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UPPER AND LOWER BOUNDS FOR EIGENVALUES
BY FINITE DIFFERENCES

J. R. KUTTLER

Upper and lower bounds for the eigenvalues of elliptic
partial differential equations associated with fixed membranes
and clamped plates are given in terms of corresponding eigen-
values of their finite difference analogues, The upper bounds
are found by interpolating piecewise polynomials through the
solutions to the difference equations and substituting into the
variational principle associated with the differential equations,
The lower bounds are found by averaging the solutions to
the differential equations and substituting into the discrete
variational principle,

In this paper we are concerned with the following eigenvalue
problems:
the vibration of a fixed membrane,

(1) dJu+Me=01In R, w=0 on oR ;

the vibration of a clamped plate,

(2) fo—0Qv=0i R, v=2"=0 on R ;
on
the buckling of a clamped plate,
. . 0w
(3) Aw—l—/lzlw:OlnR,w_%:OonaR.

Here R is a bounded region of Euclidean n-space with boundary oR,
4 is the Laplacian, 0/6n the normal derivative.

Each of these problems has a positive sequence of eigenvalues
having no finite accumulation point:

D<A AR < e, 0< QW09 < eee, 0 <AV S AP Z e,

These eigenvalues may be characterized by the following minimax
principles:

> S [aa'(alul + oo 4 a,,u,,)]zdx

=1 i

(4) A = min max il ,
ag,c*,0f SR[alul _I_ ceo + akuk]z

where the minimum is over linearly independent sets of functions
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Uy, <+, u; which are continuous, have piecewise continuous first de-
rivatives, and have support in R;

= min max ’

i
L e [aw, + ++« + azv,]de
R

= min max

ag,t e, 0 0
; Sk[ﬁx-

7

2 ’
(qw, + - + a,,wk)] de

where the minima are over linearly independent sets of functions
Vi, +o+, v, and w, -+, w,, respectively, which are continuous, have
continuous first derivatives, piecewise continuous second derivatives,
and have support in R.

We will obtain explicit upper and lower bounds for these eigen-
values in terms of the corresponding eigenvalues of the finite difference
analogues:

(8) LKV -2, V=0o0n R,, V=20 off R, ;
(9) LW+ 4,4,W =0 on R,, W=0 off R, .

Here R, is a bounded subset of the mesh
S, = {(h, +++, 0,h): 4, -+, 1, are integers}
for » >0, and 4, = X%, 0,0; is the (2n + 1)-point approximation of

the Laplacian, where 0;, 0; are forward and backward ¢-th difference
operators:

aiU(xv ...,xn) = h"l[[](gcly cee, Ry v, ) — U,y « -, 2, ...,;x;n)] ,

512U(x1y ""xn) = h—I[U(a:n ey Wy vy xn) - U(xu ey Xy — h, ""xn)] .

Each difference problem has a finite positive sequence of eigen-
values:

0 <M AP S -or M, 0 < QP < 0P

IA

e SR, 0< A AP = e S A,

where v is the number of points in R,. These eigenvalues also may
be characterized by minimax principles:
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S S iU, 4+ + @, U]
(10) MP = min max =5k
agyer hnsz [@.U, + -+ + &, U
h

)

hn Z [Ah(alvl + e + aka)]z

11 2P = min max —=>* ,
(1) b ageay B [, Vi + o0 + a, V]2

Sh

hn Z [Ah(alWl + e + aka)]z

12 AP = min max St ,
( ) " ﬂp'":“kz h SZ' [ai(al W1 o+ oag Wk)]z
K2 h

where the minima are over linearly independent sets of mesh funec-
tions U, -+, U, and V,, -+, V, and W,, ..., W,, respectively, which
vanish off R,.

2. The lower bounds. To obtain lower bounds we take the
continuous eigenfunctions of problems (1), (2), (3), and average them
over cubes of sides » about mesh points. The resulting mesh func-
tions are then admissible candidates for the minimax principles (10),
(11), (12). The technique is due to Weinberger [4], who applied it to
problems (1) and (3), among others.

To simplify notation, let © = (%, ---, ,), let ¢; be the unit vector
in the ¢-th coordinate direction, and let

Ch(x) = {(yu "'!yn): Iyz - le = %h)i: 1, ey n}

be the cube of side & about =x.
If v is a continuous and piecewise differentiable function with
support in R, then

(13) Ut) = h—”SCh(x)u(y)dy , ze S,

is a mesh function which vanishes off R,, the subset of S, consisting
of points x for which C,(x) N R is not empty. Then,

(14) SRuzdx -wEU -3 S%m[u(y) — U@)]dy .

