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DECOMPOSABLE SYMMETRIC TENSORS

LARRY J. CUMMINGS

A k-field is a field over which every polynomial of degree
less than or equal to % splits completely. The main theorem
characterizes the maximal decomposable subspaces of the k"
symmetric space YV, V, where V is finite-dimensional vector
space over an infinite k-field, They come in three forms:

@ {L1Vv---Vap: z, eV}, my, ---, Tr—y fixed;

@ <a, byp=1{x V---V 21 2:€<a, b)}; and

@) {1 VeV &pr V L@, b}, T1y <, i fixed;
where ¢ and b are linearly independent vectors in V and
{a, by is the subspace spanned by a and b.

We consider symmetric tensor products of vector spaces and the
problem of characterizing their maximal decomposable subspaces. This
problem has been resolved in the skew-symmetric case by Westwick
[4] using results due to Wei-Liang Chow [1, Lemma 5] when the
underlying field is algebraically closed with characteristic zero.

A k-field is a field F' over which every polynomial of degree at
most % splits completely. In this paper we determine the maximal
decomposable subspaces in the symmetric case when the underlying
vector space is finite-dimensional over an infinite k-field whose char-
acteristic (if any) exceeds the length of the product.

1. Let F be a field and V a vector space over F. The k-fold
Cartesian product of V will be denoted by V* where 1 < k. A rank
k symmetric tensor space is a vector space together with a k-multi-
linear symmetric mapping ¢ which is universal for k-multilinear sym-
metric maps of V* and is spanned by o(V*). We will use the nota-
tion V.V for this space. (The anti-symmetric or Grassman space is
usually denoted by A*V.)

If V.V with ¢: V*—> VY,V is a symmetric tensor space, the
decomposable symmetric tensors or “symmetric products” are those
elements of VY,V in the set o(V*). We will denote o(z,, ++-,2,) by
% V.-V . A subspace S of VY,V is decomposable if S <& o (V%).
Trivial decomposable subspaces are the zero subspace and those consist-
ing of scalar multiples of a single product. The factors of the product
2, Ve+++V x, are the 1-dimensional subspaces {z, >, ---,<{2, > of V.

If V is n-dimensional, it is well-known that V.V is vector space
isomorphic to the space of homogeneous polynomials of degree &k over
F [3, p.428]. Any linear mapping f: V— V induces a unique linear
mapping V.f: V.V— V.V obtained by extending the mapping
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66 LARRY J. CUMMINGS

f¥: VF— V.,V defined by f*x, -+, x) =f(@) V-V f(z,). This
mapping will be denoted by simply V,; when the length of the pro-
duct is not in question.

ProprosITION 1. If x and y are decomposable symmetric tensors
with k-1 common factors (counting repetitions), then x + y is decom-
posable.

Proof. The mapping ¢ is multilinear.

If U is any subspaces of V and =z, +--, 2, vectors of V then
{2, VooV, Vu|lue U}l is a decomposable subspace of V,.,V and
will be denoted by «, V...V 2, VV U. Clearly,

VeV, VUSa Ve Vo,V V.

Decomposable subspaces of the form », V.-V ,_, VV will be called
type 1 subspaces.

2. Let x be a product «, VV---V z, in o (V*). If we V then
w \V « denotes the product w VvV x, V...V @, in o (VF+),

ProrosiTION 2. If D is a decomposable subspace of V.V then
w V D is a decomposable subspace of Y 4. V.

Proof. We will show that if © + y =zed(V*) and we V then
wVert+wVy=wV=z?
Define an injection ¢: V¥ — V*+! by

T (Vyy = oy V) = (W, vy 00, V) .

The universal property of V.V implies there is a unique linear
f: ViV— V.. V such that

f(xl \/“'\/xk) = w \/fX}1 \/-..\/xk .
The desired result follows because f is linear.

o

Vk+1

’7Vk+1V
) zw// Tf
s |
l7

— V.V

Vk

Tw

Clearly f is injective. Moreover the image of a decomposable
subspace of VY,V under f is decomposable.
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PROPOSITION 3. 2, V.-V 2, =0 if and only if some x; = 0.

Proof. Suppose x,, ++-,2, are nonzero vectors. Choose any
basis (e;);c; of V over a field F. For each w; assume the p,® coor-
dinate to be nonzero. Let p = (p, +++, ). Define a multilinear and
symmetric mapping f,: V*— F by

fp (xu tt xk) = a(ly .’pl)”’a(k’ pk)

where each vector «; has coordinates («(¢,7));e;» Then f,(x;, «--, a))
is nonzero and since f, = oo f,, where f, is the extension of f, to
V.V, ¢, V.-oVV 2, could not be zero.

