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FUNCTION SPACE TOPOLOGIES

J. D. HANSARD

S. Naimpally [3] introduced the graph topology, Γ, for
function spaces. H. Poppe [5] showed that if the graph topology
is finer than the topology of uniform convergence, τu, or finer
than the finest of the σ-topologies of Arens and Dugundji, r,
and if the range space is the real line, R9 then the domain
is countably compact.

We assume our range space is R and that our domain space
X is Tu In most of this paper we deal with topologies on C(X)
the set of continuous real-valued functions on X. We show
that Γ = τ = τu on C (X) if and only if X is countably com-
pact. Further, we find that when X is locally connected,:uc:
on C(X) if and only if X has finitely many components.

In order to determine conditions under which τ c τu, we
introduce a map extension property between complete regula-
rity and normality and show that for domain spaces X
having this property, τ c τu on C (X) if and only if X is coun-
tably compact. We indicate further applications of this map
extension property and compare it to weak normality.

We let Yx denote the set of all functions from X to Y. For
F , let G(f) = {(x,f(x)):xeX}, and for ί / c l x 7 , let Fu =

{fe Yx : G(f) aU}. If Ka X and Ucz Y, define (K, U)={fe Yx :
f(K) c U}. For ε > 0, let V£(f) = {geRx:\ f(x)-g(x) |< e for all x e X}.
Also, define Nε(x) = {ye R : \y — x\ <e, and for any set K, let cK
be the complement of K.

The graph topology, defined in [3], has a basis consisting of the
sets of the form FΌ where U is open in X x Y. The finest of the
σ-topologies, defined in [1], has a subbasis consisting of the collection
of all sets of the form (K, U) where K c X is closed and U a Y is
open. The topology of uniform convergence has a basis consisting
of all sets of the form Ve(f) where fe Rx and ε > 0.

!• Two lemmas. The first of our lemmas is a characterization of
τ which we find convenient to use throughout this paper. This result
provides us with a basis for τ. Because of the nature of these basic
elements, the relation between τ and Γ is immediately made clear,
and we are able to think of τ, intuitively, as a special kind of graph
topology rather than as a set-open topology.

H. Poppe [5] showed that τ has a subbasis consisting of sets of
the form [K x L] = {f:G(f)nKxL= 0 , KczX closed, L c Γ closed}.
Thus a basic open set of functions in τ, ΠΓ [K{ X Li], is completely
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determined by the set of points (Jf K{ x L{.

LEMMA 1. The topology τ has a basis consisting of sets of the
form Fυ where U = \Jies^ Aζ x Bt and A+ c X and B{ c Y are open
for each i e Szf and Szf is finite.

Proof. Choose [K x L] e τ. Clearly [K x L] = Fv where V =
cK x Γ U l x cL, so that [K x L] is open in the topology generated
by sets of the form Fπ described above. Now consider FΌ where
U = Uie^ Ai x Bif Aid X and BiCiY are open for each ie Sf
and Szf is finite. In order to see that cU — c{\Jies/ A{ x B{) =
U-^c^ (c\Jit^ Ai x c\Jie^ Bi), choose (x,y)ecU. Then for each ΐ,
either a ί i i or i / ί S ί t If ^ < j ^ is chosen so that i e & if
and only if xeAif then ( ^ i / J e ί c U ^ ^ x c U i e ^ ^ ) ' I f (χ>v)G

U^c ^ {c\Jit^Ai x c\Jie^ Bi), then there exists α ^ c . Y such that
(E, 2/) e (c|Jί0^ -A* x c\Jie^ Bi) implying that a M i for i$έ% while
y £ Bi for i G ̂ . This establishes set equality and from this we see that

Fπ = [u (^u Λ x cu £<)] = n t(cu ̂  x cu A)]

showing that 2?V is open in τ.

LEMMA 2. 1/ X is countably compact, then for fe C(X) and
G(f) c U where U is open in X x R, there exists an ε > 0 such that
{x} x Nε (f(x)) c U for any xeX.

Proof. If the condition fails, then for ε = 1, 1/2, 1/3, there
exist points x19 x2, x3, , respectively, such that {xn} x Nιίn{f{xn))(£ U.
Suppose {xn} clusters to the point x. Then (x, f(x)) e U and there
exists an open set V containing x and an ε > 0 such that V x
Nε(f(x)) c U. We can suppose /(V) c Nεl2(f(x)) using the continuity
of / . Then choosing nQ such that l/n0 < ε/2 and m > n0 such that
xm e F, we see that {xm} x NUm{f(xm)) a V x Nε(f(x)) c £7 which is a
contradiction.

