
PACIFIC JOURNAL OF MATHEMATICS
Vol. 35, No. 3, 1970

RINGS WHOSE HOMOMORPHIC IMAGES ARE #-RINGS

SAAD MOHAMED

L. Levy has characterised a commutative noetherian ring
in which every proper homomorphic image is self-injective to
be a Dedekind domain, or a principal ideal ring with descend-
ing chain condition, or a local ring whose maximal ideal M
has composition length 2 and satisfies M2 = 0. The object of
this paper is to generalise Levy's result to the noncommuta-
tive case by studying right noetherian rings in which every
proper homomorphic image is a right g-ring. Since every
commutative self-injective ring is a g-ring, one can get Levy's
result as a special case of Theorems 2.12 and 2.13.

1* Definitions, notations and preliminaries* Throughout this

paper, every ring has unity. J and B(R) will denote the Jacobson
and the prime radical of a ring R respectively. If X is a subset of
a ring i?, r(X) (resp. l(X)) will mean the right (resp. left) annihilator
of X in R. A right (left) ideal of a ring R is said to be a right
(left) annulet if A = r(X)(A = l(X)) for some subset X of R. A ring
R is called a duo ring if every one-sided ideal of R is two-sided A
ring R is said to be a right (left) g-ring if every right (left) ideal
of R is a quasi-injective right (left) i?-module. By a g-ring we mean
a ring which is both right and left g-ring. It was proved in [6]
that a ring R is a right g-ring if and only if R is right self-injective
and every large right ideal of R is two-sided. It is clear that a
right self-injective duo ring is a right g-ring. In particular, every
commutative self-injective ring is a g-ring. It is also shown in [8,
Corollary 1.6] that a local right g-ring is a duo ring.

A nonzero ideal A of a ring R is said to be an indecomposable
ideal if A is not expressed as the direct sum of two nonzero ideals
of R. An indecomposable ideal B of a ring R is called a block if
there exists an ideal Bf of R such that R = B@Bf.

A ring R is said to be a principal ideal ring (PIR) if every one-
sided ideal of R is cyclic. The notation PIRD will mean a principal
ideal ring which is also a duo ring.

2Φ We start by proving and recording some results which are
essential for proving the main theorems.

LEMMA 2.1. Let R be a right noetherian ring with the property
that every proper homomorphic image is right self-injective. Then,

( i ) every proper homomorphic image is QF,
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(ii) every nonzero prime ideal is maximal, and
(iii) if R is not prime, then J = B(R).

Proof, (i) Since every proper homomorphic image is right
noetherian and right self-injective, then every proper homomorphic
image is QF (Cf. [2, Th. (1)])

(ii) Let P be a nonzero prime ideal of R, then R/P is artinian,
by (i). Hence R/P is a simple ring, proving (ii). (iii) is an immediate
consequence of (ii).

The following two well known results will be stated without proof.

LEMMA 2.2. If R is a right noetherian ring, then
( i ) every ideal of R contains a product of prime ideals, and
(ii) in case R is prime, every nonzero ideal contains a product

of nonzero prime ideals.

LEMMA 2.3. If Mly M2, •• ,MW are maximal ideal of a ring R
such that MXM2, •••, Mn = 0, then every prime ideal of R is in the
set {M19M2, •••, Mn).

Jain [5] proved the following lemma. We are giving here an-
other proof.

LEMMA 2.4. Let R be a right noetherian ring with the property
that every proper homomorphic image is right self-injective. If R
is not prime, then R is right artinian.

Proof. By 2.1 and 2.2,

0 = MM Mt

where {Mi91 ^ i ^ t} is a set of maximal ideals of R. After re-
numbering, if necessary, let Mlf M2, , Mn, n ^ t be the distinct
ideals in the set {Mif l ^ i ^ t } . Then, by 2.1 and 2.3,

J = B(R) = ή AT, .

Now, if J = 0, we get

ί = ΣΘRIM,.

Since each R/Mi is artinian by 2.1, R is also artinian.
On the other hand, if J Φ 0, then R/J is artinian. Since / =

B(R), J is a nil ideal and hence nilpotent, by Levitzki's Theorem [4,
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p. 199]. Hence R is right artinian follows by the method of Hopkins

[3]

SUBLEMMA 2.5. If M is a maximal ideal of a QF-ring R, then
r(M) is a minimal ideal in R.