Since ¢ is multilinear «;, =0 for some <=1, .-., k£ implies
&,V eV, = 0.

S, denote the set of k! permutations of {1, ..., k}.

PROPOSITION 4. Let V be an n-dimensional vector space. The
identity
Ve VZ, =y V- VYy,#*0

holds if and only if there is a we S, and scalars N\, «++, N, such
that
)\:1 )\/2 oo Xk = 1

and i = N Yeii) i=1, 00, k.

Proof. This is a result of the fact that the rank & symmetric
tensor space is isomorphic to the k™ component of the polynomial
algebra in % indeterminants over F' [3, p.428]. The latter is a unique
factorization domain.

In what follows we will suppose =2, V.-V 2, and y =y,
\V+-+V ¥, are independent products such that x + ¥ is decomposable,
say t +y =2V .- V2. We will often use the assumption that =
and y are nonzero products without explicit mention. The subspace of
V spanned by the vectors x,, ---, 2, will be denoted [%] and its dimen-
sion by |x|. For notational convenience we set

rNy=[x]n][yl]
xUy=[x]+[y].

If S is a subspace of V then S, is the set {, V...V z,|2;€S}. In
general S, is not a subspace. If U is a subspace of Y,V then the
one-dimensional subspace {v) of V is a factor of U if

UsSvVvVV.e VTV,
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We will frequently denote a repeated product U V...V U by U,,.

REMARK. If # + y =z it is always true that [z] S 2 U y. For,
if some z,¢x Uy and B is a basis of ¢ Uy we may choose fe L
(V, V) so that

fz)=0
f®) =0d beB.
Then, « +y = (Vf) 2 = 0, contradicting our standing assumption

that « and y are independent.

ProrosITION 5. If B is a basis of [y] and there are i,5 such
that B U {x;, 2;} is an independent set then x and y have a common
Jactor.

Proof. Choose fe L (V, V) so that

f(@) = a;
fz;) =0
f) =2 beB.

Then,
F@) VeV Voo V@) = =y Ve V.
Proposition 4 now implies {;> is also a factor of y.

PROPOSITION 6. If x and y have no common factors and [y] Z [x]
then for all 1 =1, «-+, k

¥ € lx] and 2z, ¢[x] .

Proof. Let y,¢[x]. If Bis any basis of [#] we may complete
the independent set B U {y,;} to a basis of V. Consequently there is
fe L(V, V) such that

fly) =0
f@) =% beB.
If some z;e€[x] we have
BV VE,=F@) VeV Ve VIR .

Proposition 4 implies <{z;> is then a factor of . The choice of any
ge L(V, V) with ker g = {z;)> together with Proposition 4 shows
{#> is also a factor of y. We have shown that if x and y have no
common factors then no z;e[z].
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Choose some z; and complete the independent set B U {z;} to a
basis. Define he L (V, V) by

h(z)=0
h(®) =5 beB.
Then
B VeV, =—hy) VeV hy)
and we obtain a common factor whenever some y;c[x] since then

h(:) = v

PropoSITION 7. If B is any basis of [y] and for some i and j
B U {z;, ;} 1s an independent set then x and y have a common
Sactor.

Proof. Choose fe L (V, V) such that either f(z;) =0 or f(x;) =0
and f(b) = b for every be B. Then
UV VY =F@R) VeV (@)«

If some z; € [y] then it is a common factor. Assume no z;e[y]. We
claim one of the following is the zero subspace :

[y] N <z, 2
[yl Nn<w;, 2.
For, if both are nonzero there are scalars «, 8 such that
z=ax;,+y =Bx; +y’  where y,y"c[y].
Hence,
ax; — Bx;ely].

Since z, ¢ [y], both « and B are nonzero. But this violates the
hypothesis. If [y] N <x;, 2> =0 we apply Proposition 5 to B U {;, z,}
and conclude x and y have a common factor.

3. Fis a k-field if every polynomial over F' of degree at most
k splits completely over F. Let L, denote {¢cV,V: |z|=1. L,
is composed of all products ax, V...V », where acF, x,e V. If F
is a k-field then in particular

ax, /oo a, = (@lfx) VVeeo V(@) .