We remark that the converse of this lemma is also true. This
follows from the fact that if X is not countably compact, then there
exists a sequence, {xn}, with no cluster points. Let U be open and
G(f)aU. Then let V= U- [UΓKI x cNlln(f(xn))]. The set Fis open,
contains the gragh of /, and no ε > 0 exists satisfying the condition.

This lemma together with its converse states that the comple-
ment of an open set containing the graph of an element of C(X)
can get "close" to the graph of / if and only if X is countably
compact.
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2. Compar i sons of Γ w i t h τu a n d T.

THEOREM 3. A space X is countably compact if and only if
Γ = τu on C(X).

Proof Poppe [5] showed that when Γ aτu on C(X), then X is
countably compact. The converse of this result follows immediately
from Lemma 2.

A proof analogous to Poppe's can be made with R replaced by
any first countable T1 space containing a nonisolated point. Also,
the proof of Lemma 2 above remains valid with R replaced by any
metric space. Hence, Theorem 3 is true for the case when R is
replaced by any metric space containing a nonisolated point.

We note that τuaΓ on C(X) always holds since {(x, y): \y-f(x)\<ε}
is an open set for any ε > 0 and for fe C(X). In fact, the function
/ is continuous if and only if the set is open for every ε > 0.

THEOREM 4. A space X is countably compact if and only if
Γ - r on C(X).

Proof Poppe [5] showed that when Γaτ on C(X), then X is
countably compact. It is clear from Lemma 1 that τ czΓ. Therefore,
we have only to show that when X is countably compact, then Faτ.
Suppose X is countably compact and choose Fσe Γ with fe Fπ. By
Lemma 2, there exists and ε > 0 such that {x} x Nε(f(x)) c U for
every xeX. Let {Wti 1 = 1, 2, ••-, w} be an open cover of f(X)
such that the diameter of each Wι is less than ε, and define V =
\Jι f~ι(Wi) x Wi. Clearly, Fveτ and it is easy to show that
Fv c FJJ by showing that V c U.

We remark that Theorem 4 can be established for the case when
R is replaced by any Lindelof metric space containing a nonisolated
point. We need the metric space property to use Lemma 2, the
Lindelof property to insure that f(X) is compact when X is count-
ably compact, and the nonisolated point (together with first countable
and TΊ) for Poppe's proof.

When Poppe showed that Far on C(X) implies that X is
countably compact, he remarked that if X is completely regular and
if Γ c τ on C(X), then X must be compact. Theorem 4 shows that
his statement is incorrect. Poppe made a similar statement when
comparing Γ with τu and Theorem 3 indicates that it also is incor-
rect.

Naimpally [3] showed that when X is a compact T2 space, the
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graph topology and the compact-open topology coincide. This fact
together with Theorem 4 shows that when X is a compact T2 space,
the compact-open topology is the same as τ for C(X) and so has
basic open sets of the form Fv where U is expressible as a finite
union of Cartesian products of open sets.

3* Comparisons of r with τu. S. Naimpally and C. Pareek
([4], Ex. 5.10) assert that τu ς£ τ on C(X) when X = R. The follow-
ing result shows that their assertion is wrong.

LEMMA 5. When X is connected, τu czτ on C(X).

Proof. Assume X is connected and choose Vε(f) e τu. Fix x e X
and define pk — k(e/2) + f(x) for k e I where I is the set of integers.
Then define Bγ = Nεl2(p0), B2 = \JieI Nφ(p3i+1), Bz = U e r ΛΓε/2(p3ί+2),

B4 = U<*> Nφ(pdi), and A< = f-^BJ for i = 1, 2, 3, 4. We assert that
fe Fw d Vε(f) where TΓ = Uί A4 x 5,.

In order to establish this assertion, notice that U =
U êz /- 1 (Ntl2(Pi)) x iSΓ./a(ft) c PΓ and certainly G(/) c Z7, so that fe Fw.
If ge Fw, then G(^) is connected, and G(g) Π f-\Nεl2{p,)) x iSΓe/2(̂ 0) ̂  0
implying that G(g) f)U^ 0. We will show that W= UiJ(W-U)
is a separation of TΓ, so that G(g) c C7". This will establish the fact
that FWCLFU and surely Fπ<z Vε(f), which will complete the proof.

Now we show that W = 27 U (W— U) is a separation. Call a set
of the form f~ι{Nεj2{p^)) x Nεj2{pά) a diagonal set if i = j . We prove
that the ith diagonal set intersects only the (i — l)8 t and (ί + l) s t dia-
gonal sets, so that W— U is exactly the union of nondiagonal sets,
and hence open. Suppose

{/-1(^ε/2(^)) x Nεl2(Pi)} n {/-Wε,2(P;)) x Nεl2(Pk)} Φ 0 .

