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CONCERNING THE DOMAINS OF GENERATORS

OF LINEAR SEMIGROUPS

J. W. SPELLMANN

Let S denote a Banach space over the real numbers. Let
A denote the infinitesimal generator of a strongly continuous
semigroup T of bounded linear transformations on S. It is

T(x)pdx is in the domain
a

of A (denoted by D(A)) for each p in S and each nonnegative
number interval [α, b]. This paper develops sufficient condi-
tions on nonnegative continuous functions / and on elements

S b

T(f(x))pdx be an
a

element of the^domain of A.

2. A change of variable technique* A change of variable
theorem may sometimes be used to transform

bT(f(x))pdx to \dT(x)(f-y(x)pdx
a Jc

where f~ι denotes the inverse of /. This motivates the first theorem.

THEOREM 1. Suppose pe S, 0 ^ c < d and h is a real valued

function which has a continuous derivative on [c, d\. Then

T(x)h(x)pdx
Jc

is in D{A) and

dT(x)h(x)pdx = h(d)T(d)p - h(c)T(c)p - ΓT(x)h'(x)pdx .

Proof.

VT(x)h{x)pdx

= lim ε-λ**'T(x)h(x - e)pdx - \\m ε~ιVT(x)h{x)pdx
ε->0 jc+ε ε-»0 Jc

= lim sA*^T(x)h(x - ε)pdx - lim εΛ^T{x)h{x)pdx
J d 0 J

- lim ε-χΓ T(x)[h(x) - h(x - ε)]pdx
ε~>0 J c + ε

= h(d)T(d)p - h(c)T(c)p - ['τ(x)hf(x)pdx .
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The second theorem then follows as an immediate consequence
of Theorem 1.

THEOREM 2. Suppose pe S, 0 <; a < 6, 0 <L c < d and f is a
continuous function from [α, b] to [0, oo] so that

( i ) {f~1)" is continuous on [c, d] and

(ii) [τ(f(x))pdx = ±\dT(x)(f-1)'(x)pdx. Then [ T(f(x))p is in
Jα J e J a

D(A) and

^ = ±[(f-γ(d)T(d)p - (f-ι)'(c)T(c)p

EXAMPLE 1. Suppose 0 ^ a < 6, m and /b are real numbers so
T(mx + k)pdx

a

is in D(A) and

= — [T(mb + fc)j> - T(ma
m

Γb

It is noted that Theorem 2 says nothing about \ T(f(x))pdx be-
Ja

ing in Z?(A) if ΓT(f(x))pdx does not equal ± ( V ^ i / ^ ' ^ p ^ or if
Jα Jc

(/-1)" is not continuous on [c, , d]. A different approach is considered
in the next section which sometimes allows for such exceptions.

3* A closed operator technique* In this section, the restric-
tions imposed on the function / in the hypothesis of Theorem 2 will
be relaxed. In accomplishing this, additional restrictions will be
placed on the point p mentioned in Theorem 2. The fact that the
infinitesimal generator A of the semigroup T is a closed linear
operator implies the next theorem.

THEOREM 3. Suppose pe D(A), 0 ^ a < b and f is a continuous
function from [α, b] to [0, oo). Then

\bT(f(x))pdx

is in D(A) and

[T(f(x))pdx = [T(f{x))Apdx .



CONCERNING THE DOMAINS OF GENERATORS 505

The fourth theorem follows from Example 1, properties of
continuous real valued functions and the fact that the space S is
complete.

THEOREM 4. Suppose peS, 0<^a<b and f is a continuous
function from [a, b] to [0, oo). Suppose {/J~=1 is a sequence of piece-
wise linear functions, each from [α, b] to [0, oo), which converge

T(f(x))pdx is in D(A) whenever
a

<A\ T{fn{x))pdx\ is a Cauchy sequence in S. hi this case

AΫT{f{x))pdx = lim A\h T(fn(x))pdx .

In order to develop useful corollaries to Theorem 4, we make
the following definitions.