However L, need not be a subspace unless k¥ = p” where r is a positive
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integer and p is the prime characteristic of F. That it ¢s a subspace
k
in this case is apparent because (%) for m =1, --., p* — 1 and so

xl\/...\/xl_i_yl\/...\/ylz(a;l+y1)\/...\/(a;1+y1).

ProroSITION 8. If F has prime characteristic p and k = p", r a
positive tnteger, then dim L, = dim V.

Proof. Under these conditions it is not difficult to show that
X, +++, %, are linearly independent in V if and only if », V.-V 2,
oo, &y VooV @, are linearly independent in L,.

PROPOSITION 9. L, is a decomposable subspace if and only if
F has characteristic p and k = p™, m a positive integer.

Proof. We have seen that this condition is sufficient. If w, v are
independent vectors in V then ug =u VooV %, V4 =0 VooV 0
are in L, and part of a basis for V,V by Proposition 8. Since L,
is decomposable there is a nonzero scalar ¥ and vector w such that

(1) Uy T Vi) = TWay »

The remark preceeding Proposition 5 implies there are scalars «a, 8
such that w = aw + Bv. By induction,

We = CUgy + (k> A Uy VO e
1

+ (k ) A" B Uigmyy Vi) + v ot
r

+ B vy, .
Since the products %, V v, are part of a basis of YV, V we obtain

vab =B =1

7(’“)&45,:0 rP=1,eee, k—1.
r
Because both @ and @ are nonzero «*~”" 5" is and so
(k).]_:() r:]"...’k—lv
,r:

Hence F has characteristic p and
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It is not difficult to show that this implies % is a power of p.

4. If o and b are two independent vectors in V then the set
{2, VooV o, |2, €<a, b)} is denoted by <a, b)y. Let F [a] denote the
polynomial algebra in one variable over F' and define a linear map-
aping g:<a,bp— Fla] by g(a) =a, gb) =1. If f: V—<a,by is a
projection on <a, by then V,gof: V.,V — Fla] is a linear mapping
obtained by extending (g f)*: V*— F[a] defined by
3
@) @ +esv) = 19 f () veV.
It

k
t: H’Y,b a(k_i)\/bi 'YZGF
1=0

is any element of <a, b)>, then
(2) (Vegef)t =7 +Ma+ o0 + 7, 0%,

The equality (2) implies that the restriction of V, g o f to <a, by,
is a linear isomorphism onto F' [a] which preserves “products”, i.e.,
a decomposable tensor corresponds to a product of % linear polynomials.

PROPOSITION 10. F s a k-field if and only if each <a, by, is a
decomposable subspace of V,.V.

Proof. Assume F is a k-field. If & and y are products in
{a,bDy, let P(a@) = (V,9°f) (x+y). There are elements »; in F
such that P(a) = r(a — r)+-- (@ — r,). Consider

2=1a —1rb) Ve V(@ —r,b)ela, by, .

Clearly, P(@) = V.(9 o f)z which implies 2 + y = z because the res-
triction of V.9 o f to {a, b)y, is injective. Therefore {a, b>y, is de-
composable.

Conversely if <a, b), is decomposable and

Pla) =7+ "a+ -+« + 7,a%e Fla]

then (2) implies P(a) = (V.9 f) t for some tela, b)y).
But ¢ is a product, say

t=0a+ b)) VeerV Nga + 4. 0).
Hence

Pl@)=0MN+ptha) - (M + tha) .
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LEMMA 11. If F s infinite and <z, y) S o (V*) then |o| > 2
wmplies x and y a common factor.

Proof. Assume z,x,, , are independent and are contained in a
basis B of V. For every e F there is a product z(\) = 2,(\) \V -+« V/
z,(\) such that  + My = z(\). Define three linear mappings of V by

fi(@) =0 i=1,2,3.
f®) =be B — {x, x, 2}
Extending each mapping to V.,V we obtain for each Ae F':
(3) (V) = (Vfi)z(\) 1=1,2,3.

If (3) is zero for some ¢ we infer from Proposition 3 that f(y,) =0
for some j =1, -+, k. This means that {x) = {y,> is a common
factor of # and y. For each X\, the vectors z (\), ---, 2,(\) may be
chosen so that (3) and Proposition 4 imply

(4) fiWy) = fi(z;: (V) J=1,k.

