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REGULAR BOUNDARY PROBLEMS FOR A
FIVE-TERM RECURRENCE RELATION

C. E. BlLLIGHEIMER

We consider in this paper boundary problems for the five-
term scalar recurrence relation

(1.1) dnVn+2 + OnVnΛ-1 + (&» ~ λan)Vn + C»-l2/n-l + dn-2yn-2 = 0

(0 ^ n ^ m)

where the coefficients an,bn,cn, dn are real, an, dn > 0 and λ is
a complex parameter, with boundary conditions of the typical
form

(1.2) y-2 = y-i = 0

and

(1.3) ym+i + k(cmym + dm-iym-i) = 0, ym+2 + hym — 0

for some integer m ^ 0, and real numbers h, k.
We derive oscillation properties, orthogonality relations and

associated eigenvector expansion theorems for solutions of
(1.1), (1.2), (1.3), and then discuss the solution of boundary
problems for the corresponding inhomogeneous recurrence re-
lation in terms of a Green's function.

Atkinson [1] has discussed the connection between two and three
term scalar and matrix recurrence relations and Sturm-Liouville dif-
ferential equations and first order systems of differential equations.

On this basis the five-term recurrence relation here discussed
appears as the analogue of a fourth order differential equation or
first order system of dimension four.

The self-adjoint second order differential equation for which the
fundamental limit-point, limit-circle distinction for the singular bound-
ary problem first given by Weyl [12] plays an important part is dis-
cussed in detail for example in the work of Coddington and Levinson
[5]. The analogous three-term recurrence relations were studied by
Stone [11] in the setting of Hubert space theory.

The extension of the theory to the case of the general even order
differential equation was given by Kodaira [9] Glazman [8] and
Everitt [6], [7] who studied also in particular the fourth order case.
A fundamental study of the oscillation theory of the fourth order
differential equation was made by Leighton and Nehari [10] and
Barrett [2], [3].

We discuss in this paper regular boundary problems for the five-
term recurrence relation (1.1). In a subsequent paper (Billigheimer
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[4]) we consider singular boundary problems for the recurrence re-
lation (1.1) with (1.2) as m —• <*>.

2* T h e boundary problem* We discuss firstly fundamental
properties of the boundary problem for the recurrence relations (1.1),
(1.2), (1.3).

We define the fundamental solution vectors pn(λ), ?Λ(λ), sft(λ), rn(X)
of (1.1), polynomials in X with real coefficients, by

p_2(λ) - p^X) - 0, po(X) = 1, pt(λ) = 0

?-«(λ) - tf-iίλ) = 0, ?0(λ) - 0, ?1(λ) - 1
1 ' } s_2(λ) - 0, s^(X) = 1, βo(λ) - ^(λ) = 0

r_2(λ) - 1, r_x(λ) = 0, ro(λ) - n(λ) - 0 .

The vector yn(X) = αpn(λ) + βqn(X), where α, /3 are constants,
satisfies the recurrence relations (1.1) and the initial conditions (1.2)
and is the most general such solution. yn(X) will satisfy the boundary
conditions (1.3) if

k[cmpm(X) + ώm_1pm

£{g-+i(λ) + k[cmqm(X) + dm^qm^(\)]} = 0

hpm(X)} + β{qmM + ^^^(λ)} - 0 .

We now define for two vectors u — {u^™i2, v = {vn}™ϊ2 the form
\uv\n(n ^ — 1) by

(2.2) \u
'n-iVn-l)

un+2 + hun vn+2 + hvn

Then for a9 β not both zero in the above equations we require
that the polynomial in λ, pm(X)(m Ξ> 0), defined by

(2.2a) ^ ( λ ) = I p(X)q(X) \M (m ^ 0)

should be zero. We shall refer to the polynomial pm(X) as the charac-
teristic polynomial for the boundary problem (1.1), (1.2), (1.3).

pm(X) is a polynomial of true degree m + 1 in X with real coef-
ficients. Hence there are always m + 1 roots, counted according to
multiplicity, of the equation pm(X) = 0. We call those roots eigenvalues
of the boundary problem (1.1), (1.2), (1.3) and the associated solution
vectors of the recurrence relations eigenvectors.

We show later that the eigenvalues λ r are all real and that for
repeated roots Xr of pm(X) = 0 we have two linearly independent
eigenvectors. We call single roots of pm(X) — 0 simple eigenvalues
of the boundary problem (1.1), (1.2), (1.3) and double roots double
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eigenvalues. We shall see that triple eigenvalues are not possible.
We now define two vector polynomials in λ in terms of which

eigenvectors of the boundary problem (1.1), (1.2), (1.3) can be expressed.
We form for general λ, not necessarily an eigenvalue, the solution

vector 2/iw)(λ) of the recurrence relations (1.1) satisfying (1.2)

(2.3) yT\X) = {gw+2(λ) + hqm(X)}pn(X) - {pw+2(λ) + hpm(X)}qn(\)

for n ^ —2.
ylΓ](X) is a polynomial of true degree \{m + n + 1) if precisely

one of m,n is odd and of apparent degree i(m + n) if both m, n are
odd or even. We see that

(2.4) ί/ίSa(λ) + hy^{X) = 0

for all λ, and hence in particular also

(2.5) y£&(X) + hy™\X) = 0 .

Also

(2.6) yίSWλ) + Hcmy™(X) + dm_iyΆ(X)] = pm(X)

and is hence zero for eigenvalues λr of the boundary problem (1.1),
(1.2), (1.3).

Hence if at least one of pm+2(Xr) + hpm(Xr), qm+2(Xr) + hqm{Xr) is
not equal to zero, the vector yT]{Xr){ — 2 ^ n ^ m + 2) furnishes a
nontrivial real eigenvector for the boundary problem (1.1), (1.2), (1.3).

We also form the vector polynomial

zT\X) = {Qm+i(X) + k[cmqm(X) + d^q

- {pm+1(X) + fc[cmPm(X) + 4

for n ^ - 2 .
z{™](X) is a polynomial of true degree | ( m + w) if both m, w are

odd or even and of apparent degree \{m + n — 1) if precisely one of
m, w is odd

(2.8) z{ZUX) + &[cw^m)(λ) + dm^zΆ(X)] = 0

for all λ, and hence in particular

(2.9) sϊϊί(λ) + fc[cm^w)Xλ) + dm^z^l[(X)] = 0 .

Also

(2.10) *ίΓΛ(λ) + ^Lm)(λ) = -^ Λ (λ) .

Hence if, for λ r an eigenvalue of (1.1), (1.2), (1.3) for which
pm(Xr) = 0, at least one of pm+1(Xr) + k[cmpm(Xr) + C Λ - i M ,
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qm+2(Xr) + h[cmqm(Xr) + dm_1gm_1(λr)] is not equal to zero, the vector
zlΓ)(Xr)( — 2 ^ n ^ m + 2) furnishes a nontrivial real eigenvector for
(1.1), (1.2), (1.3).

