PACIFIC JOURNAL OF MATHEMATICS
Vol. 35, No. 2, 1970

CONCERNING THE DOMAINS OF GENERATORS
OF LINEAR SEMIGROUPS

J. W. SPELLMANN

Let S denote a Banach space over the real numbers. Let
A denote the infinitesimal generator of a strongly continuous
semigroup 7T of bounded linear transformations on S, It is

b
known that the Riemann integral | T(x)pdx is in the domain

of A (denoted by D(A)) for each » in S and each nonnegative
number interval [a, b]. This paper develops sufficient condi-
tions on nonnegative continuous functions f and on elements

b
p in S in order that the Riemann integral S T(f(x))pdx be an

element of the*domain of 4.

2. A change of variable technique. A change of variable
theorem may sometimes be used to transform

b d
.7 @)pde to | 7@~y @)pdo
where f~' denotes the inverse of f. This motivates the first theorem.

THEOREM 1. Suppose peS,0=c<d and h is a real valued
function which has a continuous derivative on [c,d]. Then

SdT(x)h(x)pdx
is in D(A) and

ASdT(x)h(w)pdx — WA T@p — hie)T(e)p — SdT(x)h'(x)pdx .

Proof.
lim e[ T(e) — T(O)]SdT(x)h(x)pdx
=0 c
— lim e*lgdieT(x)h(x — ¢)pde — lim e-lSdT(x)h(x)pdx

= lim e—lsz“T(x)h(x — &)pdo — lim s-‘SWT(x)h(x)pdx
~ lim 8_18.1 T@)[h(z) — Wz — &)|pde
= W T@p — KOTEp — | T (@)pda .
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The second theorem then follows as an immediate consequence
of Theorem 1.

THEOREM 2. Suppose peS, 0a<b, 0¢<d and f is a
continuous function from [a,bd] to [0, ] so that
(i) (fH" is continuous on [e, d] and

(ii) S:T(f(x))pdx — iSjT(x)(f‘l)’(x)pdx. Then S:T(f(x))p is in
D(A) and

Al T()pds = £ (FY@T@p — (FYOTOp
— | T@) @) pas
ExAMPLE 1. Suppose 0=<a < b, m and k are real numbers so

that m - 0 and ma + k = 0 for all we[a,b]. Then SbT(mx + k)pde
is in D(A4) and

ASbT(mx + k)pdz = %[T(mb + k)p — T(ma + k)p] -

It is noted that Theorem 2 says nothing about SbT( f(x))pdz be-

ing in D(A) if SbT( fle))pdz does not equal ing(x)(f“)’(x)pdx or if

(f~%" is not continuous on [¢, ,d]. A different approach is considered
in the next section which sometimes allows for such exceptions.

3. A closed operator technique. In this section, the restrie-
tions imposed on the function f in the hypothesis of Theorem 2 will
be relaxed. In accomplishing this, additional restrictions will be
placed on the point p mentioned in Theorem 2. The fact that the
infinitesimal generator A of the semigroup 7 is a closed linear
operator implies the next theorem.

THEOREM 3. Suppose pe D(A), 0 < a < b and f is a continuous
function from [a,b] to [0, ). Then

[, 7(fw)pas
is in D(A) and

Al T(f@)pds = | T(f) Apds .
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The fourth theorem follows from Example 1, properties of
continuous real valued functions and the fact that the space S is
complete.

THEOREM 4. Suppose pe S, 0<a <b and f is a continuous
function from [a,bd] to [0, «). Suppose {f.}r-. is a sequence of piece-
wise linear functions, each from [a,b] to [0, ), which converge

uniformly to f on [a,b]. Then SbT(f(x))pdx is in D(A) whenever
{4l 7.0 pd0}

o
n=1

1s a Cauchy sequence in S. In this case
AS"T( f@)pdz = lim A VT( £(@)pds .

In order to develop useful corollaries to Theorem 4, we make
the following definitions.

