
by the Cauchy integral formula or the action described above which
are of interest to us. They are important because for these actions
we can define a higher-order system of derivations which in turn
determines the behavior of f(T) on the spaces ker W — T)*¥, v e o (T).
Consequently, we make the following definition.

DEFINITION 3.6. A strong action T — f(T) of a function f in A
is a D-action if it satisfies the following condition for every pair of
operators T, T,c UAy:

D) If T, T,eUy; and reo,(T)No,(Ty), or T, T,eA,NC, and
reo(T)No(Ty), and if AT)EAT:) = 35t Uiy (T: — M) E(T) (3 =
1, 2; v; the index of ) for T}), then a,;=a,; for j=0,1, -+, min(y,, v,)—1.
We say that a strong action ¢: & x U, — U of a set & of functions,
each defined on U, is a D-action of & in U if for each fe.& the
mapping @(f, -): Ay — A is a D-action of f in 2.

It is possible to prove that if an action of a function satisfies
certain conditions involving invertible operators and projections, then
the action is a D-action. This proof is omitted here because it does
not contribute to the general purpose of the paper which is to show
the relationship between systems of derivations and actions.

4. D-actions and systems of derivations. In §2 we showed
that if _# is an algebra of functions defined on U, {D,: 0 < k < m} is
a system of derivations from _# to the algebra of all functions on
U, and D, is the identity operator, then there exists an action of _#
in any algebra 2 such that ¥ C, and sup {v,(\): Te A, vea(T)} = m.
This action, defined by equation (2.3), satisfies condition (D) of Defini-
tion 3.6. In this section we prove that every D-action defined by
_# in a closed subalgebra ¥ of an algebra of compact operators has
associated with it a higher-order system of derivations.
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Throughout this section we assume 2 contains an element with
nonzero spectrum and m = sup {¥,(\): T e A, A€ 04(T)}.

ProposiTION 4.1. If f defines a D-action T — f(T) (Te?y) in
A, then there exists a family {D,f: 0 < k < m}, of functions defined
on U such that for each TeWU, and neoa(T), or TeW,NC, and
rea(T),
() —

(4.1) AT)E(T) = ngu.ljl,Djf(k)(T — MY E(T) .

Proof. Suppose first that dim H < « and 2 contains an identity.
In this case m < dim H and there exists T'e 2 and 1€ o(T') such that
v;(\) = m. For each ze U, set T, = ,com(T — N —2))E(T) =
T — Siecom™ — 2)E(T). Then T, has the single eigenvalue 2z, the
index of z for T, is m and T,e ;. Therefore there exist constants
Qoy Qyy = **y By SUch that a, = f(2) and AT,) = 275 A/i)a, (T, — zI)?
(Theorem 3.4). Set D;f(2) =a;,5 =0,1,---,m — 1, That D,f: U—C
is well-defined is an immediate consequence of the definition of a D-
action.

Now suppose dim H < « and % does not contain an identity or
dim H = . Choose an integer k¥ such that 0 <k <m and Te ¥,
xe 0o(T) such that v,(\) =n>k. Forze Uset T,=[T—(\—2)I|EAT).
Then T,e U, o(T,) = {0, 2} and = is the index of z for T,. If z = 0,
then ET) = E(T,), while if 2 =0, then T, = (T — M)E(T). Thus
there exist constants a,, k¥ =0,1, ---,n — 1, such that a, = f(2) and
ATIE(T) = 3323 (1/Va(T, — 2I)'Ey(T) (Theorem 3.4). Set D, f(z)=
a,. As a consequence of the definition of a D-action the function
D,f: U— C is well defined and f(T)E(T) is defined by equation (4.1)
for Te A, and Ave o(T), or TeA,;NC, and e a(T).

Using the algebra homomorphism property of an action of an
algebra of functions in 2, we obtain the following theorem relating
D-actions and systems of derivations.

THEOREM 4.2. If @o: # X Uy — U 4s a D-action in A of an
algebra _# of functions with domain U, then there exists a system
of derivations {D,:0 <k < m} of order m — 1 ¢f m < oo, or of in-
finite order if m = o, from _# into the algebra of all functions
defined on U and D, is the identity operator. For Te Ay and neo(T),
or for TeAy;NC, and veo(T), o(f, TVET) is defined by equation
4.1).