At values of λ other than roots of pm{X) = 0, yT\X) and z{

n

m)(X)
are two linearly independent solution vectors of the recurrence rela-
tions (1.1) satisfying (1.2), provided that they are not trivially zero
vectors. At an eigenvalue λr of (1.1), (1.2), (1.3) they are propor-
tional unless one or both are trivially zero. At a simple eigenvalue
Xr at least one of the vectors ?/iw)(λr), 2im)(λr) provides a nontrivial
eigenvector as we see from (2.2). At a repeated eigenvalue Xr both
?/im)(λr) and z{

n

m)(Xr) are the trivially zero vector as we shall see from
later results. In this case pn(Xr), Qn(Xr) axe linearly independent real
eigenvectors. We shall see that at most a doubly repeated eigenvalue
can occur.

3* Fundamental identities* We now obtain for the polynomials
previously defined certain relations of the type of the Christoffel-
Darboux relations for orthogonal polynomials analogous to the Lagrange
identities for differential equations.

We define for two sequences u = {un}, v = {vn}(n ̂  — 2) the form
[uv]n(n ̂  -1) by

(3.1) M » = d%

Then we have

LEMMA 3.1. For u(X)9 v(μ) any two solution vectors of the re-
currence relations (1.1) with parameter λ, μ respectively, we have

Wn+2 Vr

%

,+2

%

+ c
Un+ι

Un

Vn+l
+ d

n—

uη

u,

%+l

»—1

Vn+l

(3.2) (λ - j«)Σ arur(\)υr(μ) = [w(λ) v(μ))n - [u(X) v(μ)U (n ^ 0) .

Proof. We have

drur+2(X) + crur+1(X) + (br — Xar)ur(X) + c r_1^ r_1(λ) + dr_2ur__2(X) = 0

drvr+2(μ) + crvr+1(μ) + (6r - μar)vr(μ) + c^v^iμ) + dr_2vr_2(μ) = 0 .

Multiplying the first equation by vr(μ) and the second by wr(λ), sub-
tracting and summing over r from 0 to n we obtain (3.2).

Similarly we obtain

LEMMA 3.2. For u(X) any solution vector of (1.1) with I m λ ^ O
we have

(3.3) Σ αrur(λ)^r(λ) = (2ί Im λ)~1{[^(λ)^(λ)]% - [u(X)u(X)]^} (n ^ 0)
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Proof. Consider equation (1.1) and its complex conjugate for
u(X) as in the proof of Lemma 3.1.

From Lemma 3.1 we deduce

LEMMA 3.3. For u(X), v(X) two differentiable solution vectors of
(1.1) we have

Σ arur(X)vr(X) = [u'(X)v(X)]n - [u'(X)v(X)U
(3.4) r=0

= - [u(X)v'(X)]n + [w(λ)v'(λ)]_! (n ^ 0) .

Proof. Use 1'HospitaΓs rule or differentiate (3.2) with respect to
λ and let μ—*X.

From Lemma 3.1 we also obtain setting μ — λ

LEMMA 3.4. For u(X), v(X) any two solution vectors of (1.1) we
have

(3.5) MX)v(X)]n - MX)v(X)]^ = 0 (n ^ - 1 ) .

Hence we can define for two solution vectors u(λ), v(X) of (1.1)
for fixed λ the function independent of n

(3.6) [uv] = [u(X)v(X)] = [u(X)v(X)]n (n ^ - 1 ) .

We see from (3.1) that [uΰ] = 0.
In particular for the solution vectors p(X), q(X), r(λ) and s(X) de-

fined in (2.1) we have

(3.7) [pq] = 0, [pr] = <L2, [ps] = c_L, [qr] = 0, [qs] = d_19 [rs] = 0 .

We now use the above relations to deduce the following lemma:

LEMMA 3.5. Let u(X), v(X) be two differentiable solutions of the
recurrence relations (1.1) with αn, dn > 0 which are real for real X
and which satisfy the initial conditions u_2(X) = 0, u_λ(X) = 0, and

v_2(χ) = 0, v^(X) = 0 for all X.
Let X be an eigenvalue of the boundary problem (1.1), (1.2), (1.3)

for some m ^ 0 with u(X), v(X) both eigenvectors. Suppose X is real.
Then we have the inequality

/ o o . , , < + i + k{cmum + dm^um^) vm+1 + k(cmv'n
(3.8) αA

X
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where equality holds if and only if the solutions u(X), v(λ) are pro-
portional.

Proof. We use the algebraic identity

a*vty - ( Σ arurvrj = Σ ara.(urv§ - ^v,Y ̂  0 .

Using the identity (3.4) with the relations (1.1), (1.2), (1.3) satisfied
by u(\), v(X) we have

Σ o,ru\)(Σ Wl) - (Σ °W^
r=0 /\β=0 / \r=0

— \lh w-Jm[c/ 6/Jm -j- [U V\m[UV J

dmum cmum
cmvm

dmv
mvm+2 + cmvm+1

+

+

un

+

X = Σ
r,s=0

usvr)
2 ^ 0

for real solutions u, v, with equality if and only if the solutions u, v
are proportional.

We note that by Theorem 4.1 of the following section the eigen-
values of the boundary problem (1.1), (1.2), (1.3) are real.

The lemma yields the corollary:

COROLLARY. If the fundamental solution vectors pn(X)9 qn(λ>) of
(1.1), (1.2) satisfy for some real λ also the boundary conditions (1.3)
with m ^ 0 and the same h, k, then we have the inequality
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K + i + k(cmp'm + dm^pf

m_x) q'm+ί

x

Proof. The vectors p(λ), g(λ) are not proportional for any X since
2>0(λ) = 1, 2>i(λ) = 0, go(λ) = 0, ̂ (λ) = 1. Hence taking u = p(X), v = g(λ)
in Lemma 3.5 we obtain the statement of the corollary (3.9) with
strict inequality.

4* Properties of characteristic roots* We now use the funda-
mental relations obtained in the preceding sections to derive some
fundamental theorems concerning the eigenvalues and eigenvectors of
the boundary problem (1.1), (1.2), (1.3).

THEOREM 4.1. The eigenvalues of the boundary problem (1.1),
(1.2), (1.3) are all real.

Proof. Assume λs is a root of the characteristic equation

(4.1) pjk) - 0

where ρm(X) is defined in (2.2).
Then λs is an eigenvalue of the boundary problem (1.1), (1.2),

(1.3). Thus we have a nontrivial eigenvector u(Xs) of the boundary
problem.

Assume λs is nonreal. From Lemma 3.2 with λ = λs and with
n = m we obtain that the right-hand side of (3.2) is 0 and hence
the left side is also 0. Since ar > 0 we have ur(Xs) = 0 (r = 0,1, , m)
and hence u(Xs) is the trivially zero vector. This is a contradiction
to our assumptions.

Hence we must have Im (λs) is zero and λs is real.

THEOREM 4.2. If Xs is a repeated eigenvalue of the boundary
problem (1.1), (1.2), (1.3) then pn(Xs), qn(Xs) are linearly independent
eigenvectors of the boundary problem (1.1), (1.2), (1.3), and conversely.

Proof. Assume

(4.2) ^ w ( λ s ) - ^ ( λ s ) = 0 .

