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RINGS WHOSE HOMOMORPHIC IMAGES ARE ¢-RINGS

SaAD MOHAMED

L. Levy has characterised a commutative noetherian ring
in which every proper hemomorphic image is self-injective to
be a Dedekind domain, or a principal ideal ring with descend-
ing chain condition, or a local ring whose maximal ideal M
has composition length 2 and satisfies /2 = (0. The object of
this paper is to generalise Levy’s result to the noncommuta-
tive case by studying right noetherian rings in which every
proper homomorphic image is a right ¢-ring. Since every
commutative self-injective ring is a ¢-ring, one can get Levy’s
result as a special case of Theorems 2,12 and 2.13.

1. Definitions, notations and preliminaries. Throughout this
paper, every ring has unity. J and B(R) will denote the Jacobson
and the prime radical of a ring R respectively. If X is a subset of
a ring R, r(X) (resp. I(X)) will mean the right (resp. left) annihilator
of X in R. A right (left) ideal of a ring R is said to be a right
(left) annulet if A = »(X)(A = (X)) for some subset X of R. A ring
R is called a duo ring if every one-sided ideal of R is two-sided A
ring R is said to be a right (left) g¢-ring if every right (left) ideal
of R is a quasi-injective right (left) R-module. By a ¢-ring we mean
a ring which is both right and left ¢-ring. It was proved in [6]
that a ring R is a right ¢-ring if and only if R is right self-injective
and every large right ideal of R is two-sided. It is clear that a
right self-injective duo ring is a right g¢-ring. In particular, every
commutative self-injective ring is a ¢-ring. It is also shown in [8,
Corollary 1.6] that a local right ¢-ring is a duo ring.

A nonzero ideal A of a ring R is said to be an indecomposable
ideal if A is not expressed as the direct sum of two nonzero ideals
of R. An indecomposable ideal B of a ring R is called a block if
there exists an ideal B’ of R such that R = B B'.

A ring R is said to be a principal ideal ring (PIR) if every one-
sided ideal of R is cyclic. The notation PIRD will mean a principal
ideal ring which is also a duo ring.

2. We start by proving and recording some results which are
essential for proving the main theorems.

LEMMA 2.1. Let R be a right noetherian ring with the property
that every proper homomorphic image 18 right self-injective. Then,
(i) every proper homomorphic 1mage is QF,
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(ii) every momzero prime ideal is maximal, and
(iii) 4t R 1s mot prime, then J = B(R).

Proof. (i) Since every proper homomorphic image is right
noetherian and right self-injective, then every proper homomorphic
image is QF (Cf. [2, Th. (1)])

(ii) Let P be a nonzero prime ideal of R, then R/P is artinian,
by (i). Hence R/P is a simple ring, proving (ii). (iii) is an immediate
consequence of (ii).

The following two well known results will be stated without proof.

LEMMA 2.2. If R is a right moetherian ring, then

(i) every tdeal of R contains a product of prime ideals, and

(ii) in case R is prime, every nonzero ideal contains a product
of monzero prime ideals.

LEMMA 2.3. If M, M,, ++-, M, are maximal ideal of a ring R
such that M,M,, -+, M, = 0, then every prime ideal of R is in the
set {MU sz M Mn}'

Jain [5] proved the following lemma. We are giving here an-
other proof.

LEMMA 2.4. Let R be a right noetherian ring with the property
that every proper homomorphic image 1s right self-injective. If R
18 not prime, then R is right artintan.

Proof. By 2.1 and 2.2,
0=MM,--- M,

where {M;,1 <4 <t} is a set of maximal ideals of R. After re-
numbering, if necessary, let M, M,, +--, M,,n <t be the distinct
ideals in the set {M;, 1 < ¢ < t}. Then, by 2.1 and 2.3,

J=B{R) =M.
Now, if J =0, we get
R=S @ R/M,.

Since each R/M; is artinian by 2.1, R is also artinian.
On the other hand, if J # 0, then R/J is artinian. Since J =
B(R), J is a nil ideal and hence nilpotent, by Levitzki’s Theorem [4,
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p. 199]. Hence R is right artinian follows by the method of Hopkins
[3].

SuBLEMMA 2.5. If M is a maximal ideal of a QF-ring R, then
r(M) is a minimal ideal in R.

LEMMA 2.6. Let R be a ring with the property that every proper
homomorphic image 1is QF. If M, and M, are distinct maximal
1deals of R such that MM, + 0 and M,M, # 0, then

MM, = M,0N M, = M,M, .

Proof. Let S = R/M,M,, A = M,/M,M, and B = M,/M,M,. Because
B is a maximal ideal in S and AB =0, 7(4) = B. Hence, B is a
minimal ideal by 2.5. This implies that there exists no ideal of R
between M, and M, M,. Thus M,NM, = MM, Similarly M,NM, =
M,M,. This completes the proof.

LEMMA 2.7. Let {A;,1 <1 < n} be a set of paitrwise comaximal
ideals of a ring R such that A;A; = A;A;,1 < 1,5 <n. Then, for
arbitrary positive integers o, Qy +++, Q.