DEFINITION 1. Suppose K = {&,-}*=<> is a partition of [a, b] and /
is a continuous real valued function defined on [α, 6]. Then [/; K]
denotes the piecewise linear function defined on [a, b] by the rule

[/; K](x) = \fix3) - f(x^)]l(Xj ~ Sy-iΠfo - *y-J + -fay-i)

for x e [XJ-!, Xj], j = 1, 2, , n.

DEFINITION 2. Suppose 0 < a <: 1. Then A (a) denotes the subset
of S which contains p if and only if for each positive number r,
there is a positive number M(r) so that

\\T{x)p - p\\ < xaM(r)

for all xe [0, r].

It is noted that ΰ ( A ) g φ ) for each αe[0,1]. However, the
next example illustrates that A{1) may not be a subset of D(A).

EXAMPLE 2. Let S denote the Banach space of real valued func-
tions which are bounded and uniformly continuous on [0, oo). For
each fe S, let

Let T be the strongly continuous linear semigroup defined on S by
the rule

[T(β)f](x) = f{β + x)

for each pair (β, x) in [0, oo) x [0, oo). Then / is in D(A) if and
only if f is in S.
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Let g be the function is S so that

(1 - x if xe[0,1]
9 ( x ) = > o

Then g is in zf(l), but g is not in D(A).

DEFINITION 3. Suppose 0 ̂  a < b and each of P, = {x3)
n

ά=, and
^2 = {**}?=<> is a partition of [α, &]. The statement the P 2 is a doubl-
ing refinement of P1 means that

( 1 ) m = 2n and
(2 ) t2j — Xj for j" = 0,1, , n.

DEFINITION 4. Suppose 0 <, a < 6, α e [0,1], /: [α, 6] —• [0, oo) and
P = {P%}"=1 = {{α%fc}|l0}~=1 is a sequence of partitions of [α, 6] so that
Pn+1 is doubling refinement of Pn for each positive integer n. The
statement that / satisfies condition S(cή relative to P means that

( 1 ) {[/; Pn]}n=i converges uniformly to / on [α, 6],
( 2 ) f(ank+1) Φfκank) for n = 1,2, . . . and k = 0, 1, . . , 2n - 1,
( 3) Σ~=i ΣΓ=V I AfnΛ - Afn+li2k\\f{an+U2k+1) - f(ank)\« converges

and

( 4 ) Σ~=i ΣΓ=V 14/U - 4/»+i,2fc+i ll/K,*+i) - /(αn+i,2*+i) lα converges
where Jfn>k = [α%,fc+1 - αΛfifc][/(αnffc+1) - /(α^^)]-1 for n a positive integer,
k an integer in the number interval [0, 2n — 1].

The next theorem is a useful corollary to Theorem 4.

THEOREM 5. Suppose 0 tί a <b, 0 < α ^ l ,

p = {pjr=1 - {κ,}f=r}:=1

α sequence of partitions of [a, b] so that Pn+1 is a doubling refine-
ment of Pn for each positive integer n. Suppose f: [α, b] —• [0, oo) is
continuous and satisfies condition S(a) relative to P. Then if

peA(a), \hT(f(x))pdx

is in D(A) and

T(f(x))pdx = lim A[τ([f; Pn](x))pdx .
J

Proof The proof of Theorem 5 follows from Example 1 and
Theorem 4.

The next theorem relaxes conditions on the function / mentioned
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in Theorem 2. The conditions imposed on point p, however, will be
more restrictive.

THEOREM 6. Suppose 0 <̂  a < 6, pe A{1), f: [α, b] —»[0, ©o) so £Λα£
(1) / ' i s continuous on [α, b]
(2) I/'(a?) I > 0 for all xe[a,b]
( 3 ) / " is bounded on [α, 6].

Then \bT(f(x))pdx is in D(A).

Proof. Let P = {PJ~=i = {{α%fc}|=0}"=i be a sequence of partitions
of [α, b] so that αn,fc = a + (Λ2~2)(δ — α). Then PΛ + 1 is a doubling re-
finement of Pn for each positive integer n and {[/; Pn]}?=i converges
uniformly to / on [α, 6]. The mean value theorem and the hypo-
thesis on / imply / satisfies conditive S(l) relative to P. An applica-
tion of Theorem 4 completes the proof.