Assume pm+2(λs) + hpm(Xs) and gm+2(λs) + hqm(Xs) are not both 0.
Then y{™](Xs) as defined in (2.3) is a nontrivial eigenvector of the
problem (1.1), (1.2), (1.3). ylm)(Xs) satisfies (2.4), (2.5) and (2.6) and
we hence have in this case using (4.2) that
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VΆ(\) + hy™(\.) = 0, »ίSί(λ.) + hy^\X8) = 0

VΆ(\) + k[cmy^(Xs) + dm^ίΓΛ(λβ)] = 0, itfϊίOO + fe[cm^m)/(λs)

+ dm_lV^[(\)] = 0 .

If we now set X = λβ, ur(X) = vr(X) = y(

r

m)(X), n = m in (3.4) we
obtain a contradiction since the right-hand side becomes 0 while the
left-hand side is positive. Hence we deduce that

(4.3) pm+2(Xs) + hpm(Xs) = 0 a n d qm+2(Xs) + hqm(Xs) = 0 .

Now assume pm+1(Xs) + k[cmpm(Xs) + dm^pm^{Xs)\ and qm+1{Xs) +
k[θmQm(\) + dm_1qm_1(Xs)] are not both zero. Then 2iw)(λs) as defined
in (2.7) is a nontrivial eigenvector of the problem (1.1), (1.2), (1.3).
#iw)(λs) satisfies (2.8), (2.9) and (2.10) and we have hence in this case
using (4.2) that

- 0,

- 0 ,

- 0, «ίKί(λ.) + hz%)f{X8) - 0 .

If we now set λ = λs, ur(X) = vr(X) = z{

r

m)(X8)9 n = m in (3.4) we

obtain again a contradiction. Hence we deduce that

/Λ ,λ , Pm+i(\) + k[cmpm(Xs) + ώw_iPw_i(λs)] - 0
(4.4) and

q(\) + A:[cg(λ) + < L t f ( λ ) ] = 0 .

Hence from (4.3), (4.4) we deduce that pn(Xs) and qn(Xs) are both
eigenvectors of (1.1), (1.2), (1.3) and are of course linearly independent.

The converse is obvious as from (2.2) the equations (4.3), (4.4)

quarantee ρm(Xs) = 0 = ρ'm(\)

THEOREM 4.3. The boundary problem (1.1), (1.2), (1.3) can have
at most a double eigenvalue.

Proof. At a repeated root Xs of the characteristic equation (4.1)

with pm(X8) = 0 = pr

m(\) we have from (2.2)

tfίOO =

p;(λ s) + d—iΛ-A.MffUA.) + k[cmq'm{Xs) + d m - i ^

hp'm(Xs) q'm+t(\) + hq'm(Xs)

By the corollary to Lemma 3.5 and since λg is real by Theorem

4.1 we have that p'ή(\) Φ 0 and hence we can have at most a doubly



BOUNDARY PROBLEMS FOR A RECURRENCE RELATION 31

repeated root of (4.1). Alternatively from (1.1) it follows that there
can be at most two linearly independent eigenvectors.

5* Oscillation and separation theorems* We use the relations
of §3 and the theorems of §4 to obtain some results concerning the
oscillation and separation properties for solutions of the boundary
problem (1.1), (1.2), and (1.3) in the special case h = 0 = k. We first
derive the following lemmas:

LEMMA 5.1. It is not possible for real X that pm+ί(X) = qm+1(X) —
ί>«+2(λ) = gw+2(λ) = 0 and also pm(X) = qm(X) = 0 for m ^ 0.

Proof. We use the corollary to Lemma 3.5. We note that this
lemma is a particular case of the general result of Lemma 5.4 which
is valid for all λ. Hence the statement of Lemma 5.1 is also true
for nonreal λ.

LEMMA 5.2. It is not possible that ym(X) = ym+1(X) — 2/w+2(λ) =
ym+3(X) = 0 (m ̂  — 2), for any nontrivial solution yJX) of the re-
currence relations (1.1).

Proof. We see directly from (1.1) that a solution with four con-
secutive components equal to 0 must have all components equal to 0.

LEMMA 5.3. It is not possible that ym(X) — ym+1(\) = 2/«+2M =
yf

m+1(X) = 0 (m ^ 0) if yn(X) is a nontrivial and real differentiable
solution of the recurrence relations (1.1) and (1.2) for real X.

Proof. We use formula (3.4) and Lemma 5.2 to demonstrate the
lemma. Under the assumptions the right-hand side of (3.4) for n = m
is 0. Hence the left-hand side is 0 and y0 = y1 = = ym = 0 with
m ^ 0. For m ^ l we use ym+1 = ym+2 = 0 and for m = 0 also from
(1.2) y_2 = y_x = 0 to deduce from Lemma 5.2 that in each case y(X)
is the trivially zero vector.

LEMMA 5.4. If two solution vectors of (1.1), (1.2) have three
successive components in common then they are proportional.

Proof. From (1.1) we see that a solution with three successive
zero components is determined uniquely by the value of an adjacent
component.

We now have the following theorems also for the special case of
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the problem (1.1), (1.2), (1.3) with h = k = 0:

THEOREM 5.1. If Xs is a repeated root of pm(X) for
Xs is a simple root of |0w_i(λ) and of pm+1(X).

then

Proof. At a repeated root Xs of pm(X) we have from Theorem
4.2 that pm+1(Xs) = qm+1(Xs) = ί>Λ+2(λβ) = gw+2(λs) = 0. Then we see from
(2.2) that also ρm^(X) and pm+1(X) are 0 at λ = λ s.

By the corollary to Lemma 3.5 we have that

Φθ.

Using (1.1) we see that this implies that

Φ 0

and it is impossible that pm(X8) = #m(λs) = 0 or pm+z(Xs) =
Hence Xs is a simple root of ^ ^ ( λ ) and of pm+1(X).

= 0.

THEOREM 5.2. If pm+1(λs) = qm+1(\) = 0 (m ^ 1) ίλβw ^m(λβ) = 0 =
l°m-i( 8̂)

 α ^ ^ ί/̂ βrβ is α common eigenvector y for the corresponding
boundary problems (1.1), (1.2), and (1.3) /or m αwd m — 1 respectively
such that ym(Xs) = ym+ί(\) = ym^(K) = 0.

Proo/. If pm+1(λs) = 0 = gm+1(λs) obviously from (2.2) we have
that |θm(λs) = |0m_1(λs) = 0. If now λs is a simple root of pm(X) then
Pm+2(̂ s) and gm+2(λs) are not both zero and ?/im)(λs) defined in (2.3) is
a nontrivial eigenvector for the corresponding boundary problem.
This vector is also zero at n — m if and only if

= 0 .

This is so by relation (3.5) since pm+ί{Xs) = 0 = qm+1(X8). Thus y{

n

m)(Xs)
furnishes a common eigenvector for the boundary problem (1.1), (1.2)
and (1.3) for m and for m — 1.

