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RITT'S QUESTION ON THE WRONSKIAN

D. G. MEAD AND B. D. MCLEMORE

Among the questions for investigation at the end of his
Colloquium Publication, Differential Algebra, J. F. Ritt sug-
gested the study of special differential ideals, in particular
those generated by the Wronskians. In this paper we obtain
a test for an element to be a member of a certain (algebraic)
ideal, and apply this result to the differential ideal generated
by the second order Wronskian.

Let yt, z3; i, j e {0,1,2, •} be independent indeterminants over
a field F. We work in the ring R = F[yi9 zs]. Let (α, δ), with a
and b integers satisfying 0 <̂Ξ a < 6, represent the determinant

Va

and call a + b the weight of this determinant. If F is of character-
istic zero and y&i) is considered to be the itiL derivative of y(z), then
W — (0,1) is the Wronskian of y and z. Using the Wronskian as a
model, we consider ideals

it = (w0, w»..., w t ) ,

where TΓ{ is any fixed linear combination with nonzero coefficients
in F, of all determinants of weight i + 1. For Pe R we obtain a
constructive procedure to determine if P e / = Io U 2Ί UI2 U . In fact,
the procedure can be applied directly to polynomials in expressions
P(a19 bj) P(an, δn). This work is similar to that of Levi [3] for the
differential ideals [yp] and [uv] as well as [1], [2], [4], [5], and [6].
Our results are a generalization, for n = 2, of those in [1] to a general
ring.

It is known ([1]) that the exponent of {1} with respect to I is
infinite. We will see that if Pe{I} then P Qeliί Q is a power
product of sufficient degree in yi9 z3- with small i and j , while if P i I
then P-Q$I for all power products Q if ί and j are large. In §2
we obtain a particular basis for R as a vector space over F, a subset
of which provides a basis of R modulo I. This leads directly to canoni-
cal forms for elements of R and a constructive test for an element
of R to be in I. (Although it is known ([7], p. 34) that the Wronskian
is zero if and only if y and z are linearly dependent, the Ritt-
Randenbush Theorem of Zeros ([7], p. 27) informs us that one cannot
distinguish by zeros, elements which are in {1} from those in J. Thus
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a test for membership in / cannot be stated in terms of solutions.)

1* Ordering* We order m-tuples, X — (χlf •••,»«), with each
xt a rational number, lexicographically, and say that X' = (x[, •••,$»)
is higher than X if x1 < x[ or xi = x\ for i <̂  h — 1 and % < α?i.

We consider elements of R — F, called δ-terms, which are ex-
pressed in the form

P= yh--- yikzh zh(a19 b,) (αΛ, δΛ)

and let S = {ίJf , ik, j 1 9 , j l 9 αx, 6^ , αw, δn} be the set of sub-
scripts of P, k + n = degy P,l + n = degz P. Comparing only elements
with the same set of subscripts, the same degree in y, and the same
degree in z, we partially order R by

(n + I)" 1 , αx + &!, a2 + &2, , αΛ + 6n, ix, , ik, b19 , bn

where we assume αx + 6X ̂  α2 + 62 ^ ^ αΛ + δΛ and ί : ^ i2 ^ ^ ik.
(We also assume α̂  < 6< for all i.) I t is clear that this is indeed a
partial ordering and that if P > P' then PQ > P'Q for all Q Φ 0.

We say that the δ-term P is replaceable if

-P = Σ CiQ; with c< e F

where each Q̂  is a δ-term comparable with P and lower than P (in
the ordering just described). If for each Q{ the difference with P
occurs before blf we say that P is s-replaceable.

2* Basis*

DEFINITION. The δ-term P is called a λ-term if
( 1 ) n = 0 or aι ^ a2 <g <£ αn and b^b2^ ^ 6W;

( 2 ) i i ^ . . . ^ i ^ i x ^ •-. ^ i , ;
( 3 ) αn ^ ίi and αw ^ i l β

In this section we show that the set of λ-terms is a basis of R.

LEMMA 1. If P is a δ-term which fails to satisfy (1) of the de-
finition of a X-term, then P is s-replaceable.

Proof. Assume a± < a2 and b2 < b19 and consider the fourth order
determinant

D =
0
0
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Subtracting the third row from the first, the fourth from the second
and then expanding by minors of the first two rows, we see that
D = 0. Expanding D (in the original form) by minors of the first
two rows and using D = 0 we find:

(a19 δi)(α 2 , b2) = (a19 a2)(bx, b2) + (a19 b2)(a2, bλ) .

Now, since αx < α2 < 62 < b19 it follows that aι + a2 and aγ + b2 are
both less than a± + bι and α2 + b2. Thus each product on the right
side of the equation is lower than (a19 δi)(α2, b2). It follows that P is
^-replaceable.

LEMMA 2. If P is a δ-term which fails to satisfy (2) of the de-
finition of a X-term, then P is s-replaceable.

Proof. Assume ik > j \ and let a = ikyb = j \ . Note that yazb =
— (6, α) + yhza, and each term on the right is lower than yazb. It

ΐ follows that P is s-replaceable.

LEMMA 3. If P is a δ-term which fails to satisfy (3) of the de-
finition of a X-term, then P is s-replaceable.