It is noted that the same sequence P of partitions used in the

S b

T(f(x))pdx is D(A)
a

whenever p e J(l) and / is a nonconstant and nonnegative polynomial
whose coefficients are either all positive or all negative.

The next example shows that hypothesis (i) of Theorem 2 is not

S b

T{f(x))pdx to be in D(A).
a

EXAMPLE 3. Suppose 0 < b, β > 0, m i s a positive integer, 1 —
1/ra < a ^ 1 and peA{a). Let f(x) = βxm for x ^ 0. Then (/-1)" is
not continuous at 0. However, using the same sequence P as in the

Cb

proof of Theorem 6, I T(f(x))pdx may be shown to be in D(A).

The fourth example will indicate that hypothesis (ii) of Theorem

S b

T(f(x))pdx to be in D(A).
a

EXAMPLE 4. Let C denote Cantor's ternary set (see p. 329 of
[3]). For each x in the interval [0, 1], let

Cx = lub (C n [0, x]) .

Let w be the function defined on [0,1] by the rule

where 2(CX 2-1) denotes the binary form of {Cx-2~ι). Hille and Tamarkin,
in [2], have shown w to be continuous, nondecreasing and to have a zero
derivative almost everywhere on [0,1]. Let/be the function so that



508 J. W. SPELLMANN

f(x) = x + w(x) for x e [0,1] .

Then / is a strictly increasing function which fails to be absolutely
continuous on [0,1]. Thus, one would not expect the second eondi-
tion of the hypothesis of Theorem 2 to hold. However, \ T(f(x))p

Jo

is in D{A) whenever p is in A(l). This is seen by using Theorem 4
and proper choice of partitions of [0,1]. Let

For each in teger m ^ 2,

Mm

Nm

Qm

Mo =

Mx =

N, =

Qi =

let

= {3

= {3

= {3

= {0}, iVfl

= {3

= {3

= {3

.a,

.a,

.a,

. 0 2 2 - .

.200

.111 •

••• am

' ' ' &m

. . . α m

= {1}

•I1

••}

• • } •

_,022

_t200
111

where α< e {0, 2} for i = 1, 2, , m — 1.
For each nonnegative integer n, let P2n and P2%+1 denote the

following partitions of [0,1].

P*n = i l l [ ^ U Nk]\ U J U Qi
U = o J Lfc=o

JP — P U Q

Then if peA(l), i t may be shown t h a t

(1)

(2)

Tdf; P2n](x))pdx - A[T([f; P*+1](x))pdx\\ = 0
o Jo II

A[τ([f; P2n+ι](x))pdx - A[T([f; Ptu+t](x)pdx
Jo Jo

M 2 2 * H

2n + 3%

Where M is a number so that
(3) Mx ^ \\T(x)p - p\\ xe[0, 2] and
(4) Jlf^| |Γ(a?)p|| a?e[0,2].

Thus | A \ T([f; Pn](x))pdx\ is a Cauchy sequence in S. Theorem
I Jθ )n=l

4 implies I T(f(x))pdx is in Z)(A) since {[/; Pn]}"=1 converges uniformly
Jo

to / on [α, 6].

REMARK ON EXAMPLE 4. If t e ([0,1] - C) U (U?=o-P»), the above
T(f(x))pdx is in D(A).

0

This is done by defining the following partitions P'n of [0, ί]. Let
1 (3.0222 •••) denotes the triadic respresentation of 1/3, etc.
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PL = (Pn n [o, *]) u {«}

for each nonnegative integer n. If t e (C - JJ~=o P») the following

theorem may be used to show that I T(f(x))pdx is in D(A).
Jo

THEOREM 7. Suppose 0 ^ a <b, pe A(l) and f is a continuous,
nonnegative, strictly monotone real valued function defined on [α, 6].
Then there is a number M so that

d

A\ T([f; P](x))pdx ^(d- c)M

for each partition P of each subinterval [c, d] of [a, 6],

Proof. The proof of Theorem 7 follows from Example 1, the
fact that T(x)p is a continuous function of x, on (0, ©o) and the fact
that the infinitesimal generator A is linear.
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