LEMMA 2.6. Let R be a ring with the property that every proper
homomorphic image is QF. If M1 and M2 are distinct maximal
ideals of R such that MγM2 Φ 0 and M2MX Φ 0, then

Proof. Let S = RjM.M^ A = MJM.M, and B = MJMM Because
B is a maximal ideal in S and AB = 0, r(A) = B. Hence, B is a
minimal ideal by 2.5. This implies that there exists no ideal of R
between M2 and MXM^ Thus Mιf]M2 = MtM2 Similarly M1ΠM2 =

This completes the proof.

LEMMA 2.7. Let {Aiy 1 ̂  i ^ n} be a set of pairwise comaximal
ideals of a ring R such that A{Aj = AjAi9 1 ̂  i, j ^ n. Then, for
arbitrary positive integers a19 a2, •••, an.

( i ) (A^A2

2 A"*!1) and Aln are comaximal ideals.
(ϋ) A«MΪ* . . Ay = Afin A^n . . . n A > .

Proof. Similar to that given in [9, Th. 31] for commutative
rings.

Next we prove the following

PROPOSITION 2.8. Let R be a right artinian block such that every
proper homomorphic image of R is right self-injective. Then,

( i ) R contains at most two maximal ideals M19 and M2,
(ii) if M1Φ M2, then MXM2 — 0 or M2MX = 0 (not both); more-

over if M1M2 — 0, then R has exactly three proper ideals M19 M2 and

(iii) if R is right self-injective, then R has a unique maximal
ideal.

Proof. If R is prime, then it is simple and we have nothing to
prove. So assume that R is not prime.

( i ) If possible, let R contain more than two distinct maximal
ideals. Then, in view of 2.3, the product of any two maximal ideals
of R is not zero. Hence, by 2.6, MN = NM for every pair of maximal
ideals M and N of R. Let {Mi, M2, , Mk} be a minimal set of
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maximal ideals such that MXM2 Mk = 0. Collecting the powers of
the Mi& together, we get

MpMp My = 0

where {Mlf M2, , Mn} is a set of distinct maximal ideals (renumber-
ing may take place) and a^ + a2 + + an — k. It is clear that
n > 1; otherwise M1 would be the unique maximal ideal of R. Let

A = MpMp ikfe1 and B = Ml* .

Then, by Lemma 2.7, R = A + B. But since AB = 0 = .BA, i? = Aζ&B,
which contradicts the fact that R is a block. Hence R contains at
most two maximal ideals, say ML and M2.

(ii) Suppose that MLM2Φ0 and M2MxΦϋ. Then, by Lemma
2.6 Miilfjj = M2ikf!. But this would imply, as in (i), that R = Mp0 ikf?2,
for some positive integers α̂  and α2, which is a contradiction. Thus
if M, Φ M2, then either MJd2 = 0 or Af2ilίi = 0.

Let MγM2 = 0. Then, it is clear that M2Mt Φ 0; otherwise R =
Mi φ ikΓ2, a contradiction. Let X be a proper ideal of R such that
XςtM,. Then J? = X + Mlf which implies that M2aX + JlίΊAfa, whence
Λf2 = -3Γ. Similarly if F is a proper ideal of R such that Fζ2ikf2,
then Y — Mx. Therefore, if A is a proper ideal of i£ such that A Φ M1

and A Φ M29 then AaMιf]M2 = M2MΣ. Now, consider the QF-ving
R/A and let X = ikfx/A and Γ = M2/A. Then X and Y are maximal
ideals in R/A, and F = r(X). Consequently, Y is a minimal ideal in
R/A and there exists no ideal of R between A and M2. This implies
that A = M2AfΊ, proving (ii).

(iii) Suppose that M1 Φ M2 and let M,M2 = 0. Since i2 is Qί7, M2

is a minimal ideal of R. Then M^M2 = 0; otherwise M2cMγ which
implies that Λf2 = M±. But MΊΠ Λf2 = 0 implies R = Jl^ 0 Λf2, which
is not the case, since iί is a block. Therefore Mγ = M2, completing
the proof.

LEMMA 2.9. Le£ R be a right q-ring. If M is a maximal ideal
of R such that Mn = 0 and M%~1 Φ 0, n > 1, ίftew i? is α Zocαi duo
ring and Mn~ι is the unique minimal (right) ideal of R.