DeFINITION 1. Suppose K = {x;}7-, is a partition of [a,d] and j
is a continuous real valued function defined on [a,d]. Then [f; K]
denotes the piecewise linear function defined on [a, b] by the rule

[f; K@) = [fw;) — ;) — 2;2) e — @;.] + flas)

for zefx;_,2;], 7=1,2, --+, m.

DEFINITION 2. Suppose 0 < a < 1. Then 4(a) denotes the subset
of S which contains p if and only if for each positive number 7,
there is a positive number M(r) so that

1 T(x)p — pll < a*M(r)
for all z¢]0, 7].

It is noted that D(A) S 4(«) for each ae[0,1]. However, the
next example illustrates that 4(1) may not be a subset of D(4).

ExampLE 2. Let S denote the Banach space of real valued funec-

tions which are bounded and uniformly continuous on [0, ). For
each fe S, let

1F 1l = Tub |fi@)|

Let T be the strongly continuous linear semigroup defined on S by
the rule

[T(B)f1(=) = A8 + @)

for each pair (8, %) in [0, ) x [0, ). Then f is in D(A) if and
only if f’ is in S.
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Let g be the function is S so that

1—2 if ze]0,1]

I@D=1 0 =1

Then ¢ is in 4(1), but ¢ is not in D(A).

DEFINITION 3. Suppose 0 < e <b and each of P, = {z,;}7-, and
P, = {t,}iv, is a partition of [a, b]. The statement the P, is a doubl-
ing refinement of P, means that

(1) m = 2n and

(2) ty;=u;for j=0,1, -+, nm.

DEeFINITION 4. Suppose 0 < a < b, @€ |0, 1], f:[a, b] — [0, <) and
P ={P,})s., = {{a.}tis)r-: is a sequence of partitions of [a, b] so that
P,., is doubling refinement of P, for each positive integer n. The
statement that f satisfies condition S(«) relative to P means that

(1) {[f; P.l}z=. converges uniformly to f on [a, d],

(2) f(ank+1) :’ﬁf\a’nk) fOI' n = 1’ 2? e and k= Os 1, ] 2" — 1’

(8) >0= 205 Afue — Afurnze || f(@us4)) — flaa)|* converges
and

(4) 205 205 4 e — Afarnoeri | A@ ) — f@nii,2e00) [* cOnverges
where 4f, . = [@y,1+1 — @t ][[(@n,1+1) — fan,i)]™ for n a positive integer,
k an integer in the number interval [0, 2" — 1].

The next theorem is a useful corollary to Theorem 4.
THEOREM 5. Suppose 0 <a <b, 0 <a =<1,
P = {Pn =t = {{ank}in;&l =1
a sequence of partitions of [a, b] so that P,., is a doubling refine-

ment of P, for each positive integer n. Suppose f:[a, b] — [0, ) s
continuous and satisfies condition S(a) relative to P. Then if

pe 4(@), | T(f@)pdo
is tn D(A) and

Al T(f@)pde = lim A[ (1 PA@)pde

Proof. The proof of Theorem 5 follows from Example 1 and
Theorem 4.

The next theorem relaxes conditions on the function f mentioned
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in Theorem 2. The conditions imposed on point p, however, will be
more restrictive.

THEOREM 6. Suppose 0 < a < b, pe 4(1), f:[a, b] — [0, «) so that
(1) f' 4s continuous on [a, b]

(2) |f'(@)] >0 for all x¢€][a,b]

(3) f” is bounded on [a, b].

Then SbT( fw)pdz is in D(A).

Proof. Let P = {P,}o., = {{au}izds=: be a sequence of partitions
of [a, b] so that a,, = a + (k2°%(b — a). Then P,,, is a doubling re-
finement of P, for each positive integer n and {[f; P,]}3-. converges
uniformly to f on [a,b]. The mean value theorem and the hypo-
thesis on f imply f satisfies conditive S(1) relative to P. An applica-
tion of Theorem 4 completes the proof.