Proof. Since @ is a D-action of _# in 9, for each fe _# there
exist funetions D,f, 0 < k < m, such that o(f, T)E,(T) is defined by
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(4.1) for each T'e %, and A€ 6(T), or Te A, NC, and » € o(T) (Proposi-
tion 4.1). Define D, to be the mapping f— D,f (fe 4,0 =k < m).

Choose an integer ¥ < m and Te U, e o(T) such that v,(\) =
n > k. Define T, ze U, as in the proof of Proposition 4.1. As a
consequence of Definition 2.1 we obtain for each ze U,aeC, and
fr9¢e A,

5Dl + )T — 2DV EB(T)
= 5, 5(aDsf@) + Dio@)(T. ~ D) 'B(T)

and

55 D0 @I, — 2l E(T)
=5 13 (D, 7@ Ds 0T, — 21y B(T) .

The operators (T, — 1) E(T), 0 < j < n, form a linearly independent
set so that we must have Dy af + 9)(2) = aD,f(z) + D,g(z) and

Dfo)@ = Siuo (5)D,f(ADis0(d). Thus (D,:0 <k < m) is a system
of derivations from _# to the algebra of all functions defined on U.

We say that the system of derivations of Theorem 4.2 is the
system of derivations associated with the D-action @ of _# in 2.

5. Continuous actions. Suppose f is a function analytic on U
and T — f(T) is the strong action of f in 2 defined by the Cauchy
integral formula. This action has the additional property that if a
sequence {T,> converges to T e %;, then f(T,) is defined for large =
and {f(T,)> converges to f(T) (Theorem 2.2). Suppose f is any other
function which defines an action 7T — f(T) in U with this limit
property—that is, whenever a sequence {T',>C 2, converges to T e 2y,
then lim,_.. f(T,) = f(T). Then is f continuous? If the action of f in
9 is a D-action, then is the associated family of functions in C(U)?
These are the questions we consider in this section.

DEFINITION 5.1. Let 2 be a Banach algebra. A function f de-
fines a continuous action x — f(x) in A if the mapping = — f(x) (xe Ay)
is an action of f in 2 and for each sequence {z,>C, with limit

ze Wy, lim, .. f(z,) = fx).

PROPOSITION 5.2. If a Banach algebra U contains an element



110 FRANCES F. GULICK

with nonzero spectrum and f defines a continuous action in £, then
I 18 continuous.

Proof. For ye ¥, set r(y) = max {|{}|: v € o(y)}. Choose x e ¥ such
that r(x) = 1 and Lea(x). If {,e U and {, > C U is a sequence with
limit ¢, set ¢, = {2 (n =0,1,2, ---). Since |{,| = r(z,), x, is in A,
for each # and lim, ... %, = %,. The action of f in 2 is continuous so
lim,_. f(z,) = f(x,). If € is a maximal commutative subalgebra of
A such that xe &, then <{x,>c% and hence {f(x,)>C%. Therefore
f(&) — f(&) is in the spectrum of f(zx,) — f(x,) (Definition 2.1) and
0 = lim, .. [|f(2,) — f(x,) || = lim, . | F(£,) — S|

If U is an arbitrary set in the complex plane such that 0e¢ U if
A does not have an identity and if 2 contains a nonzero idempotent,
then we can prove that every function which defines a continuous
action in 2 is continuous. The proof is similar to that of Proposition
5.2 but with the nonzero idempotent replacing z.

It is not true, however, that a continuous function defines a con-
tinuous action in 2. Even for an analytic function there exists an
action in an algebra 2 which is not continuous.

ExaMPLE 5.3. Let U be the algebra of 2 x 2 matrices and f a
function analytic on U. Choose ge C(U) such that ¢ is not identi-
cally one. Define f,(T), T e Uy, as follows: if o(T) = {\, U (M # ),
set £,(T) = (n — 0 [fON(T — pI) — F(u)(T — \I)] while if o(T) =
N U, set f(T) = fOI + fF NgOW)(T — 2I). This mapping is an
action of f in U [2]. Choose » e U such that g(A\) = 1 and sequences
{a,,<b,y,<d,> from C such that a,+d, (»n =1,2,--:),lim, .a, =

lim, d, = and lim_.b, =1 Set T,= (g ) ana 7= (5 %)
Then o(T,) = {a,, d,} and o(T) = {n}, while f,(T) = (f ) f '%{J)W)
and

0 £d) '
Consequently, the limit of the sequence f,(T,) is (f %) J;:&“;) # fo(T).
Therefore, the action 7 — f,(T) of f in 2 is not continuous.

