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UPPER AND LOWER BOUNDS FOR EIGENVALUES
BY FINITE DIFFERENCES

J. R. KϋTTLER

Upper and lower bounds for the eigenvalues of elliptic
partial differential equations associated with fixed membranes
and clamped plates are given in terms of corresponding eigen-
values of their finite difference analogues. The upper bounds
are found by interpolating piecewise polynomials through the
solutions to the difference equations and substituting into the
variational principle associated with the differential equations.
The lower bounds are found by averaging the solutions to
the differential equations and substituting into the discrete
variational principle.

In this paper we are concerned with the following eigenvalue
problems:

the vibration of a fixed membrane,

(1) Au + Xu = 0 in R, u = 0 on dR

the vibration of a clamped plate,

(2) A2v - Ωv = 0 in R, v = -|^- = 0 on dR
on

the buckling of a clamped plate,

(3) A2w + ΛAw = 0 in R, w = ^ = o on dR .
on

Here R is a bounded region of Euclidean π-space with boundary dR,
A is the Laplacian, d/dn the normal derivative.

Each of these problems has a positive sequence of eigenvalues
having no finite accumulation point:

0 < λ(1) ^ λ(2) ^ , 0 < β(1) ^ β(2) ^ , 0 < Λa) ^ Λ{2) g .

These eigenvalues may be characterized by the following minimax
principles:

Σ ( \^-(a^ + + atuk)\
(4) \w = min max —

dx

\ [ α ^ + + akukf
JR

where the minimum is over linearly independent sets of functions
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u19 > ,uk which are continuous, have pίecewise continuous firsiΓde-
rivatives, and have support in R;

\ [Δ{aιv1 + . . . + akvk)]2dx
( 5 ) Ω{k) = min max - ^ ,

ai>'"'ak \ [aιvι + . - -r akvk]
2dx

\ [A(aιw1 + - + akwk)]2dx
( 6 ) A{k) = min max n γ — ,

where the minima are over linearly independent sets of functions
vL, "'yVk and w19 •• ,/u?,b, respectively, which are continuous, have
continuous first derivatives, piecewise continuous second derivatives,
and have support in R.

We will obtain explicit upper and lower bounds for these eigen-
values in terms of the corresponding eigenvalues of the finite difference
analogues:

( 7 ) ΔhU+ XhU= 0 on Rh, U - 0 off Rh

( 8 ) A\V-ΩhV= 0 on Rh, V = 0 off Rh

( 9 ) A2

kW+Λh4hW= 0 on Rh, W=0 off Rh .

Here Rh is a bounded subset of the mesh

Sh = {(ίji, , iji): i19 , in are integers}

for h > 0, and Δh = Σ?=i ^A is the (2n + l)-point approximation of
the Laplacian, where dif dι are forward and backward ί-th difference
operators:

diU(x19 , xn) = hrl[U{Xu , Xi + h, , xn) - U(x19 •••,&<, , a?n)] ,

Siί/ίa?!, , xn) = hr^Ufa, , xi9 ., xn) - U(x19 , ^ - h9 ••,«?„)] .

Each difference problem has a finite positive sequence of eigen-
values:

0 < λi15 ^ λ f ^ ^ λi*>, 0 < i2i1} ^ β f

^ ^ fli"}, 0 < ΛV ^ Λί2) ^ ^ ^ > ,

where i; is the number of points in Rh. These eigenvalues also may
be characterized by minimax principles:
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(10)

(11) i?ifc) - min max
i . »..* Λ Σ [«i VΊ + + ak Vk]

2

(12) Λik) = min max
i.-. * Σ Λ Σ [3i(αiW; + + akWk)]2

where the minima are over linearly independent sets of mesh func-
tions U19 •••, Uk and V19 •••, Vk and W19 • ••, Wk, respectively, which
vanish off Rh.

2. T h e lower bounds* To obtain lower bounds we take the
continuous eigenfunctions of problems (1), (2), (3), and average them
over cubes of sides h about mesh points. The resulting mesh func-
tions are then admissible candidates for the minimax principles (10),
(11), (12). The technique is due to Weinberger [4], who applied it to
problems (1) and (3), among others.