TE Ry,

Now since
[, ) — Ualdy = 0,
Cp (=)

each integral on the right of (14) is bounded by the integral of the
square of the gradient of w times the reciprocal of the second free
membrane eigenvalue for the cube of side h, and



432 J. R. KUTTLER

(15) SRuzdx —PRUs Z_z SR[gZ]dx .

We also have, by integration by parts,

(16) 0,U() = b=~ | s — 2) 240 g,
Ch(z+e;h) UCh(2) 0Y;
where
E+3h, —th=&i=4ih,
V@) =43h—&, = Eé%h
0 , otherwise.

It follows that

L[%]de — 1" S 0.}

an s S (s — xi)[M Y U(x)Tdy :
zeSp JCp(z+e;h)UCH(x) 8@/1
1=1,+0,m.
Therefore, since the right side is positive,
(18) i h" E [@;U]Z § ig [au,]zdx ]
i=1 Sp i=1JR 89@1

If the function u is continuous, has continuous first derivatives and
piecewise continuous second derivatives, each integral on the right
side of (17) is bounded by the integral of the square of the gradient
of ou/oy; times the reciprocal of the second eigenvalue 7, of the
weighted free membrane problem

Ap{y) + Ny(y; — z)Ply) = 0, ye Cylx + e;h) U Ci(x) ,

(19) ?_‘fg.ff_) —0, , yed[Cylw + eh) U Co(@)] -

The eigenvalue here is the second one because

v (y; — %)[%(y—) — 0; U(x)]dy =0.

Sch(z+eih)uch(m)

Since V(y; — x;) < h, a lower bound for 7, is the second eigenvalue of
the problem obtained by replacing v with # in (19), i.e.,

Ny = % Th2 .

Therefore,
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(20) Swexburz |2

1=1

] — 8—-8 [dulida .

Still assuming u is continuous, has continuous first derivatives,
and piecewise continuous second derivatives, we have, by integration
by parts,

9:9:U(x) = h—”-ZS Fwi—e) 2Dy =1, e,
Ch(z—e;R)UCH() UCH (z+esh) oY
where
- $h? — &, —3h =65 3h,
FO=1 . . 5
3(¢& — 3n)?, h =6 3h,
0 , otherwise .
Then
S [azu]zdw — S [03.UF
rL oyt Sh
21 —2 0 u(y) 5 :
@ x| Foi—a)| Z R ~25.U@ [ay 2 0,
zeSp JCp(z—e;R)UCKL(2)UCK(z+ezh)

’i: 1, ..o’n .
We also have, for ¢ + 7,

S [ o'u ]de — b* 3,100, UF

R axzax:,
= —2 R w‘ , — .
(22) xeshgch(x)uohuﬂih)uch(x+e,-h)uoh(z+eih+ejh)qk(yl xt) (y’ xj)
2 2
X[gyu—;g)-—aiajU(w)]dng, =1, e, m.
i0Y;

Combining (21) and (22), we have
@3) b SU4,UF < S [dulrdz .
Sk R

Now we obtain the desired lower bounds. Let %9 be the eigen-
function associated with A9 in (1). We may assume

S wOuIds = 6(i, 7) 5
R
where 6(7, j) is the Kronecker delta. Let

U@ =] wowdy, se Ry .
Cp(x)
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We employ (15) and (18) with % = au® + -+« + q,u®, U = a,U, +
eee + a,U, in (10) and see that

)\‘(k) < )\‘(k)
h = h,z ,
1 — =W
7-:2
or, what is the same thing,
(k)
(24) _“’#— <A®
k
L+ oM

Next, let v) be the eigenfunction associated with 2% in (2), ‘also
such that

| o09ds = (i, 5) .
R
Let
Vi) = wg V9 (y)dy , seR, .
Cp(z)

Employing (15) and (23) with % = @™ + <+« + 0¥, U=a,V, +
eer + 0,V in (11), we see that

Q‘k) = Q(k)
h = ]’I,-—Z ’
1—Low
71.2
or, equivalently,
(25) _ 90— gw,
1+ Lo
"

(Inequalities (24) and (25) correspond to (2.25) and (8.10) of [4].)
Next, let w'’ be the eigenfunction associated with 4% in (3), such
that

5[ 200 g = 57, -
i=1JR axi axt
Let
Wi = 1| wo @y, zeR,.
Chp ()

Employing (20) and (23) with v = a,w® + +++ + q,w®, U= a,W, +
vee + @, W, in (12), we see that



EIGENVALUES BY FINITE DIFFERENCES 435

AP < _Aav ,
1 — gl g
nz
or,
(26) W qw,

2
1+ 8l g

T
This inequality is new.