AT = (

Now let us return to the setting of a closed subalgebra % of a
Banach algebra .<# of compact operators. We assume again that %
containg an element with nonzero spectrum and set m = sup {v,(\):
Ted, neo,(T)}. Each function which defines a continuous D-action
in % is continuous. If the action is both continuous and a D-action,
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then are the functions D,f, 0 <k < m, associated with the action
also continuous?

THEOREM 5.4. Let T — f(T) be a continuous D-action of f in 2.
Then the functions D;f,0 <9 < m, associated with the action are
CONLINUOUS.

Proof. We prove the proposition by induction. Since % contains
an element with nonzero spectrum, f = D,f is continuous on U
(Proposition 5.2). Suppose D;f is continuous for 0 < j < k (k < m).

Choose #z,¢ U and a sequence <z,>C U converging to 2, Choose
Te A and N € 0,(T) such that v,(\) = v>k. Set T, = [T—M—2,)I]E(T)
for n =0,1,2, ---. Then lim,_ . T, = T, so that lim,_. f(T,) = f(T,).

Let {1 <1=<p,1=<j=<7r} be a Jordan basis for E(T)H.
Then

[ATL) — AT = 3 LD, f@) 00 — jgkojl,p,-f<zo>xl,,_k+,-

=71
so that
(6.1) | Dy f(2,) — Dy f(z))]
= ﬂl;_’ll— AT, — ATl @]l + Ig'}':lef(zn) — D;f(@o) I @s—pss1] -

As a result of the induction hypothesis the functions D;f,0=j <k,
are continuous. Hence the limit of the expression on the right of
(5.1) is zero so that lim,..D,f(2,) — D,f(z) = 0. This proves that
D,f is continuous at z,.

6. Continuous D-actions and analytic functions. Suppose an
algebra _# of functions defines a strong action @ in 2 and _# con-
tains the function x defined by «(t) = ¢ (t€ U). Then the action of
a polynomial f = 3>Vi_, a,2%a, = 0 if dim H = ) can be described in
terms of the action of z in 2A—that is, o(f, T) = D, ale(x, T)1*
for all Te,. An analytic function fe _# is the limit of polynomials
in the topology of uniform convergence on compact sets. Is it possible
then to describe the operators @(f, T), fe # analytic and Te 2y,
in terms of @(x, T'), perhaps by means of the Cauchy integral formula?

In this section we show that if the action @ of _# in % has the
property that @(x, -) is a D-action of x in U and there exists 0 <r <1
such that the restriction of each mapping @(f, -) (fe _#) to the set
{TeA:a(T)c[|2z] < r]} is continuous, then, in fact, we can describe
the action of an analytic function fe_# in terms of the Cauchy
integral formula and terms of the form 34~ (1/5)D,; fONT—NI) E(T).
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Let us set the stage for this theorem. Let 9 be the closed sub-
algebra of a Banach algebra <& of compact operators such that ¥
contains an element with nonzero spectrum. Set m = sup {v,(\): Te ¥,
rea(T)). Let _# be an algebra of functions defined on U and ¢
a strong action of _# in Y. We assume the function 2 defined by
2(t) =t (te U) is in 2 and denote by P(x) the subalgebra of _.z
consisting of all polynomials in « (if dim H = o, then these are the
polynomials in 2 without a constant term). The mapping @(x, -):
A, — A is a D-action of # in A such that the associated functions
D;x (0 <j < m) are continuous. The action @ of _#Z in U has the
additional property that there exists an open disk V = [|z]| < r] con-
tained in U such that the restriction of o(f, -) (fe #) to %, is
continuous.