To simplify notation, let x= (x19 , xn), let et be the unit vector
in the i-th coordinate direction, and let

Ch(x) = {(y19 , yn): \Vι - Xι \ < ih, i = 1, , n}

be the cube of side h about x.
If u is a continuous and piecewise differentiable function with

support in R, then

(13) U(x) - h~n \ u(y)dy , xeSh,
JCh(x)

is a mesh function which vanishes off Rh, the subset of Sh consisting
of points x for which Ch(x) Π R is not empty. Then,

(14) ( n2dx - ^ Σ ^ 2 = Σ ( Mv) ~ U(x)]2dy .
JR Rh xeRhJCh(x)

Now since

( v) ~ U{x)]dy - 0 ,

each integral on the right of (14) is bounded by the integral of the
square of the gradient of u times the reciprocal of the second free
membrane eigenvalue for the cube of side h9 and
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(15) U2dx -hnΣ*
R Rh

We also have, by integration by parts,

(16) diU(x) = h""-11 ψiyi - Xi

where

r + ih , —ihtίξ =

0 , otherwise

It follows that

sh

= ^ Σ Ch(x+eih)lJChM
ir(Vi - Xi)\ψi - dtU(x)\dv ,

eih)lJChM L OΊJi J

i = 1, . . . , n .

Therefore, since the right side is positive,

Σ Λ Σ [3, C/]2 ^ Σ t Γ|^T d α ;

=1 5 Λ i=iJRL0XiA

(18)

If the function w is continuous, has continuous first derivatives and
piece wise continuous second derivatives, each integral on the right
side of (17) is bounded by the integral of the square of the gradient
of du/dyt times the reciprocal of the second eigenvalue r]2 of the
weighted free membrane problem

fΔφ{y) +

( 1 9 )

i - Xi)φ{y) = 0 , ye Ch(x + ejϊ) U Ch(x) ,

= o , , ye d[Ch(x + eji) U Ck(x)] .

The eigenvalue here is the second one because

( ΨiVi - Xi)\^ψ^ ~ di U(x)]dy = 0 .
JcfcU+e Muwx) L dyi Λ

Since ψ{yi — xt) ^ h, a lower bound for η2 is the second eigenvalue of
the problem obtained by replacing ψ with h in (19), i.e.,

Therefore,
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(20) Σ h* Σ [3iU]2 ^ Σ ( IP-ldx - 8 ^ ( [ΔuYdx .
i=ί sh i=ίjRLdXiΛ π2 JR

Still assuming u is continuous, has continuous first derivatives,
and piecewise continuous second derivatives, we have, by integration
by parts,

d&Uix) = Λ—* \
JCh,t,x-

where

l

Then

(21) = A-» Σ f
xeShJCk(x-ei

, n ,

otherwise .

h){jCh(x)liCh(x+eih)

ψ _ did.U(x)Ίdy ^ 0 ,

ί = 1, . . . , n .

We also have, for i Φ j,

\

== h-2 Σ (
xeShJC

- WsU(x)\dy > 0 ,

)

i,i - 1, . . . , n .

Combining (21) and (22), we have

(23) hn Σ [dhUf ^ ί [Aufdx .
Sh JR

Now we obtain the desired lower bounds. Let u{j) be the eigen-
function associated with λ ω in (1). We may assume

\ u{ί)uU)dx = δ(ί, j) ,

where δ(i, j) is the Kronecker delta. Let

Uj(x) = h~n \ u{i\y)dy , x e Rk .
JCh(x)
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We employ (15) and (18) with u = a,u{ι) + ••• + aku
{k), U= aJJx

• + akUk in (10) and see t h a t

π2

or, what is the same thing,

(24)

π2

Next, let vU) be the eigenfunction associated with Ω{j) in (2), 'also

such that

S v{i)v{3)dx = 3(iy j) .
R

Let

vU)(y)dy, xeRh.
Ch{x)

Employing (15) and (23) with u = a,v{1) + ••• + akv
{k\ U= α x F x

. . . + akVk in (11), we see that

π2

or, equivalently,

(25) ^ ^ Ω(k)

(Inequalities (24) and (25) correspond to (2.25) and (8.10) of [4].)
Next, let wU) be the eigenfunction associated with ΛU) in (3), such
that

Let

Ws(x) = ^- w ί w{j)(y)dy , a G ^ .