If λs is a double root of pm(X) then we have pm+1(Xs) = gw+1(λs) = 0
and also £>m+2(λs) = gm+2(λs) = 0 by Theorem 4.2. Hence yjx) —
&Pn(λ>) + βqn(x) f ° r a n Y constants a, β not both 0 provides an eigen-
vector for the boundary problem (1.1), (1.2) (1.3) for m. Since by
Lemma 5.1 here pm(X8), qm(xs) are not both 0, the nontrivial vector
y{nm~1](Xs) = q*(\)Pn(\) ~ PΛK)q»(K) will then provide a common
eigenvector for the boundary problem for m and for m - 1.
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THEOREM 5.3. If pM = 0 = pm^(X8) then pm+1(xs) = 0 = qm+1(xs)
(m ^ 1).

Proof. Let Xs be a simple root of pm(X) and of |θw_i(λ), and as-
sume pm + 1(λ s), qm+1(Xs) were not both 0.

Then yT~1](Xs) defined in (2.3) furnishes a nontrivial eigenvector
for the boundary problem for m — 1 satisfying yί"~ι){Xs) = 2/iJ+;ι)(λβ) =
0ίΓ+"ϊ1} (λ.) - 0. Also here from (2.3) we see that j/ίΓ+il)(λ.) - -pm(X8) = 0.

We now obtain a contradiction by the use of relation (3.4) of
Lemma 3.3.

We take in relation (3.4) λ = λs, n = m, ur(X) = 2/ί.m~υ(λ), vr(X) =
{̂."•""(λ) and obtain that the left-hand side is positive, and the right-

hand side is 0.
We deduce from this contradiction that ^m~ υ(λ s) must be a trivial

vector and pm+1(\) = gm+1(λs) = 0.
If X8 is a double root of ρm(X) or of pm-1(X) the result is obviously

true by use of Theorem 4.2.

THEOREM 5.4. Between two successive zeros of pm_ί(X) (m ̂  1)
which are not zeros of pm(X) there lies at least one zero of pm(X), and
vice versa.

Proof. Let λ l f λ2 be consecutive zeros of pm_i(λ) which are not
zeros of pm(X). Thus they are both simple zeros of pm-i(X) a ^d
2>w+i(λ), gw+1(λ) are not both zero at either \ or λ2 as we see from
formula (2.2). y{

r

m~ι){\) is a nontrivial vector for λ = λx, λ2. y{X~ι){X) =
^ ( λ ) is zero at Xlf λ2. Also p^iXy), /θii-i(λ2) have opposite signs.
From (2.3), (2.2) we see that ΛT2

υ(λ) = -/θw(λ). We now make use
of relation (3.4) for ur(X) = vr(X) = ^m~υ(λ) and n = m. We obtain
using (2.4), (2.5), (2.6)

o
since the left side >0 since m ^ 1 and ̂ m~υ(λ) is not the trivially zero
vector. Now pm^(X) = 0 at X19 λ2 and /O^̂ λ̂) has opposite signs at λx, λ2.
Hence we deduce that pm(X) has opposite signs at λ1? λ2 and hence
/θw(λ) has at least one zero and in general an odd number of zeros
between λx and λ2.

In the case of two consecutive zeros Xlf λ2 of pm(X) which are not
zeros of ρm^(X) and hence are simple zeros of ρm(X), with pm+1(X)f

qm+1(X) not both equal to zero at either λx or λ2, we have similarly
that p'm(X) has opposite signs at λ = λx, λ2. From the same relation
obtained above we then deduce that ioTO_1(λ) has opposite signs at
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λ1? λ2 and hence pm^(X) has at least one zero, and in general an odd
number of zeros, between λ : and λ2.

6* Orthogonality and expansion theorems* We now obtain
orthogonality relations for the eigenvectors of the boundary problem
(1.1), (1.2), (1.3) and corresponding expansion theorems.

We consider the set of eigenvalues Xt (i = 0, 1, , m) of the
boundary problem (1.1), (1.2), (1.3), roots of the equation ρm(X) = 0
where pm(X) is defined in (2.2), where multiple eigenvalues are counted
according to their multiplicity and written a corresponding number
of times. We note that the eigenvalues λ$ are all real by Theorem
4.1 and only double eigenvalues at most can occur by Theorem 4.3.

We take

(6.1) λ0 ^ \ ^ λ2 ^ . . ^ λm .

We obtain with the aid of Theorem 4.2 a corresponding set of
m + 1 mutually orthogonal eigenvectors. The form will vary in
various cases and according to whether x{ is a simple or double
eigenvalue.

We consider firstly the case where λ£ is a simple root of equation
pm(X) = 0 and pm + 2(λ,) + hpm(Xi), qm+2(\) + hqm{Xi) are not both 0.
Then as seen in §2 the vector y(

r

m)(Xi) defined by (2.3) furnishes a
nontrivial real eigenvector of the boundary problem (1.1), (1.2), (1.3).
Consider a similar root X3 Φ xi and corresponding eigenvector y{

r

m)(Xj).
We now make use of relation (3.1) of Lemma 3,1 with x = χi9

μ = Xd and ur(X) = y[

r

m){Xi)i vr(μ) = y{

r

m)(Xj) and obtain

Using. Xι Φ Xj we obtain the orthogonality relation

(6.2) f*ary
{

r

m)(XMm)(Xi) = 0 .f
We see that (6.2) is trivially true if λ* or Xd is not a simple root

using Theorem 4.2 or if pm+2(X) + hpm(X) = 0, qm+2(X) + hqm(X) = 0 for
A, = χi or λ = Xj.

Similarly if λ4 is a simple root of pm(X) = 0 and

are not both 0, we can use the vector ^ ( λ ^ ) defined by (2.7) as a
nontrivial real eigenvector. Then relation (3.1) furnishes similar
orthogonality relations.

In the case of a double root X{ = Xi+1 of pm(X) = 0 we obtain by
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Theorem 4.2 two linearly independent real eigenvectors pr(Xi), qr(\)
and from these we can form two orthogonal eigenvectors, for example
by taking

Σ
(6.3) pr = Prf qr = qr — — pr .

Σ asp\

We hence can form for a given boundary problem (1.1), (1.2),
(1.3) for given m ^ 0 a set of m + 1 mutually orthogonal real eigen-
vectors corresponding to the set of eigenvalues λ0, λ1? , λm.

We let {win}%+l2 (i = 0,1, , m) be defined as the normalized
nontrivial real eigenvector corresponding to the eigenvalue λ* which
is formed, in the case that λ< is a simple eigenvalue with pm+2(Xi) +
hpm(Xi)y qm+2(Xi) + hqm(Xi) not both zero, from yT](Xi)> while, if λ< is a
simple eigenvalue with pm+2(Xi) + hpm(Xi), qm+2(Xi) + hqm(Xi) both zero,
from #im)(λ;), and, in the case that xt = Xi+1 is a double eigenvalue,
from pn(Xi) and qn(Xi) respectively, by scaling in each case by division
by a positive factor so that w*0 + w2

it = 1.

For the real eigenvectors {win}%il2 (i = 0,1, , m) we define

(6.4) βi = ±anwl.