Clearly, both j and fe must assume values from {£—1, £, £ + 1}. Assume
that fc = £ + 1. By the definition of TF, | j — k | = 3n, so that i = £ + 1
also. The argument for j = i or i — 1 is the same.

THEOREM 6. Let X be locally connected. Then X has finitely
many components if and only if τuaτ for C(X).

Proof. Suppose that X is locally connected and has finitely many
components. Then clearly the process used in Lemma 5 can be
repeated a finite number of times to yield the desired result.

Now suppose that X = Uo~ X% where Xi9 for i > 0, is a component
of X. Define f(Xi) = i for every i. It is true that F1/2(/) is not
open in τ. In order to see this, choose Fπeτ with / e Fu and U =
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\Jiesf AiX Bi. Then observe that {A+: j e Bi} must cover Xό and
that for some j Φ k, {Ai: k e Bt} = {A*: j e BJ. If ^(X;) = i for i ^ i
and g(Xj) = &, then geFuy but grg F 1 / 2 (/).

Let C*(X) represent the collection of elements of C(X) which
are bounded. Our next lemma will enable us to show that when X
is locally connected, then C*(X) is closed in C(X) with topology τ
if and only if τu c τ.

LEMMA 7. Lei X be locally connected. Then C*(X) is closed
in C(X) with topology τ if and only if X has finitely many
components.

Proof. Let X be locally connected and suppose that X has
finitely many components, so that τuaτ. If C*{X) = C(X), then
C*(X) is closed. If C*(X) Φ C(X), choose fe C(X) - C*(X). Then
Vφ(f) e τ and Vφ(f) c C(X) - C*(X).

Suppose X = Uo° -Xί where Xi? for i > 0, is a component and
Xo = -3Γ - UΓ X». Define /(Z*) = i. Then / is unbounded, and we
show that every Fσeτ containing / contains a bounded map. Let
FuGT where U = (Jie^ A< x 5< and fe Fπ. The set {A{ : j e 5J
covers X, and since there exists only a finite number of sets of the
form {Ai: j e J3;}, there exists an M such that for any % Ξ> M,
{Ai: n e 5<} = {A<: i e £<} for some j < Jί. Define g such that #(Xi) = i
for i ^ M, and for % > M, ^(X%) = i where j < M and found as in-
dicated above. Then #ei<V while #eC*(X).

Combining Lemma 7 with Theorem 6 we have the following
result.

THEOREM 8. Let X be locally connected. Then C*(X) is closed
in C(X) with topology τ if and only if τudτ.

We now turn to the question of necessary and sufficient con-
ditions in order that τ aτu. Theorems 3 and 4 indicate that when
X is countably compact, then r c r a on C(X). But the converse of
this statement is not true in general, since C(X) might consist of
constant maps only and in that event τ = τu on C(X) regardless of
the properties of X.

Before giving an answer to this question, we need a definition.

DEFINITION 9. A completely regular space X is well-separated
if for any sequence, {xn}, in X having no cluster points, there exists
a neighborhood-finite sequence of open sets, {Un}, with xne Un for
each n.
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S. Naimpally and C. Pareek [4] show in an example that τ ς£ τu

on C(X) when X — R. We wish to show that under certain con-
ditions, when X is not countably compact, then τ ςt τu on C(X).
When X is not countably compact, we have the existence of a
sequence of distinct points with no cluster points, say {xn}. We
wish to define a continuous function / on this sequence such that
f(xn) = 1 — 1/n and extend it to all of X in such a way that
f(X) c [0,1). For this task, the condition of well-separatedness will
be shown to be, in a sense, natural.

THEOREM 10. If X is well-separated, then τaτu for C(X) if
and only if X is countably compact.

Proof. Suppose that X is not countably compact and that {xn}
is a sequence in X having no cluster points. We can take {xn} to
consist of distinct points. There exists a neighborhood-finite sequence,
{Un}, of open sets with xneUn for each n, and further we can
require that Un Π Um = 0 for nφm. Choose Fveτ with V — X x
N, (0). Define fn on Un such that fn(xn) = 1 - 1/n and fn(Un - Un) = 0
for each n > 0, and define f0 on c (JΓ Un to be the zero map. Then
there exists a unique continuous function / which is an extension of
each fn. Clearly fe Fv, but no Vε(f) is contained in Fv.

4. Properties of well-separatedness• In the proof of Theorem
10 we wished to extend a continuous function on a sequence having
no cluster points to all of the space. We imposed the condition of
well-separatedness. This condition is natural because of the following
result. (A subspace Γ c l is C-embedded in X if each element of
C(Y) is the restriction of an element of C{X).)