Proof. By 2.3, M is the unique maximal ideal of R. Then, since
M Φ 0, l(M)dM, which implies that M is a large right ideal of R.
Thus, the fact that R is a right g-ring implies that every right ideal
containing M is two-sided [6, Th. 2.3]. Hence M i s a maximal right
ideal, and therefore is the unique maximal right ideal of R. Then
R is a local ring having M as its Jacobson radical. Now, R is a duo
ring follows by [8, Corollary 1.6].
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Since Mn = 0 and Mn~ι Φ 0, 0 Φ Mn~ιcl{M) = socR. But since
RR is indecomposable and injective, RR is uniform which implies that
Mn~ι is the unique minimal (right) ideal of R, completing the proof.

LEMMA 2.10. Let R be a ring with the property that every pro-
per homomorphίc image is a right q-ring. If M is a maximal ideal
of R such that Mn Φ 0, n > 2, then the only right (or left) ideals of
R between M and Mn are powers of M.

Proof For every integer ί, 2 ^ i <; n, let Si = RjM1 and JV* =
M/M\ If (NiY-1 = 0, then M1-1 = M\ On the other hand, if
(Ni)1-1 Φ 0, then by 2.9, (iV,)^1 is a minimal right (left) ideal in S{.
In either case, there exists no right (or left) ideal of R between M1'1

and M\2^i <^n.
Let A be a (right) ideal of R such that Λfz>A=>Λf\ If A φ M,

then we assert that AaM2. For, if AςtM2, then M = A + M2, whence

Jlί^cA + If* ΐ = 2, 3, ..., w .

But this would imply that A = M, a contradiction. This proves our
assertion.

Again, if A Φ M2, then as before 4 c M 3 . Proceeding in this
way and assuming that A Φ M\ 1 ^ i ^ n — 2, we get Λf^iDADΛf*.
But this implies that A = M71"1 or A — Mn. This proves that the
only right (or left) ideals between M and Mn are powers of M.

PROPOSITION 2.11. Let R be a ring with the property that every
proper homomorphic image is a right q-ring. If M is a maximal
ideal of R such that Mn = 0, n > 2, then R is a PIRD with descend-
ing chain condition.

Proof Let S = R/M2 and N = M/M2. Then S is a right g-ring
and N is a maximal ideal in S satisfying N2 = 0. Hence, by Lemma
2.9, N is the only right (left) ideal of S. This implies that If is a
maximal right ideal of R and there exists no right (or left) ideal of
R between M and M2.

Now, Mn = 0 implies that M is the unique maximal right ideal
of R. Hence R is a local ring having M as its Jacobson radical.
Let x be an element of M such that x £ M2. Then,

M = xR + M2 = Rx + M2.

This implies that

+ M\ i = 3, 4, ••-, w .
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And since Mn = 0, M2axR. Hence M = xR = Rx.
We proceed to show that every principal right ideal of R is of

the form xaR for some positive integer a. Let 0 Φ y e R. If y is
not a unit, then y e M = xR. This implies that 2/ = xyι for some
2/x 6 R. Again if yι is not a unit, then yx = xy2 for some y2 e R, and
hence y — x2y2. Proceeding in this way, noting that xn = 0, we get
y — χaya for some positive integer a < n, where ya is a unit in i?.
Hence,

yR = α;α?/αi2 - xα# ,

as desired. Moreover, since xR — Rx,

yR = xaR = i2α;α .

Now, let A be a right ideal of R. Since A = Σ*eAfcBι it follows
that A = α î? = Bo;* for some positive integer β ^ n. Thus, the
only right (left) ideals of R are

R-DXRZD ••• Z)xn-ίRzDxnR = 0 .

This completes the proof.

The following theorem generalizes Levy's result for the class of
non-prime rings.

THEOREM 2.12, Let R be a nonprime right noetherian ring.
Then, every proper homomorphic image of R is a right q-ring %}
and only if

(1) R = S 0 T, where S is semisimple artinian and T is a
PIRD with descending chain condition, or

( 2) R/J is artinian and every nonzero ideal of R contains J, or
(3) R is a local ring whose maximal right ideal M satisfies

M2 = 0, and every proper homomorphic image of R contains at most
one proper right (left) ideal.

Proof. Suppose that all the proper homomorphic images of R
are right g-rings. Then, by Lemma 2.4, R is right artinian. Let

R = R, © R2 φ φ Rk .

where {Riy 1 ^ i ^ k} are the blocks of R.
First assume that k > 1. Then, every homomorphic image of the

ring Ri is isomorphic to a proper homomorphic image of R. Then
every homomorphic image of R{ is a QF-r'mg, and by Proposition 2.8,
each Ri has a unique maximal ideal ikf*. If Ri is prime, then it is
simple artinian. Suppose that Ri is not prime, then by 2.1 and 2.2,
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Mi1 = 0 for some positive integer nt > 1. Now, either by 2.9 (in
case Ui = 2) or by 2.11, R{ is a PIRD with descending chain condi-
tion. Hence R is of type (1).