Employing (20) and (23) with t& = a^w{l) + + akw
{k\ U= aιW1 +

• •• + akWk in (12), we see that
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or,

(26)

This inequality is new.

3* The upper bounds* To obtain upper bounds we take the
mesh eigenfunctions of problems (7), (8), (9) and interpolate to obtain
admissible candidates for the minimax problems (4), (5), (6).

Pόlya [3] has applied this technique to problem (1) using piece-
wise linear interpolation. Specifically, he considered the mesh domain
Rh consisting of points x in Sh such that C2h(x) c R. Each mesh
square with vertices at points of Sh he divided into two triangles
by a diagonal through two vertices. Given a mesh function U which
vanishes off Rh, he interpolated a function u, linear on each triangle
and agreeing with U at the vertices. He then proved the estimates

u2dx ^ h2 Σ U2 - W Σ h2 Σ [3< Uf ,
R R R

Σ
* = 1

i=l JRLσVi

from which it follows that, for n = 2,

(27)

Weinberger [4] indicates how this may be extended to higher dimen-
sions.

For the problems (2) and (3), however, piece wise linear functions
are not smooth enough to be admissible in (5) and (6). We must
interpolate with functions which are cubic polynomials in each space
variable in each mesh cube, and such that the function is continuous
with continuous first derivatives across the sides of the cube.

Let us first consider the one-dimensional case (n = 1). Given a
mesh function U, we uniquely define the interpolating function, PhU,
by requiring that for x e Sh

PhU(x) = U(x)Λ[PhU(x)] = i[dU(x) + 3U(x)] .
ax

By linearity,
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PkWx) = ggU(v)Ph8(x,y) ,

so it suffices to define

kh(x -y) = Phδ(x, y)

i - A
2

2 - 4
h 2 h 2 h

0 , 2h ^ I x — y [ .

For general n, then, we define

Ph U(X) = P*,,A*2 P^n Ufa,"', Xn)

= Σ U(y) Π **(»* - %)
yeRh %=ί

Let us assume Rh consists of point x of Rh such that Cih(x) c i?.
Then, for U vanishing off Rh, PhU will vanish off R. We now wish
to estimate

X

X

—

h
—

h

y

y

2 3
2

o

a? —

h
— 2/

3

2 i

O

* — y
h

\ [PhUYdx .
JR

Let us again first do the case n = 1. We have

[P A Ϊ/N«= Σ U(x)U(y)[~kh(x - z)kh(y - z)dz
o x,yeSh J-oo

= Σ

= Σ ί/(a;)jc/(a;)ί+°°[A;A(2:)]2d2 + [!/•(« - h) + U(x + Λ

x f ^ ( z ) ^ ^ + h)dz +[U(x- 2h) + U(x + 2h)]

(""""^zJA;*^ + 2h)dz + [U(x - Zh) + U(x + 2h)]

\+~k(z)k(z + 3h)dz\

= h Σ ^ ) { ^ C / ( « ) + ^r[?7(a; - Λ) + U(x + λ)]
170 560

x

x

560

28

±AU{x - Zh) + U(x + Sh)]\

u(x){i - hi'dψ + -λ-hedψ\u(x).
I 40 560 J
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Then, for general n, we have

\[PhUYdz= Σ U(x)U(y)fl[°°kh(xi-zi)kh(yi^zi)dzi

<28) Γ 1 1 Ί

= h* Σ u(x) π / - ̂ dm + -^w? \u(x).
χesh i=i L 40 560 J

Similarly, we have

Σ ί \4-p*uΊd* = Σ Σ U
»=l JsLα^i J i=u,ieSi

x Π (+ kt
3=1 J-oo

<29) ' "