THEOREM 11. A completely regular space X is well-separated if
and only if every sequence in X having no cluster point is C-embed-
ded in X.

Proof. Only half of the assertion needs comment. Let {xn} be
a sequence of distinct points in X having no cluster points, and de-
fine f(xn) = n for each n. Extend / to a continuous function on all
of X. Then {f~ι(Nφ{n))} is the desired neighborhood-finite collection.

Dugundji [2] defines a completely regular space to be weakly
normal if disjoint closed sets, one of which is countable, can be
separated by disjoint open sets. Then he shows that in weakly
normal spaces, countable compactness and pseudocompactness are
equivalent. Even though the class of well-separated spaces is larger
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than the class of weakly normal spaces, countable compactness and
pseudocompactness are equivalent there also.

COROLLARY 12. If X is well-separated, then countable compact-
ness and pseudocompactness are equivalent.

Proof. If X is not countably compact, then there exists a
sequence of distinct points, {xn}, with no cluster points and if
f(xn) = n for each n, then / has a continuous extension to all of X
by Theorem 11.

THEOREM 13. If X is weakly normal, then X is well-separated.

Proof. Let {xn} be a sequence in X having no cluster points,
and choose a sequence of open sets, {Un}, with xne Un for each n
and such that Un Π Um = 0 if xn Φ xm. Then U {xn} and c U Un are
disjoint closed sets and there exist disjoint open sets V and W con-
taining U {xn} and c U Un respectively. Define Vn = V Π Un for each
n. Then {Vn} is the desired neighborhood-finite collection. For if
x e Un for some n, then Un Π Vm = 0 for xm Φ xn. Further, if
x g Un for every n, then x e c U Un implying that x e W and W Π Vn=0
for every w.

Theorem 13 shows that well-separatedness is strictly weaker than
normality, since weak normality is strictly weaker than normality.
In order to see that well-separatedness is strictly stronger than
complete regularity, let [0, Ω] be the space of ordinals less than or
equal to the first uncountable ordinal and [0, ω] be the space of or-
dinals less than or equal to the first countable ordinal. Then
[0, Ω] x [0, ω] — {(Ω, ω)} is a completely regular space that is not
well-separated. To see this, note that {(Ω, n)} has no cluster points.
Choose {Un} with (Ω, n) e Un for each n. Then any sequence {zn} such
that zn e XJ% for each n and the first coordinate of zn differs from Ω can
be seen to cluster. This shows that {Un} is not neighborhood-finite.

We list several more applications of the well-separated property.

THEOREM 14, Let X he well-separated.

(a) If X is not countahly compact, then C(X) with topology τu

is not separable.
(b) The set of units in C(X) with topology τu is open if and

only if X is countably compact.
(c) Scalar multiplication (or multiplication) is continuous in

C(X) with topology τ if and only if X is countably compact.
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(d) The space X is countably compact if and only if f{X) is
closed for any fe C{X).

Proof, (a) If X is not countably compact, there exists a
sequence, {xn}, of distinct points with no cluster points. Let {fn}
be a countable collection of functions. Define g(xn) = fn(xn) + 1 for
each n and then extend g to a continuous function on all of X by-
Theorem 11. Clearly, V1}2{g) contains no fn.

(b) If X is countably compact and feC(X) such that / > 0,
then by Lemma 2, there exists an ε > 0 such that Ve(f) contains
only positive functions. If X is not countably compact, choose a
sequence, {xn} of distinct points having no cluster points and define
f(xn) = 1/n for n > 0, and then extend / to a continuous function
on X in such a way that / > 0. Then / is a unit while for any
ε > 0, Vε(f) contains nonunits.

(c) If X is countably compact, τ = τu and multiplication, as well
as scalar multiplication, is continuous in C(X) with topology τu. If
X is not countably compact, choose a sequence of distinct points {xn}
and define f(xn) = n. Extend / to a continuous function on all of
X. Let g be the zero map. In order to see that scalar multiplica-
tion is not continuous, note that 0*f—gy while N1/n (O) /ςz ! i^
where U = X x NΛ(0). (We write Nlln(0) . / for {a - f\ a e 2V1/β(0)}).
The argument for multiplication is almost the same.

(d) If X is not countably compact, then there exists a sequence
of distinct points, {xn}, which do not cluster. If / is defined so that
f(xn) = 1/n and then extended to a continuous function on X in
such a way that f(X) c (0, 1], then f(X) is not closed. If X is
countably compact, then f(X) is compact and thus closed.
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