It is noted that the same sequence P of partitions used in the
b
proof of Theorem 6 may be used to show that S T(f(x))pdz s D(A)

whenever pe 4(1) and f is a nonconstant and nonralegative polynomial
whose coefficients are either all positive or all negative.
The next example shows that hypothesis (i) of Theorem 2 is not

a necessary condition for SbT( fi@)pdz to be in D(A).

ExaMPLE 3. Suppose 0 < b, 8> 0, m is a positive integer, 1 —
1/m < @« £1 and pe d(«). Let flx) = ga™ for £ = 0. Then (" is
not continuous at 0. However, using the same sequence P as in the

b
proof of Theorem 6, S T(f(x))pdz may be shown to be in D(4).

The fourth example will indicate that hypothesis (ii) of Theorem
b
2 is not necessary for g T(f(x))pdx to be im D(A).

ExaMPLE 4. Let C denote Cantor’s ternary set (see p. 329 of
[3]). For each 2 in the interval [0, 1], let
C,=lub(CnIo0, 2] .
Let w be the function defined on [0, 1] by the rule
w(@) = ,(C,+27)

where ,(C,-2"') denotes the binary form of (C,-2-*). Hille and Tamarkin,
in [2], have shown w to be continuous, nondecreasing and to have a zero
derivative almost everywhere on [0, 1]. Let f be the function so that
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fw) = + w(x) for xe[0,1].
Then f is a strictly increasing function which fails to be absolutely
continuous on [0,1]. Thus, one would not expect the second condi-
1
tion of the hypothesis of Theorem 2 to hold. However, ST( flx)p
0
is in D(A) whenever p is in 4(1). This is seen by using Theorem 4
and proper choice of partitions of [0,1]. Let
Mo = {O}’ No = {1}
M, = {;.022...}
N, = {;.200 ...}
Q, = {111 ...} .
For each integer m = 2, let
M, = {a, 0 a, 022 ...

N, = {na, +++ @,_,200 « ..
Q’m = {3'“1 e a/m__llll cee

f—

S

where a,€{0,2} for 1 =1,2, «+-, m — 1.
For each nonnegative integer =, let P,, and P,,., denote the
following partitions of [0, 1].
0

C-

P, = {L’j [M, U N,,]} U {

k=0
P2n+1 == PZn U Qn+1 .
Then if pec 4(1), it may be shown that
(1) ”ASOT([f; P,.\(x))pda — A§0T<[f; Py )(@)pda| = 0

(2) 4] 705 Pucd@)pds — A TS Prucdpdn| < 2222

k

I

Where M is a number so that

(3) Moz ||T(x)p —pll =€][0,2] and

(4) Mz || T@)pll x € [0, 2].
Thus {ASIT([ 5 Pn](ac))pdx}i is a Cauchy sequence in S. Theorem
4 implies SIT(f(x))pdx is in D(A) since {[f; P.]}z-. converges uniformly

to f on [a, b].

REMARK ON ExXAMPLE 4. Ifte ([0,1] — C) U (Us= P,), the above
t
technique may be used to show that S T(f(x))pdx is in D(A).
This is done by defining the following partitions P, of [0, ¢]. Let

1 (5.0222 - -+) denotes the triadic respresentation of 1/3, ete.
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Pl =(P,N[0,¢]) U {t}
for each nonnegative integer n. If te(C — Uy, P,) the following
t
theorem may be used to show that S T(f(x))pdx is in D(A).
0

THEOREM 7. Suppose 0 < a < b, pe 4(1) and f is a continuous,
nonnegative, strictly monotone real valued function defined on [a, b].
Then there is a number M so that

|4\ 15 Pi@)paa| = @ - on
for each partition P of each subinterval [c, d] of [a, b].

Proof. The proof of Theorem 7 follows from Example 1, the
fact that T(x)p is a continuous function of x, on (0, =) and the fact
that the infinitesimal generator A is linear.
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