3. The upper bounds. To obtain upper bounds we take the
mesh eigenfunctions of problems (7), (8), (9) and interpolate to obtain
admissible candidates for the minimax problems (4), (5), (6).

Polya [3] has applied this technique to problem (1) using piece-
wise linear interpolation. Specifically, he considered the mesh domain
R, consisting of points z in S, such that C,,(x) c B. Each mesh
square with vertices at points of S, he divided into two triangles
by a diagonal through two vertices. Given a mesh function U which
vanishes off R,, he interpolated a function w, linear on each triangle
and agreeing with U at the vertices. He then proved the estimates

Sﬁmgmzw—wimzmmh

TERp zERp

zg[j—;‘ ‘dz = 31 3 [BUT,

i=1 zeSp
from which it follows that, for n = 2,

)\’(k)
27 A <
1 — a5
Weinberger [4] indicates how this may be extended to higher dimen-
sions.

For the problems (2) and (3), however, piecewise linear functions
are not smooth enough to be admissible in (5) and (6). We must
interpolate with functions which are cubic polynomials in each space
variable in each mesh cube, and such that the funection is continuous
with continuous first derivatives across the sides of the cube.

Let us first consider the one-dimensional case (n = 1). Given a
mesh function U, we uniquely define the interpolating function, P,U,
by requiring that for ze¢ S,

P,U(w) = U), %[Ph U)] = 4[6U() + 3U@)] .

By linearity,
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PUG) = 3, Uw)Po@ ) ,
so it suffices to define

kw(x — y) = Pz, y)
1-— El _3_‘
2

’ |x'—y|§h9

B R e i
h 21 h
0 y 2 < e —y) .

For general n, then, we define
P,U(x) = Ph,xIPh,xz tee Ph,xnU(xU SRR xn)
= 3 U@ IT ks — ) -
YERp =1

Let us assume R, consists of point z of R, such that C,,(x) CR.
Then, for U vanishing off R,, P,U will vanish off . We now wish
to estimate

SR[P,, Ulds .

Let us again first do the case # = 1. We have

[" Ptz = S 00U e - Dk - 2z

S U@UG)| @k + @ - 1)dz

z,ye8

p3} (x){U(x)S k(@) ]z + [U — k) + U@ + )]

H

ku(@)kn(z + h)dz + [Ux — 2h) + Uz + 2h)]

8

+

3

% S“L'” W@)ku(z + 2h)dz + [Uw — 3h) + Uz + 3h)]

s\ k@) + 3h)dz}

—oco

=k U(x){ Ulz) + 560[U(x — k) + U + )]
- ——[U(x —21) + Uz + 2h)]

560[U(x —3h) + U + 3h)]}

_l422 1 ;6ns7s
_hg;shU(x){I S5+ 560h86}U(x)
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Then, for general n, we have

| [Ptz = 5 U@Ue T | ke - b, - 20z
(28) o )

» TR T
— Y U [ — Ly _hﬁagag]U i
23 U@ I | T — gh"00i + 2 @)

zeSp

Uaz= 3 5 U@U@| ke - 2k - 2)de

"” 0
é SR[&Z,_ i=1%,9y€Sp
f(29) . P

n — 1 —
- S U [aiai — S - __h4a3aa]
2 2 U@ 120
1

~ 1
|l I — = h'0%* ——h68383]U
[ m z + 560 (x) .

Similarly, we have
Yy
n oo
<L\ oato; — 2)ka(w; — 2)dz

Also,

[[4PUriz = 3 VUS| ke - k@ - 2

z,Yy€S

h
n +oo
<11 S_Nk,,(x,- — 2 )ealy; — 2,)dz;
J#

n B
+ 3 | The - 2 — 2dz
2,9 —oo

19:1'
+oo
x| k(s — 2)iw; — 2)dz,

n oo
X ];[ S kw(@, — 2)ki(y — z,)dz,]
i
@0 W 3, Ua{S [0 - Swot]
€Sp
1
_ _h4azaz L eaaaa]
2 [ * 560"
9&
" 1
803, — Lo — ——h48333]
+ Z=[ 12 120

= 1,.x
055 — W05 - —h43383]
X[ 1% 1%~ 120

% II [I - _h43232 + g_hﬁaaaa]} U) .