Next, let k = 1. Then in view of Prop. 2.8, we have to con-
sider two cases:

Case (i), R contains a unique maximal ideal M. Then, as before,
Mn = 0 for some positive integer n > 1.

If M2 Φ 0, then by 2.11, R is a local PIRD with descending chain
condition, and hence of type (1).

If M* = 0, we consider the following subcases:
(a) M is a minimal ideal. Then M is the only proper ideal of

R, and R is of type (2).
(b) M contains a nonzero ideal A. Let S = R/A and JV = If/A.

Then N is a maximal ideal in the right g-ring S satisfying N2 = 0.
Consequently, N is the only proper right (left) ideal of S. This also
proves that M is a maximal right ideal of R, and hence the unique
maximal right ideal. Therefore R is a local ring. Thus R is of
type (3).

Case (ii), R contains two distinct maximal ideals M1 and M2 such
that M1M1 — 0. Then by Proposition 2.8, Ml9 M2 and M2M1 are the
only proper ideals of R. Then it is clear that

J= M1ΠMi = MiMi-

Therefore, R is of type (2).
Conversely, suppose that R is of type (1), (2) or (3). Then it is

obvious that any proper homomorphic image of R is of the form
i 0 ΰ , where A is semisimple artinian and B is a PIRD with de-
scending chain condition. Since a PIR with descending chain condi-
tion is QF [1, Th. 4.1], B is a g-ring. Then it is clear that i φ ΰ
is a g-ring, completing the proof.

Now, we consider the prime case.

THEOREM 2.13. Let R be a prime right noetherian ring with
the property that every proper homomorphic image is a right q-
ring. Then,

( i ) every ideal of R is a product of prime ideals, and
(ii) for every nonzero prime ideal of R, R/P is a division ring.

Proof. If R is a simple ring, the result holds trivially. So, we
assume that R is not simple. Let P be a nonzero prime ideal of R.
Then, P is a maximal ideal by Lemma 2.1. Also P 2 Φ 0, since R is
prime. Consider the ring R/P2. By Lemma 2.9, P/P2 is the only
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proper right ideal in R/P2. Hence P is a maximal right ideal in R,
proving (ii).

Let M and N be maximal ideals of R. Since R is prime, MNΦO

and NM Φ 0. Hence MN = NM, by Lemma 2.6. This proves that
all maximal ideals of R commute. Now, let A be a nonzero ideal
of R. Then, A contains a product of nonzero prime ideals, by 2.2.
Let {M19 Λf2, , Ms} be a minimal set of prime ideals such that
AZDMXM2 ••• Ms. Since each Mi is a maximal ideal, we can collect
the powers of ikf/s together. Renumbering if necessary, we get
AuMpM;2 ΛfJ , where aγ + a2 + + αn = s, and {Mlf M2, , ΛfΛ}
is a set of distinct maximal ideals.

If possible, suppose that AςtMt. Then R — A + Mx implies

Mp-ιM? MpςL A + M^Mp Λβ* = A .

But this contradicts the minimality of the set {Mly M2, , M }̂. Hence
AdM^ Further if AςtM2

lf then by 2.10 M, = A + M\, which implies

Again, a contradiction, thus, AaM\. Proceeding in this way, using
Lemma 2.10, we get AciM?1. Similarly, AdM"*, I ^ i ^ n. Therefore,

ΛffifΊ MpΠ Π ilf?

But since,

JiίfifΊΛfpn niif;* = M^M? 2 iiί

by Lemma 2.7, we get

A = MpMp Ma

n

n .

Proving (i), and completing the proof.

REMARK. For the nonprime case, Levy obtained only two types
of rings which are analogous to (1) and (3) of Theorem 2.12. It is
not difficult to see that a commutative ring of type (2) is of type (1).
Hence, Theorem 2.12 generalises Levy's result only for the class of
nonprime rings. On the other hand, Theorem 2.13 shows that a prime
right noetherian ring whose proper homomorphic images are right
<7-rings, is a ring which may be called a 'noncommutative Dedekind
ring'.
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