The vectors {win} satisfy the orthogonality relations

m

(6.5) Σ anwίnwjn = βidij .

We now replace the vectors {win} by the normalized eigenvectors

(6.6) {xin} = {winβτ112} .

Then we have the following theorem:

THEOREM 6.1. The boundary problem (1.1), (1.2), (1.3) for given
•m, h, k has a set of m + 1 real mutually orthogonal eigenvectors
{#*»}?=ί-2 (i = 0,1, , m) corresponding to the real eigenvalues λ€

(0 ^ i ^ m) where λ0 ^ λL ^ λ2 ^ ^ λm, which satisfy the orthogon-
ality relations

(6.7) Ύ\a x x = d- (0 < ί, i < m)

We now obtain an expansion theorem for an arbitrary sequence
in terms of the eigenvectors and a corresponding completeness theorem:

THEOREM 6.2. If {fn}™=Q is an arbitrary vector we define
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(6.8) vt = Σ, α J X . (i = O,l,'",m)

where the {xin}%ii2 (i = 0,1, ••, m) are ίλe reaϊ orthogonalized eigen-
vectors of the previous theorem. Then we have the expansion

(6.9) Λ = Σ *W (ra - 0,1, . , m) .

Also the Parseval equality or completeness relation holds

(6.10) t,\vi\
t = ±an\fi,\'.

Proof. Let

(6.11) Λ = Σ <*&* (n = 0,1, , m) .
i=0

This expansion is possible since we have m + 1 linearly independent
eigenvectors {&<»}?=<, (£ = 0,1, , m) in the m + 1 dimensional vector
space by (6.7).

Multiply (6.11) by anxjn and sum over w from 0 to m. We obtain

Σ ajnxin = Σ V J Σ ^
«=0 w=0 \i=0

ΣΣ
i=o \»=o

— X 1 (Ύ .n. .

i=0

using the orthogonality relations (6.7).
Hence from (6.8) we see that

aό = v,

and from (6.11) we have (6.9).
To prove (6.10) we have, using (6.9), (6.7),

Σ αΛ |/Λ |2 = Σ °M Σ ViXinΣi
n=0 n=0 \i=0 j=Q

m

= Σ ViV
i0

Hence the proof of the theorem is complete.

We also have dual orthogonality relations:
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THEOREM 6.3. For the real eigenvectors {xin}%iί2 (i = 0,1, , m)
of Theorem 6.1 we have the dual orthogonality relations

(6.12) Σ M < , = a,7%, (0^r,s^m).

Proo/. Substituting (6.7) in (6.8) we obtain

/r = Σ
i=0

Since the vector {/Λ}?=0 is arbitrary we deduce
TO

J^j Xirxis = ar ors .

We derive the dual expansion theorem:

THEOREM 6.4. Defining for an arbitrary vector {̂ }Γ=o the fn{n =
0,1, « ,m) 6?/ (6.9), ίAβ expansion theorem (6.8) is

Proof. The vectors {$™}Γ=o (w = 0,1, , m) for different n are
orthogonal by (6.12) and hence linearly independent. Hence we can
express an arbitrary vector {Vi}T=o in terms of them. The proof now
follows by use of (6.12) analogously to the proof of Theorem 6.2.

7 Spectral functions* The preceding orthogonality relations
and expansion theorems can be expressed in terms of a spectral func-
tion defined for the boundary problem (1.1), (1.2) (1.3). This is es-
pecially useful when later considering the boundary problem in the
infinite case m —> oo and the corresponding expansion theorems.

We define the row matrix of functions of λ

(7.1) Γ.(λ) = [pn(K), qn(X)\ (n S> - 2 )

satisfying the recurrence relations

(7.2) dnYn+2 + cnYn+1 + (K - Xan)Yn + c^Y^ + 4_2ΓTC_2 - 0 (n^O)

with the initial conditions

<7.3) Γ_2(λ) = (0, 0), r _ A ) = (0, 0), ro(λ) = (1, 0), Γ^λ) = (0,1) .

The vectors {xin}ZΆ (i = 0,1, , m) defined in §6 may be expressed
by

{ ' =

where the vectors u{ (i = 0,1, , m) are defined by
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(7.5) i

W
Then, denoting by an asterisk the complex conjugate transpose

of a matrix, the orthogonality relations (6.7) can be written in the
form

(7.6) Σ uϊ ^ ( λ K F ^ λ K = δtJ (0 £i,j^m).

The dual orthogonality relations (6.12) become

(7.7) Σ YrfadUiUΐYϊiXi) = a7%. (0 ̂  r, s ^ m) .

These may be written in the form

(7.8) Γ Γr(λ)drm,,,,(λ)Fs*(λ) = aτιδra (0 ̂  r, s ^ m)
J-oo

where the two-dimensional spectral function τm>h>k(X) is defined by

r«,A.*M - Σ UtiiT (λ ̂  0)
(7 9) 0<λi-λ

κ ' J = - Σ w4tt? (λ < o)Σ
where λ< (i = 0,1, , m) are the eigenvalues of the boundary problem
(1.1), (1.2), (1.3) satisfying (6.1).

Thus the spectral function in this finite case 0 <̂  m < oo is a
right-continuous matrix step-function with finite jumps at simple
eigenvalues λ* of amount UiU* and at double eigenvalues λ4 = λi+1 of
amount UiU* + ui+1uf+ί.

The expansion and completeness theorem Theorem 6.2 of §6 can
now be rewritten as follows:

THEOREM 7.1. If {fn} (n = 0,1, •• , m) is an arbitrary vector
we define the vector function

(7.10) g(\) = Σ YίMaJ*

Then we have the expansion

/. = Σ

Also the Parseval equality or completeness relation holds

(7.12)
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Proof. We use in Theorem 6.2 relation (7.4) and note that the
vector fyJJLo of (6.8) is given by vt = ufg(Xi).

8* Inhomogeneous boundary problems* We now consider in
this section the solution of the boundary problem for the inhomo-
geneous recurrence relations

(8 -v dnyn+2 + cnyn+ι + (6n - Xan)yn + cn^y%_1

+ d—2ί/«-2 = dfJn (0 ^ n ^ m)

where the coefficients anf bn, cn, dn are real, anf d% > 0, λ is a complex
parameter and where {/J (0 <Ξ π ^ m) is a given complex vector,
with the boundary conditions

(8.2) lί-2 = 0 = l u

and

(8.3) ym+ι + &[cwτ/m + dm_xym_λ = 0, T/ W + 2 + hym = 0

where /&, & are real constants and m ^ 0.
The solution is given in terms of a Green's functions for the re-

currence relations (1.1).
We first obtain some fundamental lemmas:

LEMMA 8.1. For m^> —l,n^t —1

[pr]m\qs\n + [qs]m\pr\n - [pq]m\rs\m - [ps]m\qr\n - [qf]m\ps\n

{ ' j

where [nv]n is defined in (3.1) α^ώ l^^l^ m (2.2).
In particular

(8.5) <L2| qs \n + (2^| ^ r \% - c_J gr | n = 0 (n ^ -

Proof. Using (3.6) we have

Adding this and the similar relations for the terms on the left
side of (8.4) we obtain the expansion in terms of second order minors
of the sum of three fourth order determinants which sum to zero.