The desired inequahtles are obtained from (28), (29), (30) by using
the summation by parts formula
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> Us,V=-3,Vo,U,

Sp Sh
for functions with compact support. We consider the case = = 2.
From (28) we have

SR[Ph Utds = IS, {U2 - %h“([&f UF + [U])

1 1
— —W(BUT + [BUT R[BUT
sao” [GUT + [0:UT) + 7=oh0i0U]

1 1
—— W[ U + [0, U
+ 22400 (90:UF + [92.UF) + 313600

>ny {U2 - Z%m([aw]z + 2[00,UT + [0,UT)

Sh

WU T

— g (RUT + 300.UF + 305:UF + [RUD)} -

Therefore,

1 1
31 S Ulde = h* — R 6 (3 .
(31) R[Ph Pde = h SEh', U[U 40h A4,U + 560h AhU]

Similarly, from (29), we have

120 2240

?

62 3 SR[ai.PhUTdm =h3 U[—AhU+ Lyppy - 1 hmw],

2 I a |2 | 1
E < h? S 1) — + = 242
p S PhU(x) dx_h £ AhU hAhU

rLOx;
(33) 1 1
- WHU + v,
168000 " 1334000 "

and from (30), we have
(34) S [4P,UTds < 1* S U[AU — s 4U]
P a

Now we obtain the upper bounds. Let U{” be the eigenfunction

associated with A\§" in (7) such that
h S UP U = 6(1, 9) -
Sh

Let w; = P,U. We use (31) and (33) in (4) with U = q,U" + -
+ a,U* to see that, for n = 2,

1 s 1 6
th(L) __|__ 10y (k)
168000 1334000

1 — ih‘;Mbk)Z _ _1_h6)\’2k)3
40 560

1 2
ALE) + _h2>\l(k) +
h 12 h

(35) e <
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Lysar 4 o)

— )}k) 4_ el
T

which, for % sufficiently small, is a better bound than (27). Let V&
be the eigenfunction associated with 2§ in (8) such that

WX VOV = 60, 7).
Sh

Let v; = Ph ;ij)_ Use (31) and (34) in (5) with U = a1V;£1) 4 oeee +
a, Vi to see that, for n = 2,
(36) o < Q® 1ROl

a 1 — LhﬂQ;f‘) _ —l—hﬁ.Qﬁf‘)s/z
40 560

(where the Schwarz inequality was employed).
Finally, let W;” be the eigenfunction associated with 4’ in (9)
such that

S S WL WY = 5(4, 1)
i=1 Sh

Let w; = P,W,". Use (32) and (34) in (6) with U = o, W® + ... +
a, Wi to see that, for n = 2,

(37) A < AP + IRAP
= 1 R 1 s
1 — —RAAP? — _ psA
120 " 2240 "

Explicit upper bounds for higher dimensions may be obtained in
the same fashion from (28), (29), and (30). It is clear that, in general,

(38) AF) < Mbk) + O(hZ/\l;Lk)z) ,
(39) Q(k) é ‘Q;Lk) + O(hzgzkﬁlz) ,
(40) A(k) é A}(Lk) + o(th;Ll:)ﬁ) .

4. Conclusion. We notice that the lower bounds (24), (25), (26)
are in terms of difference problems on an R, such that

Rc U Cy),

TERp

while the upper bounds (38), (39), (40) are in terms of difference
problems on an R, such that

U Cilm)cR.

€ R}

However, the problems (1), (2), (3) depend continuously on the domain
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R in such a way that if R, R’ are domains whose boundaries are
within 0(h), then, for each k, the eigenvalues A*, 2%, A% for R are
within 0(k) of the eigenvalues N®, Q'® A'® for R’, respectively.
With this consideration, we can combine the bounds (24) and (38), (25)
and (39), (26) and (40), to say that if R, is such that U..z, Ci(x) has
boundary within O(%) of the boundary of R, then

(41) B —\# | = Oh)
(42) oW — 2P| = Oh) ,
(43) 4% — 4P| = O() .

Estimates like (41), (42), (43) can be used in proving convergence
of more accurate finite difference schemes which may be regarded as
perturbations of the schemes (7), (8), (9). See the paper [2] for
details.

Upper and lower bounds for eigenvalues of free membranes by
similar techniques may be found in [1]. Further references may be
found in [1], [2] and [4].
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