(1) (AnAg ... A7) and A% are comaximal ideals.

(i) AnAZ «+o A% = ANN A2 o0 N A,

Proof. Similar to that given in [9, Th. 31] for commutative
rings.

Next we prove the following

PRrROPOSITION 2.8. Let R be a right artintan block such that every
proper homomorphic image of R is right self-injective. Then,

(i) R contains at most two maximal ideals M,, and M,,

(ii) of M, # M,, then MM, =0 or M,M, =0 (not both); more-
over if MM, =0, then R has exactly three proper ideals M,, M, and
M,M,,

(iii) <f R is right self~injective, then R has a unique maximal
ideal.

Proof. If R is prime, then it is simple and we have nothing to
prove. So assume that R is not prime.

(i) If possible, let R contain more than two distinct maximal
ideals. Then, in view of 2.3, the product of any two maximal ideals
of R is not zero. Hence, by 2.6, MN = NM for every pair of maximal
ideals M and N of R. Let {M, M, ---, M,} be a minimal set of
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maximal ideals such that M, M, .-- M, = 0. Collecting the powers of
the M.’s together, we get

Mf’lM;z cee MZn =0

where {M,, M,, ---, M,} is a set of distinct maximal ideals (renumber-
ing may take place) and a, + @, + +-- + a, = k. It is clear that
n > 1; otherwise M, would be the unique maximal ideal of R. Let

A= MM .- Mint and B = M.

Then, by Lemma 2.7, R= A + B. But since AB=0= BA, R = APB,
which contradicts the fact that R is a block. Hence R contains at
most two maximal ideals, say M, and M,.

(ii) Suppose that M, M, + 0 and M,M, = 0. Then, by Lemma
2.6 MM, = M,M,. But this would imply, as in (i), that B = M & Mz,
for some positive integers «, and «,, which is a contradiction. Thus
if M, #+ M,, then either M,M, = 0 or M,M, = 0.

Let MM, = 0. Then, it is clear that M,M, + 0; otherwise R =
M, @ M,, a contradiction. Let X be a proper ideal of R such that
XZM,. Then R = X + M,, which implies that M,c X + M,M,, whence
M, = X. Similarly if Y is a proper ideal of R such that Y¢ M,
then Y = M,. Therefore, if A is a proper ideal of R such that A = M,
and A # M,, then Ac M,NM, = M,M,. Now, consider the QF-ring
R/A and let X = M,/A and Y = M,/JA. Then X and Y are maximal
ideals in R/A, and Y = #(X). Consequently, Y is a minimal ideal in
R/A and there exists no ideal of R between A and M,. This implies
that A = M,M,, proving (ii).

(iii) Suppose that M, == M, and let M,M, = 0. Since R is QF, M,
is a minimal ideal of R. Then M,N M, = 0; otherwise M,c M, which
implies that M, = M,. But M,N M, = 0 implies R = M, @ M,, which
is not the case, since R is a block. Therefore M, = M,, completing
the proof.

LEMMA 2.9. Let R be a right g-ring. If M is a maximal ideal
of R such that M* =0 and M**+0,n>1, then R s a local duo
ring and M is the unique minimal (right) ideal of R.

Proof. By 2.8, M is the unique maximal ideal of B. Then, since
M +# 0, (M)c M, which implies that M is a large right ideal of R.
Thus, the fact that R is a right ¢-ring implies that every right ideal
containing M is two-sided [6, Th. 2.3]. Hence M is a maximal right
ideal, and therefore is the unique maximal right ideal of R. Then
R is a local ring having M as its Jacobson radical. Now, R is a duo
ring follows by [8, Corollary 1.6].
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Since M" =0 and M 0,0 = M"'cl(M) = soc R. But since
R is indecomposable and injective, Ry is uniform which implies that
M* is the unique minimal (right) ideal of R, completing the proof.

LEMMA 2.10. Let R be a ring with the property that every pro-
per homomorphic image is a right q-ring. If M is a maximal ideal
of R such that M" #+ 0, n > 2, then the only right (or left) ideals of
R between M and M™ are powers of M.

Proof. For every integer ©,2 <1 <mn, let S;= R/M* and N, =
MmM/M¢. If (N;)*=0, then M= M’ On the other hand, if
(N;)i-* # 0, then by 2.9, (N,)"* is a minimal right (left) ideal in S,.
In either case, there exists no right (or left) ideal of R between M
and M4, 2<1< n.

Let A be a (right) ideal of R such that MD>ADM". If A + M,
then we assert that Ac M? For, if Ag M?, then M = A + M?, whence

Mi‘cA+ M 1=2,3, 0, 1.

But this would imply that A = M, a contradiction. This proves our
assertion.

Again, if A = M? then as before AcM?® Proceeding in this
way and assuming that A # M5, 1 <1< n — 2, we get M"*DADM".
But this implies that A = M or A = M". This proves that the
only right (or left) ideals between M and M™ are powers of M.