Let z;(\) and y,; have coordinates (a;;(M):be B) and (B;,:be B) res-
pectively. For each A e F (4) implies

(5) ap(N) = B b#ua, .
If ¢ = 2 then (3) and Proposition 4 implies for each M e F
A&0) = 600 £iW.0) F=1 e k.

where me S, and the c;(\) are scalars such that T[:, ¢; (V) = 1.
Therefore,

(6) (V) = ¢;(N) B b # @, 3=1, ««o, k.

If for some j, a; (\) =0 for every b # x, then (z,> = (x> is a
common factor of « and z(\); hence a common factor of 2 and y.
Accordingly, we may assume for each j there is a basis element
b(j) # x, such that Bz, # 0. If for some j b(j) = =, as well, then
(5) and (6) imply
(7) ¢;(N) = By Bt

On the other hand, suppose b(j) =, for some j and B.;, =0
for all b distinct from «x, and z,. From (3) with 7 = 8 we obtain
(8) apy () = d; (V) Boin J=1,.4k.

where we S, and the d;(\) are scalars such that [J%:,d;(\) =1.
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Were B.., = 0 then <{z;(\)> = (x> would be a common factor of «
and z(\), hence a factor of y as well. If B8,., # 0 then (5) together
with b = 2, in (8) imply

(9) d;(N) = Bz, Batiray +

From (5) we know that for any X\e F all coordinates of z(\)
except b = x, are in the finite set C, = {8;,:5 =1,-++,k; be B}. For
each 1 =1, ---, &k we have from (6)

(10) Az, (N) = €5 (V) Briips,
and from (8) we obtain
sy (V) = €;(N) Brij, «
Now if b(j) # 2, then (7) and (10) imply
@i, (N) = BiniinBrinsinBriie,
and if b(j) = 2, then (8) and (9) imply
o (V) = Biay Butiray Butirey «

We conclude that for any \ e F the coordinates of each z;(\) are
contained in the finite set

Cl U {:ij(:i) B;(lj)bu‘) Bz(:’)w Bm ’8;(1.7')772 Bw(jm: J = 1’ tt k} .

Accordingly, the number of vectors z;(\) is finite and there are only
a finite number of distinct products z(\) = z,(\) V.-V 2z,(A). But
F' is infinite. Hence there are distinct scalars X, A\’ such that
x + My =2 + Ny which implies y = 0. This contradicts our stand-
ing assumption that ¢ and y are nonzero products and completes
the proof.

We need the following lemma in order to prove Theorem 13.

LemmA 12. Let V be a finite-dimensional vector space over a
JSield F and & any collection of proper subspaces of V. If V=U &
then Card F' < Card & .

Proof. When dimV =1, V has no proper subspaces and the con-
clusion is vacuously true.

If b,.--,b, is any basis of V denote the (n-1)-dimensional sub-
space <{b,, +++, b, 5 b,_, + \b,> by S;, where ) is a scalar. Then Card
{S;: ne F} = Card F. For, if S, = S, then in particular

bpoy + MO, = by A+ coe + Wps by s+ Ay (bay + N D)
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for some scalars «,, +++,®,_,. Thus a; =0 for 1 =1, ..., n—2. and
«®,_, =1 which implies » = V.

Consider &, ={S;,NT: Te%}. Because V=J& we have
S; =UU &,. The set mapping from & to &, defined by T— S, N T
is onto. Consequently, Card C, < Card . Since dim S; = n—1 in-
duction yields Card F < Card &,, completing the proof.

If D is a decomposable subspace of VY,V and ve V then D(v)
denotes {te D|<v) is a factor of t}. Any D(v) is a subspace of D
and is the zero subspace when v is a factor of no product in D. A
nontrivial decomposable subspace can have at most k-1 factors. We
have already remarked that any decomposable subspace with exactly k-1
factors (counting repetitions) is contained in a type 1 subspace. At
the other extreme we have:

LEMMA 13. If V is finite dimensional over an infinite k-field
either without characteristic or with characteristic p >k then the
only maximal nontrivial decomposable subspaces of V.V without
factors are those of the form {a,b)y,.

Proof. Let D be a maximal decomposable subspace without
factors. If Char F = p then Proposition 8 and p > k imply L, is
not a subspace. Thus, we can assume D # L;; i.e., D contains at
least one product x with || > 1. We proceed by showing first that
D cannot contain a product x with |z|>2:

Assume, on the contrary, that x =«, V...V 2, is such a product
of D.