Proof. Assume iγ < an and consider the third order determinant

Vc Va Vb

Vc Va Vb

where c — iu a = an, and b = bn. Expanding D by minors of the first
row and using D = 0, we find

ye(a, b) = ya(c, b) - yb(c, a) .

Again, since c < α, each term on the right is lower than P and it
follows that P is s-replaceable. (The other case j \ < an is treated
similarly.)

The three lemmas show that if P is a δ-term which is not a λ-
term, then P is replaceable. Since the number of δ-terms with a
fixed set of subscripts is finite, this replacement process must terminate.
Thus we have proved

THEOREM 1. The X-terms span R.

We now complete the proof that the λ-terms are a basis of R.

THEOREM 2. The X-terms are linearly independent over F.
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Proof. Assume the λ-terms are dependent and let

(1)

where the Pt are λ-terms and c< e F, with some Ci Φ 0. It is clear
that we may assume that each P4 has the same set of subscripts,
S, and the same degree, d, in y. Let d be minimal; that is, we as-
sume the λ-terms with degree in y less than d are linearly inde-
pendent. (Clearly, the λ-terms of degree zero in y are independent.)
We rewrite (1) in the form

(2) Σ ^ P ^ C o P o

where for each P; on the left the number of determinants in P{ is
positive, while Po is a power product of y's and z's. Of all the terms
on the left with ct Φ 0, let b = max b{ where (ai9 6<) is the determinant
of minimum weight in P<# We note that for all i, ai = a = minimum
number in S.

In (2), let yt = ya and zt = za for i < b. If, by this substitution,
Pi becomes Pi9 we see that although some P< may be zero, not all
of them are. Also each Pt which is not zero is a λ-term, and has
(α, b) as the determinant of lowest weight. Then, with Pt = (α,
we have

(2) (

and if Γ = Σ ^Q*,

(3) (α, δ)Γ= c0P0 .

But on the left side of (3) is the expression ybzaT which cannot
appear on the right since a < b and Po is a λ-term. Thus T = 0.
But Γ = Σ C Q,-, some ^Q; Φ 0, and each nonzero Qi is a λ-term of
degree d — 1 in y. However, d was the minimum degree in y for
which λ-terms were dependent. This contradiction completes the
proof of Theorem 2, and also concludes the proof that the λ-terms
are a basis of R.

3* Canonical forms*

DEFINITION. Let P be a λ-term. P is called a /3-term if:
(1) a, > 0
( 2 ) α* < ai+ί for all ΐ
( 3 ) bi < bi+1 for all i.

LEMMA 4. // the X-tβrm P is not a β-term, then P is replaceabley

modulo I
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Proof. If a1 = 0, expand P^, b^"ιWbirί = 0 (modi) and solve
for P. Similarly, if ak^ = ak, or if bk = bk+ί, expand P(ak, b^Wn =
0 (mod I) where ft = ak + bk — 1 and solve for P. In each case it is
easy to see that every λ-term obtained is lower than P, and, since
every term which is not a λ-term is s-replaceable, it follows that P
is itself replaceable. Again, because there are a finite number of λ-
terms with a given set of subscripts, this process must terminate.
Thus we have proved half of

THEOREM 3. Every element in R is expressible as a linear
combination, with coefficients in F, of a finite number of distinct
terms

(*) PWaWb--.Wr

where P is a β-term or 1. This expression, which may be of degree
zero in the Wys, is unique.

Proof. For each term A of the form (*) we will obtain the
highest λ-term, B, in the expression for A as a linear combination
of λ-terms. The correspondence A —> B is one-to-one, hence no linear
combination of terms A of the form (*) can vanish, since the highest
B cannot cancel.

Let A be a fixed term of the form (*). With our standard nota-
tion for P, and with Vt = α* + biy we define a determinant Ch for
every Wh in (*). If S = 1, n = 0, or h + 1 < Vlf let Ch = (0, h + 1).
If Vk ^ h + 1 < Vk+1, let Ch = (ak, h + 1- ak). Finally, if Vn ̂  h + 1,
let Ch = (αn, ft + 1 — an). It is easy to see that B = PCaCb Cr

has the properties described above and this completes the proof of
the theorem.

COROLLARY 1. The β-terms form a basis of R mod /.

COROLLARY 2. A necessary and sufficient condition for an ele-
ment of R to be in I is that none of the terms (*) of its canonical
form is of degree zero in the W7s.

COROLLARY 3. If P is a β-term of degrees dγ and d2 in y and
z respectively, and of degree n in 2nd order determinants, then the
weight of P ^ n(dL + d2 + 2 — n).

Proof. The /3-term of minimal weight and the desired degrees
is yi^zάr\l, 2)(2, 3) . . . (n, n + 1).

An equivalent statement of Corollary 3 is
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COROLLARY 3'. If P is a X-term of degree dt and d2 in y and
z respectively and of degree n in 2nd order determinants and the
weight ofP< n(dL + d2 + 2 — n), then Pel.

COROLLARY 4. If P is a X-term of degree n in determinants^
and

(a) Q is a power product in y,yu , yn-u %iZu > 3»-i» o/aά,
the degree of Q is large enough, then P Qel.

(b) Q is a power product in y{ and zj9 with i, j >̂ n, then
PQel if and only if Pel.
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