Since x defines a D-action in 2, each polynomial fe P(x) also
defines a D-action in 2. Thus there exists a system of derivations
{Dy:0 =k <m} from P(x) into C(U) such that D, is the identity
operator and @(f, T)E(T) = 3397 1/sND; f(M(T — M) E(T) for each
feP@), TeW, and neo(T) (or TeA,NC, and neo(T)) (Theorem
4.2). There exist functions C,;€ C(U),1 < j < k < m, such that D, f =
Sk Cif? for feP(x),0 <k <m [3]. Thus the functions D.f,
fePx),0 <k < m, are continuous.

Associated with this system of derivations is a family of multipli-
cative seminorms (m-seminorms) defined on P(x) for each integer
n,0 < n < m, and compact set Kc U by

(6.1) poxlf) = 357 sup D2

The completion A(U) of P(x) with respect to this family of m-seminorms
is the algebra of analytic functions on U if dim H < < or the algebra
of analytic functions on U which vanish at zero if dim H = « [3].
Each operator D,, 0 < k < m, can be extended uniquely to an operator
D, from A(U) into C(U) such that {D,:0 <k < m} is a system of
derivations. Furthermore, for each ge A(U), D.,g is defined by the
equation D,g = 3%, C,,;9.
Since fe A(U) is analytic, we have

lim sup {f(p)(z) 2 1 _ro)

n—eo0 2e K ( )

for each compact set Kc U. From this limit we obtain

pus{ £ = 31 57 0007) = 31 swp | Dy(f — 315700 )(0)|
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- &l Sewe e - St )f‘”<°>z’“”]

S 32 1Cu@ 53p | 176) — 3y 2 f o0
so that
(6.2) lim (£ ~ 359 0) = 0

for each 0 < g < m, compact Kc U and fe A(U).

As a consequence of the definition of the m-seminorms 9,z
0 =n < m, KcU compact) on P(x) and hence on A(U) the algebra
homomorphism (-, T'): P(x) — A is continuous for each T e A,;NC,.
Thus o(f, T) (TeA,NC,) can be extended to a continuous algebra
homomorphism &(-, T): A(U) — 2. Thus, since o(p(x, T)) = o(T) if
Te A, [2], we obtain for each Te A, NC, and fe A(U),

P(f, T) = lim (3 29O, T) = lim 53 2 f9Olp(e, T

—lim > f”’(O) S &l — ol T)]7de

n-c0 §=0 4§ !

— lim -1 S s L ro0veiel — o@, T)-'dz
noe 2704 Jlzi=ri=0 51

=L k- @ T
Ty Jlizl=r

Moreover, if TeUA,NC, then T, = T 1< E(T)) is in A, NC, so
that for each fe A(U)

)

a(f, T) = 3(f, T,) + ‘j—l,D FONT = M)IE(T)

12lzr  §=0

6.3) =L LT - o, Tama

lz]=7r

|zr

]Zzo LD, fONT — M ELT) .

If ANC, = A (hence for dim H < <o), we are finished, for this is
the desired result. If dim H = -, then we use the hypothesis that
ANC, is dense in A to obtain (6.3) for all T'e Ay, fe A(U)N _#

Suppose Te Uy, P = >, E;(T)and T, = T — TP. Then o(T,)CV
and there exists a sequence {7, >N C, such that lim, .. |T, — T,| =0
and o(T,)c V [1, p. 568]. For each fe A(U)N._# the restriction of
o(f, ) to 2A, is continuous so that {@(f, T,)> converges to o(f, T,).
But
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P(f, T,) = —1—8 F@e — plw, T, dz
271 Jizi=r
and

lim [o] — @z, T)]™" = [I — 2@, T,)]™

(this last a consequence of the continuity of the action @(x, -) on U,
and of inversion). Thus o(f, T,) = 1/(27ci)S f@=I — o(x, T,)]'dz.
lzl=r"

In order to complete the proof we need to show that o(f, T,) =
@(f, T,)(I — P). To see this choose a sequence {T,>CC,NA with limit
T and set P, = >, {ET,):ne VNo(T,)}. Since {T,>cC, we have
Py ToP,) = Xjn<r 25497 DD, fONTP, — M) EX(T,) so that @(f,
T.P,) = o(f, T,)P,. Since the characteristic function of V is analytic
in a neighborhood of o(P,) (n = 1,2, ---) and of o(I — P), the sequence
{P,> converges to I — P [ef. 1, p. 1101]. Therefore lim,..7T,P, = T,
and lim, .. o(f, T,) = lim, .. (f, T.P,)P, = @(f, T)(I — P). Combin-
ing these results we obtain