(8.5) is obtained from (8.4) by use of relations (3.7). We also have

LEMMA 8.2. For m^> - 1 , n^> —2

n - [ps]m(qr)n

ί8 6)
[qr](Ps)n - [rs]m(pq)n = d^d_
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where [uv]n is defined in (3.1) and (uv)n is defined by

(8.7) (uv)n = dn(un+2vn - v%+2un) .

In particular

(8.8) d_2{qs)n + d_x{pr)n - e^(qr)n = d_xd_2 . (n ^ -2)

Proof. Using (3.6) we have

[Vf]m{qs)n = [pr]n(qs)n .

Adding this and similar relations for the terms on the left side
of (8.6) we obtain the expansion in terms of second order minors of
the sum of three fourth order determinants of which two are equal
to zero and the third is equal to Dn defined by

(8.9)

Pn—l Qn—1

Pn Qn

Pn+1 Qn+1

Pn+2 Qn+2

*z -1)

Now substituting for pn+2, qn+2, rn+21 sn+2 from the recurrence relations
(1.1) in Dn we obtain Dn = Ό%_x (n ^ 0), and by induction, using

(8.10) Dn - d_2d_x ^ -1)

and thus we have the result (8.6). We obtain (8.8) from (8.6) by
use of relations (3.6), (3.7).

We now define two solutions ψ\,m)(X) (i = 1, 2) of the recurrence
relations (1.1) in terms of the fundamental solutions p, q, r, s defined
in (2.1). They are characterized by the following lemma:

LEMMA 8.3. The solutions ψim)(X) (i — 1, 2) of the recurrence re-
lations (1.1) satisfying also boundary conditions (1.3) and the relations

(8.11) = 1, [f.q] = 0, = 0,

where the form [wv] for two solutions of (1.1) -is defined in (3.1),
(3.6), are given, for λ not an eigenvalue of the boundary problem
(1.1), (1.2), (1.3), by

'n + ^n

A- T
Ί

n + sn\ (-2^n^m + 2)



BOUNDARY PROBLEMS FOR A RECURRENCE RELATION 41

where the polynomials \pq\m are defined in (2.2).
The ψϊm)(k) satisfy in addition

(8.13) [f ltd = 0

Proof. We attempt to solve the equations (1.1), (1.3), (8.11) by
setting yn(\) = apn(X) + βqn(X) + 7rft(λ) + dsn(X) where a, β, 7, <5 are
undetermined constants.

We then use first condition (1.3) and then conditions (8.11) to
derive the solutions ψlm)(λ), ψ2

m)(λ) in the form given by (8.12).
To prove (8.13) we use (8.12) and (3.7) and hence have that

by (8.5) of Lemma 8.1.
We now demonstrate the following lemma:

LEMMA 8.4.

(8.14) Qt st

Qn Sn

Pt rt

Pn rn

Qt rt

for -2^t,n^m + 2.

Proof. We use formula (8.12) and relation (8.5) of Lemma 8.1.
We have

ίfPn +

1 1

\pq\ m d_,d^2

[ — it Πf Ύ\ I /» Ύ* ίΊ /i Q Λ 1^—I'tί/n t ^—I'tHn U/_2ϊ>tqn\
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+
d_2\qs

Pt rt

— c_

Pt

using relation (8.5).
We now can obtain the following theorem:

THEOREM 8.1. The solution of the inhomogeneous boundary problem
(8.1), (8.2), (8.3) for X not an eigenvalue of the corresponding homo-
geneous boundary problem (1.1), (1.2), (1.3) is unique and is given by

(8.15) yr(X) =

where the Green's function g{™](X) is given by

(8.16) giJΐ){X) \ ](λ) (r ^ i)

^ m , — 2 ^ r ^ m + 2, and where the solutions of (1.1)
and Ψin](X) (i = 1> 2) are defined in (2.1) and (8.12) re-

solution y(X) = ( — 2 ^ r ^ /or Imλ^O satisfies

(8.17)

where

(8.18)
1/2

Green's function ^
ίΛe following properties:

(8.19) (i) ar^iT'W =

(8.20) (ii) ΣaJflPi

(8.21) (iii) |flri?'(λ)| ^

(8.22) (iv) Σ a ί W

(8.23) (v) dng^n + c

/or Imλ ^ 0 is analytic in λ

^ IImλl

2 ^ I Im λ |-2

(0 ^ », i ^ m)

(0 ^ i ^ m)

(0 ^ w, i ^ m)

' (0 ^ ΐ g m)

(0 ^ TO, ί ^ m)
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(8.24) 0ί3ί = flΉJ = 0 (0 ^ i ^ m) ,

(8.25) <7m+lί + &[cmgwί + d^g^t] = 0

^m+2i + hgmi = 0 (0 ^ i ^ m) .

Proof. The solution of the boundary problem (8.1), (8.2), (8.3)
in the form (8.15), (8.16) can be obtained by a method of variation
of parameters. We seek to find the Green's function {g{

rV (\>)}?=12 for
fixed i satisfying 0 ^ i ^ m given by the solution y — {yn}~t2 of (8.1),
(8.2), (8.3) taking for {/Jo

m the vector {δni}ΐ=0. The solution of (8.1),
(8.2), (8.3) for an arbitrary vector {/Jo

m will then be given by (8.15)
by superposition.

We set

(8.26) yn{\) = anVn(X) + βnqn(X) + 7 Λ (λ) + δA(λ) (n^-2)

where au, βΛ> j n 9 δn are complex constants and pn(λ), gΛ(λ), rft(λ), sn(λ)
are the fundamental set of solutions of the corresponding homogeneous
boundary problem (1.1), (1.2), (1.3) given by (2.1).

Substituting in (8.1) from (8.26) and using the recurrence relations
(1.1) satisfied by pn, qn, rn, sn we obtain the equations (if α̂  = 1)

dn[{an+2 - an)pn+2 + (βn+2 - βn)qn+2 + (Ύn+2 - Ύn)rn+2

+ (δn+2 - δn)sn+2] + cn[(an+1 - an)pn+1 + (βn+1 - βn)qn+1

+ (Ύn+ί - ^ ) r » + 1 + (δn+ι - §n)sn+1] + c ._ 1 [K_ 1 - an)pn_,

+ (βn-l ~ βn)Qn-l + (^-1 ~ ^n)Tn^ + (δ^x - ^)s % _J

+ dn_2[(an_2 - α%)p%_2 + (/3%_2 - βn)qn_2 + (T%_2 - Ύn)rn_2

^ J = δ
ni

We satisfy equation (8.27) for 0 ^ % ̂  i — 2 and for i + 3 ^ n ^
by choosing

βm+2 — ' ' * = βi+2 — βi+1 ^ βi — βi-l = * * ' = /5_2
ry ^ ;_ ry ry / ry ry ry

'm+2 — — Ii+2 — I i+ί ^ ' i — ii-l — — /_ 2

δ w + 2 = = δ i + 2 = δi+ί Φ δi — ^_i = = δ - 2

and sett ing

(8.29) a = aί+ί - ai9 β - /3 ί + 1 - ft, 7 = 7 4 + 1 - 74, $ = ί<+1 - 5,

we obtain from equations (8.27) for i — l ^ n ^ i + 2 the equations

αdi-iPί+i + βdi^qi+1 + Jdi_1ri+1 4- δd^s^ = 0
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(8.30)
+ gfos* + d^A.0 - 0