x I

Also,

1 \ A ~P TTΛ^fi'Φ — "\' TTι/y*\ TTίoiW \ Λ I i*"^Ύ Φ \~L*^(πι — φ \/ΊΦ

Ji2 x,yeSh L* = l J— °°
it j +co

x Π I ^λ(^i — Zj)kh(Vj — Zj)dzj
j = l J _oo

Σ
if 3=1 J-β

S +oo

K(xd - zs)k'h(y3 - z,')dzs

n r+oo -i

x Π I A:A(α;z - zι)kh{yι - zι)dzι
1 = 1 )-co J

lφi,3

< 3 0 ) = A Σ U(

3=1 L 40 560

x

The desired inequalities are obtained from (28), (29), (30) by using
t h e summation by parts formula
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for functions with compact support. We consider the case n = 2.
From (28) we have

[phuγdx = h2Σ*\u h
sh I 40

d\uγ + [dtuY) +

ht\[d\UY + 2[dAuγ + [d
4U

^ i u γ + 3[d*Auγ + sts^tλ]2 +

Therefore,

(31) ί [ph uγdx ^ K Σ u\ u - htAi u + J U ΛJ C/1 .
Ji2 5 A L 40 560 J

Similarly, from (29), we have

(32) Σ t \-£-Phuldx s> V Σ 4 " ^ ^ + ^ 4 J | C 7 ~ ^
* =i J^Ltoi J ^λ L 120 2240

x £ ^ 2 Σ u\-AhU+hι*A\U
^ L 12Σ

and from (30), we have

(34) ( [APh Uγdx ^h*Σ U[A\ U - WA\ U] .

Now we obtain the upper bounds. Let Uij) be the eigenfunction
associated with λj/' in (7) such that

Sh

Let Uj = PuU^. We use (31) and (33) in (4) with U = a,Ulι) +
+ akUkk) to see that, for n = 2,

(35) X«« £ 1 2
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which, for h sufficiently small, is a better bound than (27). Let V{

h

j)

be the eigenfunction associated with Ω{j) in (8) such that

Let Vj = PhVlj). Use (31) and (34) in (5) with U = a.V^ + . . . +
akVik) to see that, for n = 2,

(36)
1 _ 1 7jO( f c

40 * 560 Λ

(where the Schwarz inequality was employed).
Finally, let Wij) be the eigenfunction associated with Λ{

h

j) in (9)
such that

Let Wj = PhWl3\ Use (32) and (34) in (6) with U=a1W?
to see that, for n = 2,

(37)
T̂ Λi

120 2240

Explicit upper bounds for higher dimensions may be obtained in
the same fashion from (28), (29), and (30). It is clear that, in general,

(38) λ(fc)

(39) Ωw ^ Ω{

h

k)

(40) Λ M ̂  Λ{

h

k)

4. Conclusion. We notice that the lower bounds (24), (25), (26)
are in terms of difference problems on an Rh such that

xeRh,
Ch(x),

while the upper bounds (38), (39), (40) are in terms of difference
problems on an Rh such that

U C4h(x)aR.
xeRh

However, the problems (1), (2), (3) depend continuously on the domain
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R in such a way that if R, Rf are domains whose boundaries are
within 0(h), then, for each k, the eigenvalues X{k), Ω{k), Λ{k) for R are
within 0(h) of the eigenvalues Xnk\ Ωnk\ Λnk) for R', respectively*
With this consideration, we can combine the bounds (24) and (38), (25)
and (39), (26) and (40), to say that if Rh is such that \JχeBh Ch(x) has
boundary within O(h) of the boundary of R, then

(41) |λ<*>

(42) \Ω{k) -Ωίk)\ = O(h) ,

(43) \Λ{k) - Λp\ = O(h) .

Estimates like (41), (42), (43) can be used in proving convergence
of more accurate finite difference schemes which may be regarded as
perturbations of the schemes (7), (8), (9). See the paper [2] for
details.

Upper and lower bounds for eigenvalues of free membranes by
similar techniques may be found in [1]. Further references may be
found in [1], [2] and [4].
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