For every product ye D we have {x,y) S D S o (V*. Lemma 11
implies each nonzero ye D must have a factor in common with z.
Hence D = UL, D(x;), where each D(x;) must be a proper subspace
since D is without factors. Since V is finite-dimensional Lemma 12
implies Card F' < k, contrary to hypothesis. Accordingly |z | < 2 for
every € D. Since D is not L,, D contains a product ¢ with |z| = 2.
In what follows we suppose #,, 4, are independent.

Were ye D and |y| =1 then y =ay, V.-V y,.. If y,¢[x] Pro-
position 7 implies # and y have a common factor and so y,e[x], a
contradiction. Therefore [y] & [«z] for every ye D with |y| = 1.

Suppose ye D, |y| =2 but [y] £ [x]. The rest of the proof is
in two parts and we consider first such y with no factors in common
with «:

Complete x,, x, to a basis B and define fe L(V, V) by

(11) f@) = 1=1,2
f(b)=b beB'—{wnxz}°
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Were (V) y =0 then some y;e{«], contrary to Proposition 6. If
[((Vr)y| =1 then

(12) az, VeV &+ BfW) VooV W) =(Vp)2#0

would imply (as in §3) that the underlying field has characteristic p
and k = p~ for some prime p and positive integer r, contrary to
hypothesis. (If (V )z = 0 then some z; € [x], again contradicting Pro-
position 6.) The remaining alternative is |(Vr)y| = 2. Since we are
assuming « and y have no common factors, (12) and Proposition 7
imply for some ¢ =1, +++, k

13) oy = f@a))..
But (11) and (13) imply y;€[2], a contradiction of Proposition 6
again.

It remains to consider those ye D with |y | = 2 which have fac-
tors in common with x. If for such y, [y]=#[x] then z Ny is 1-
dimensional. Let # Ny = {u) and assume {u) occurs at least » times
as a factor of both « and y. Consider the products

(f:xl\/-..\/ Lper
Y=Y VeV Y,

in o(V*"). We may suppose that Z and ¥ have no common factors.
Since « + yeo(V*) and iterations of the mapping f in (0) are also
injective we have Z + ye o (V* ). If either |[Z| =2 or |7 | = 2 then
Lemma 10 implies

(14) [Z] =171
or [Fls[Z].

Either statement in (14) implies [z] = [¥].
If |Z] =|7| =1 then either [Z] =[%y] or ZNYF =0. We will
show Z N ¥ = 0 is contradictory:

Let f=ax1\/...\/xl=(allrxl)v...v(a1/,,xl)
=By V- Vo= B"y) V-V (B y) .

This is possible since F is an r-field for every positive » < k.
Replace v and v by &', and BY"w, in (1). Then Char F is a prime
p and r = p™ for some positive integer m. But by hypothesis
p >k > r, a contradiction.

We conclude [y] S [«] in all cases. Thus, D < {a, b), where
{a, b} is any basis of [x#]. Since D was assumed maximal the proof
is complete.
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THEOREM. If V 1is finite-dimensional over an infinite k-field F
either without characteristic or with characteristic p >k then the
maximal nontrivial decomposable subspaces of Y.V are:

(i) type 1 subspaces
and for every independent pair of vectors a,b in v:

(ii) <a, b

(ifl) @, VeV 2, V <{a, b),, where x;€<la, by for every i=1,---,
k—r and 1 <r <k.

Proof. Lemma 13 states that the only decomposable subspace
without factors are those of the form (ii). The image of a decom-
posable subspace under the mapping f in (0) is a decomposable sub-
space with at least one factor. Iterations of f in (0) yield decom-
posable subspaces in spaces of greater length. Thus, when F is a
k-field, <a, b)(,, is a decomposable subspace of V.,V for every 1 <r <k
and subspaces of the form

x VooV 2, V<La, b,
are decomposable. If #,_,, say, is in {a, by then
By VooV, VL, D S @ VooV By VL8 bD6sy -

Accordingly, subspaces of this type could be maximal only when
x; €<a, by for each 1 =1, -+, k—r.

Conversely, if a decomposable subspace has exactly & — » factors
it is the image of a decomposable subspace of V,V without factors
under a composition of k& — » mappings f in (0). Lemma 13 states
that subspace must be of the form <{a, b)>,. Hence (ii) and (iii) are
the only types of decomposable subspaces with factors.

Routine arguments show that a space of one type cannot be
properly contained in another of the same type or a different type.
Since every decomposable subspace is contained in a maximal decom-
posable subspace the proof is completed.

Part of this work was contained in the author’s thesis written
under R. Westwick at the University of British Columbia. The aut-
hor is indebted to conversations with B. N. Moyls.
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