+ βdigi + 7 ^ + δ^Si = 0

where we assume the third and fourth equations of (8.30) to be also
satisfied for i = m ~ 1, m, and the first equation of (8.30) also for
i = 0. From (8.30) we obtain

(8.31)

where

(8.32) \pqr

ά= -—\qrsy\pqrs\i9β =—\prs\J\pqrs\, ,

1 ^ 1
7 = ~ — \pqs\i/\pqrs\i9δ = —\pqr\i/\pqrs\i

di d,

Pi-l

Pi

Pi + l

pgrs i =

Pi+2 Qi+2

From (8.2), (8.28) we obtain using (2.1)

(8.33) Ύt= . . . = 7_2 = 0, δi = . . . = δ_2 = 0

and then from (8.28), (8.29), (8.31), (8.33) we obtain

(8.34)

'i+l I η

1

From (8.3), (8.28), (8.34) and using also the fourth equation of (8.30)
for i = m and (8.29) we obtain

(8.35)
m+2 = ••• = βi+ι = [\pqs\i\pr\n - \pqr\i\ps\nydi\pqrs\i\pq\

where \pq\m etc. are defined in (2.2), and then from (8.29), (8.35),
(8.31), (8.28) we obtain

(8.36)

ati= ••• = a_2 = [-\pqs\i\qr\m + \pqr\i\qsl

A = ••• = /5_2 = [| pgs |ί| pr U - I pgr [t | ps \m

We now see from (8.9), (8.10) that
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(8.37) \pqrs\t = dγl.d^D, = dγl.dγ'd^d^ (i ^ -1)

and expanding the determinant and using (3.1), (3.7) that

(o.oo)

\prs\i = -(c_xn - d^i)/d^19 \qrs\i = -d^rjd^ (ί ^ -1) .

Using (8.37), (8.38) in (8.33), (8.34), (8.35), (8.36), substituting in
(8.26) and making use of relation (8.5) of Lemma 8.1 and (8.12) we
obtain Green's function gίVft) in the form (8.16).

We now verify that (8.15), (8.16) is a solution of (8.1), (8.2), (8.3)
with the aid of Lemmas 8.1, 8.2, 8.3, 8.4 and then show that the
solution is unique.

Set yr(X) = glViWn in equation (8.1) for n. Then the left side
becomes, using the recurrence relations (1.1) satisfied by pn, qn1

{dngi%,n + cngTλ,n + (K - λαjdft + c^gTXn + dn_2glr\n}fn

+ (bn - Xan)(pnψln + qnf2n) + cn_γ{flnpn_x + f2nqn-ύ

+ dn_2(ψlnpn_2 + ψ2nqn-2)}anfn = {dn(pnΨln+2 + qnf 2n+2)

+ cn(pnψίn+ι + qnf2W+1) - dn(ψlnpn+2 + ψ2nqn+2)

- (1 + 1 - l)α%/% = α./.

using (8.14) of Lemma 8.4, (8.11) and relation (8.8) of Lemma 8.2.
Hence this term in the expression (8.15) for yr(X) satisfies equation

(8.1) for n.
Set yr(X) = g{rZ-ι(x)fn-ι in equation (8.1) for n. Then we obtain,

using the fact that the ψin satisfy recurrence relations (1.1),

using Lemma 8.4 and relation (8.5) of Lemma 8.1 for h,k — Q.
Similarly we see that #r(λ) = β#ϊ+i(λ)/Λ+1 in the left side of equa-

tion (8.1) for n gives 0. Also if we set yr(X) = gl l](X)fs, s <> n - 2 or
s ^ n + 2, in equation (8.1) for w, we obtain, using the fact that the
Ψi™] satisfy recurrence relations (1.1), that the left side of equation
becomes 0.

Hence we can state that yr(X) as given by (8.15) satisfies the re-
currence relations (8.1).
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Now yr(X) given in (8.15) can easily be seen to satisfy initial
conditions (8.2).

We now show that conditions (8.3) are satisfied.
Set yr(X) = g\™\X)fn in the relations (8.3). Then the left side of

the^first relation becomes for n ^ m — 1

2/«+i + k[cnym + dm^ym^] = {c/Zlι,n + k[cmg{zl + dm^gΆJ}fn

= {Pntlm + l + QnΨ2m + l + k[CmPnψlm + CmQn^2m + 4 - l l ? A W - l

+ dm_1qjr2m_ι]}anfn = 0

since the Ψlm) (i = 1, 2) satisfy boundary conditions (8.3).
Similarly for n <; m we have

= {Pnflm+2 + Qnf2m+2 + hp%flm + hqnf2m}dnfn = 0 .

For n = m we have, using the fact that the ̂ | ? } (i — 1, 2) satisfy
boundary conditions (8.3),

- tlm-lPm - Ψ2m~lQjCίmfm = 0

using relation (8.14) of Lemma (8.4) and (8.5) of Lemma 8.1 for h =
ifc = 0.

Hence #r(λ) as given in formula (8.15) satisfies conditions (8.3).
The uniqueness of the solution follows from the fact that, since

λ is not an eigenvalue of the corresponding homogeneous boundary
problem (1.1), (1.2), (1.3), the difference of two solutions of (8.1), (8.2),
(8.3) must be the trivially zero solution.

To prove (8.17) we require the following lemma giving an identity
analogous to Green's formula for differential equations:

LEMMA 8.5. For two vectors u = {un}, v = {vn} ( — 2^n^mJr2)
of complex numbers unJ vn we have the formula

m

(8.39) Σ (Pu)nvn - uΛ(pήn = [uvU - [uvU

where the form [uv]n is defined in (3.1) and the difference operator
P acting on a sequence u = {un} ( — 2<^n^m + 2)of complex numbers
un is defined by

(8.40) (Pu)n = dnun+2 + cnun+1 + bnun + cn^un^ + dn__2un_2 (O^n^m)

The proof of (8.39) is immediate from the form of (8.40).
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We now can obtain (8.17) of Theorem 8.1. We set in (8.39) u =
v = y where y is the solution of (8.1), (8.2), (8.3). Then from (8.2),
(8.3) we see that [yy]m = [yy]^ = 0 and from (8.1) (Py)n = Xany + anfn.
Then (8.39) may be written

2i Im λ Σ an\yn|
2 =

w=0 %=0

We deduce with the aid of the Schwarz inequality

in

2| Im λ | Σ a,\ yn |2 = I

1/2/ m

(Σ
and hence

where \\y\\m is given by (8.18), and we have the result (8.17).
Now (8.19) of (i) follows from the form of g{

rf{X) given in (8.16)
with (8.12). (8.23), (8.24) and (8.25) of (v) follow from the form of
the solution y of (8.1), (8.2), (8.3) given by (8.15) and hence from the
fact that {gri(X)}ΐil2 satisfies (8.1) with {fX = {<U?=o, and (8.2), (8.3).
Hence also (8.20) of (ii) follows from (8.17) using \\δni\\m = aψ. From
(8.20) we easily deduce (8.21) of (iii). (8.22) of (iv) follows from (8.20)
using (8.19). This completes the proof of Theorem 8.1.