#(f: T) = 9(fi T) + 3 #(f, TE(T)

1 .
6.0 = W&ﬂﬂf@)ld — o, T,)]dz

v(2) —_
+ 35 SDONT = MY BT) -

Finally we show that the action @ can be extended from A(U)N _#
to all of A(U). This follows if (-, T): A(U)N _# — A is continuous
for each T e A,. Suppose {f,>CA(U)N_# converges to fe A(U)N_#,
TeWNy, P= 312 E(T) and T, = T — TP. Then the sequence <{f,>
converges to f uniformly on compact sets and |[z] — @(x, T,)]*| is
uniformly bounded on V [ef. 1, p. 1101] so that

(P T) = 2F Tl = |5 (@) = FE@IEI = lo, T1d

12|

< 7 max |f,(2) — f(z) [ max [[2] — P(z, T)]™| .

Set ¢ = max {v;(\) — 1:Aeo(T)\V} and K = o(T)N V. Then

q

Pfs =/, TIP = 33 52Dy, = HONT = ME(T)

|Al2r §=071]

<max{[(T - MY E(T)|:nea(T\V, 0= Zq}px(fu—f) -

Therefore, lim,_.. |2(f,T) — @(f, T)| = 0.
Let 4: A(U) x Ay — A be the extension of @ from (A(U)N . Z) x Uy
to A(U) x Ay. As a consequence of the continuity of (., T') for
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each Te Uy, v(f, T) also is defined by equation (6.4) if fe A(U). This
completes the proof of Theorem 6.1.

THEOREM 6.1. Let 7 be an algebra of functions which defines
a strong action @ in A such that for some open disk V = [|z| < r]c U
the restriction of @(f, <) to A, is continuous for all fe _ Suppose
xe 4 (xt) =t) and P(x, -) is a D-action of x in U such that the
associated functions Dz, 0 < k < m, are continuwous. If dim H < oo
or of dim H = o and ANC, is dense in A, then the algebra A(U) of
all functions analytic on U which vanish at zero tf dim H = oo de-
Sines a D-action  in U such that for all TeW, (G) vw(f, T) = o(f, T)
of fe A(UYN #Z and (i) (f, T) is defined by (6.4) for all fe A(U).

Theorem 6.1 remains true when we replace the open unit disk
by a simply-connected open set U (with 0e¢ U if dim H = ). The
proof requires only minor changes.

It is obvious that the identity mapping 7 — T is a continuous
D-action in U of the function x. The corresponding action of A(U)
in A is the action defined by the usual Cauchy integral formula. The
following example shows that there are actions T — x(T) of x in A
such that «(T) == T for some TeA,. It is true, however, that for
each such action there exists 6 >0 such that if Te,, then
[T — (D)L — S {E(T): [v]| = d}] = 0. It is not known if there is
an algebra 9 containing an operator of infinite rank and an action
T — (T) of x in 2 such that for each ¢ > 0 the set {[x(T") — T1E(T):
Te Wy, neo(T), M| < 6} is different from {0}.

ExAMPLE 6.2. Let 0 <d <1 be chosen and g¢,, ¢, --+- be con-
tinuous functions on U such that for |z| <0 g,() =1 and g,;(z) =0
G =2,8,---). Set g, =x. For each T e, define z(T) by

o(T) = T = 2 ABA(T): [ = 6})
+ z{%gj(x)(T — MY E(T):0 =3 <v(\), [N = 5} .

The mapping T — «(T) is a D-action of x in U which is the identity
mapping when restricted to the set {Te W: o(T)|[|z| < 6]}. If .72 =
P(x), then we obtain an action of A(U) in A which is distinct from
the Cauchy integral formula action if one of the functions g, is not
constant on U. In fact, for each 6 > 0 and each choice of functions
g; continuous on U and identically one if j = 1 or identically zero if
J = 2 on the disk [|z] < ], we obtain a different action of A(U) in 2.
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