We obtain the following corollary:

COROLLARY 8.1. The solution of the inhomogeneous recurrence
relations (8.1) satisfying the initial conditions

(8.41) y_2 = y_1 = yQ = yι = 0

is given by y = yn(X) (n^ —2) where

(8.42) yn =

where φk = { f̂c%(λ)}^ϋ2 (1 <£ k ^ 4) are four linearly independent solu-
tions of the homogeneous recurrence relations (1.1) and the vectors
Vk = {Vki(λ>)}?^-2 (1 ^ k ^ 4) are four linearly independent solutions
forming the adjoint fundamental systems of solutions of (1.1) and
are given by

(8 43)
V {{ΦMΦ +

- 2 )
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where D_γ = d^d^lφ^φsφ^, and I & ^ B & I - I is defined analogously to
(8.32) and the forms [φkφ5] are defined in (3.6), (3.1).

Proof. We note that the solution of (8.1), (8.41) exists and is
unique for all λ since the corresponding homogeneous equations (1.1)
with (8.41) can have only the trivial zero solution.

We solve the equations (8.1), (8.41) by the method of variation
of parameters setting

(8.44) yn(X) = anφιn{\) + β%φJ(X) + 7Λ& (λ) + 8nφ,n{\) (n ^ - 2 ) .

Analogously to the demonstration of (8.15), (8.16) of Theorem 8.1 we
obtain the solution y in the form (8.42) with

VH = — i Φ2Φ3Φ4 \Jdi

, o A~, ^2i = iΦiΦzΦ
(O.45)

V3i = ~ I Φ1Φ2Φ4 \i/di\

where l ^ ^ s U \ΦiΦ$aΦt\i are defined analogously to (8.32), and we make
use of the easily verifiable fact that

4

Using recurrence relations (1.1) we obtain analogously to (8.37), (8.38)
that

(8.46) l^^βl* = - Γ - W J & * - [ΦιΦ*]Φ« + lΦιΦ*]Φ*i} (i ^ - 1 )

etc. and

(8.47) \ΦiΦιΦ*ΦAi = d^d^lφrfzφzφtU/d^di (i ^ - 1 )

and hence obtain vk(l ^ k ^ 4) as in (8.43).
We see from (8.43) that the vk(l ^ k £ 4) are solutions of (1.1).
Prom (8.47) or directly from (1.1) we deduce the following

corollary:

COROLLARY 8.2. If for four solution vectors φk = { f̂cw}ϊί-2(l ^ ^ ̂  4)
of (1.1) we have iΦ^ΦsΦ^li Φ 0 for some i ^ — 1 then we have iΦ^ΦzΦiliΦO
for all i ^ — 1. A necessary and sufficient condition for the solution
vectors of (1.1) φk(l ^ k ^ 4) to be linearly independent is that

Φ 0 for some i ^ — 1.

We now verify that the vk(l ^ k ^ 4) are linearly independent
by showing, as is sufficient in view of (1.1), that

(8.48) Σ "Mi = 0 (ΐ = - 1 , 0,1, 2)
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where the 0^(1 ^ k ^ 4) are complex constants implies that ak — 0
(1 ^ k ^ 4). For we may write (8.48) in view of (8.45) in the form

= 0

Φii-i Φ2i-i Φu-i Φu-i

Φii Φzi Φu Φu

Φli+1 Φ2i+1 ΦU+1 Φu+1

ax az az a4

Using the recurrence relations (1.1) we deduce that

Φίi-l Φ2i-1 Φu-1 ΦU-1

Φli Φ2i Φu Φii

Φii+i Φu+i Φu+i Φu+χ

Φli+ Φu+2 Φu+2

az a, 0

= 0

for all complex constants Ύk(l ^ k ^ 4).
Since by Corollary 8.2 iΦ^Φ^Φilo Φ 0 since the <f>k(l ^ k ^ 4) are

linearly independent, we obtain for some set of complex constants
βtfX ^ fc ^ 4) not all zero and independent of the 7^(1 ^ k ^ 4) that

Φli Φ2i Φzi Φu

Φli+1 Φ2i+1 Φu+1 Φu+1

Φli+2 Φ2i+2 Φu+2 Φu+2

0 0 0 0 s

= 0

and hence, since iΦiφiΦsΦtloΦ 0 by Corollary 8.2, that Σ t = i ^ A — 0
for all 7fc(l ^ fe ^ 4). Hence βk = 0 (1 ^ fc ^ 4). This is a contradic-
tion and hence ak — 0 (1 ^ ί: ^ 4) and the ^ (1 ^ & ̂  4) are linearly
independent.

We now derive the solution of the boundary problem (8.1), (8.2),
(8.3) in an alternative form involving a different expression for the
Green's function.

We obtain the following theorem:

THEOREM 8.2. The solution of the inhomogeneous boundary problem
(8.1), (8.2), (8.3), provided λ is not an eigenvalue of the corresponding
homogeneous boundary problem (1.1), (1.2), (1.3), is given by

(8.49) = Σ QίV
ί = 0

where the Green's function #i7}(λ) is given by
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(8.50) sΊT>(λ) = (" Yn(μ)dτm,h,k(μ)Y?(μ)aJ(μ - λ)
J-oo

for — 2 ^ ^ ^ m + 2, O ^ ί ^ m , where Yn(X) are the matrix poly-
nomials defined in (7.1).

Proof. We use the dual orthogonality relations (7.8) and the
recurrence relations (7.2) and (7.3), as well as (7.4), (7.9).

Assuming (8.49), (8.50) we obtain with the aid of the recurrence
relations (7.2) that the left-hand side of equation (8.1) becomes

£ [" (μ _ X)anY%{μ)dτmΛ,k{μ)Y?{μ){μ - XY'aJ,
ί = 0 J-oo

m Poo

= Σ a>n\ Yn(μ)dτmi
ΐ = l J — oo

m

i l

using (7.8).

Hence the yn(\) defined by (8.49), (8.50) satisfy the equations
(8.1) and, as can readily be ascertained using (7.3), the initial con-
ditions (8.2).

Also using the definition of τm>h>k(X) given in (7.9) and relation
(7.4) we see that g{

nf(X) as given by (8.50) and consequently yn(X) in
(8.49) satisfy the boundary conditions (8.3).

In a subsequent paper (Billigheimer [4]), we consider the boundary
problem of the recurrence relations (1.1), (1.2) in the singular case
m—>oo. Both forms of Green's function given in Theorem 8.1 and
8.2 are of use in these further investigations.
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