PropoOSITION 2.11. Let R be a ring with the property that every
proper homomorphic image s a right q-ring. If M is a maximal
ideal of R such that M™ = 0,n > 2, then R is a PIRD with descend-
g chain condition.

Proof. Let S= R/M* and N = M/M*. Then S is a right ¢-ring
and N is a maximal ideal in S satisfying N? = 0. Hence, by Lemma
2.9, N is the only right (left) ideal of S. This implies that M is a
maximal right ideal of R and there exists no right (or left) ideal of
R between M and M>

Now, M" = 0 implies that M is the unique maximal right ideal
of R. Hence R is a local ring having M as its Jacobson radical.
Let x be an element of M such that x ¢ M> Then,

M=xR + M*= Rx + M*.
This implies that
Mi-‘cxR + MY, 1=28,4,+,m.
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And since M™ = 0, M*cxR. Hence M = xR = Rx.

We proceed to show that every principal right ideal of R is of
the form x*R for some positive integer a. Let 0t ycR. If y is
not a unit, then ye M = xR. This implies that y = zy, for some
¥, € R. Again if y, is not a unit, then y, = 2y, for some y,e R, and
hence y = 2*y,. Proceeding in this way, noting that z* = 0, we get
y = z*y, for some positive integer a < n, where ¥, is a unit in R.
Hence,

yR = »*y,R = 2°R ,
as desired. Moreover, since 2R = Rx,
YR = 2°R = Rx~.

Now, let A be a right ideal of R. Since A = 3,...2R, it follows
that A = 2R = Rxf for some positive integer g8 < n. Thus, the
only right (left) ideals of R are

RoxzRD «+ D" 'RD2a2"R =0.

This completes the proof.

The following theorem generalizes Levy’s result for the class of
non-prime rings.

THEOREM 2.12. Let R be a monprime right mnoetherian ring.
Then, every proper homomorphic image of R is a right q-ring if
and only if

(1) R=S®T, where S is semisimple artinian and T is a
PIRD with descending chain condition, or

(2) R/J is artinian and every nonzero ideal of R contains J, or

(38) R is a local ring whose maximal right ideal M satisfies
M? =0, and every proper homomorphic image of R contains at most
one proper right (left) tdeal.

Proof. Suppose that all the proper homomorphic images of R
are right g¢-rings. Then, by Lemma 2.4, R is right artinian. Let

R=ROROD:-- OR:..

where {R;,1 < 4 < k} are the blocks of R.

First assume that & > 1. Then, every homomorphic image of the
ring R; is isomorphic to a proper homomorphic image of E. Then
every homomorphic image of R, is a QF-ring, and by Proposition 2.8,
each R, has a unique maximal ideal M;. If R, is prime, then it is
simple artinian. Suppose that R; is not prime, then by 2.1 and 2.2,
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M = 0 for some positive integer n; > 1. Now, either by 2.9 (in
case n; = 2) or by 2.11, R; is a PIRD with descending chain condi-
tion. Hence R is of type (1).

Next, let k. = 1. Then in view of Prop. 2.8, we have to con-
sider two cases:

Case (i), R contains a unique maximal ideal M. Then, as before,
M™ = 0 for some positive integer n > 1.

If M*® 0, then by 2.11, R is a local PIRD with descending chain
condition, and hence of type (1).

If M* =0, we consider the following subcases:

(a) M is a minimal ideal. Then M is the only proper ideal of
R, and R is of type (2).

(b) M contains a nonzero ideal A. Let S = R/A and N = M/A.
Then N is a maximal ideal in the right g¢-ring S satisfying N2 = 0.
Consequently, N is the only proper right (left) ideal of S. This also
proves that M is a maximal right ideal of R, and hence the unique
maximal right ideal. Therefore R is a local ring. Thus R is of
type (3).

Case (ii), R contains two distinct maximal ideals M, and M, such
that M, M, = 0. Then by Proposition 2.8, M,, M, and M,M, are the
only proper ideals of R. Then it is clear that

J=MnNM,=MM,.

Therefore, R is of type (2).

Conversely, suppose that R is of type (1), (2) or (3). Then it is
obvious that any proper homomorphic image of R is of the form
A @ B, where A is semisimple artinian and B is a PIRD with de-
scending chain condition. Since a PIR with descending chain condi-
tion is QF [1, Th. 4.1], B is a ¢-ring. Then it is clear that A@ B
is a ¢-ring, completing the proof.

Now, we consider the prime case.

THEOREM 2.13. Let R be a prime right moetherian ring with
the property that every proper homomorphic image is a right q-
ring. Then,

(1) every ideal of R 1s a product of prime tdeals, and

(ii) for every momzero prime ideal of R, R/P is a division ring.

Proof. If R is a simple ring, the result holds trivially. So, we
assume that R is not simple. Let P be a nonzero prime ideal of R.
Then, P is a maximal ideal by Lemma 2.1. Also P? =0, since R is
prime. Consider the ring R/P:. By Lemma 2.9, P/P? is the only
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proper right ideal in R/P®. Hence P is a maximal right ideal in R,
proving (ii).

Let M and N be maximal ideals of R. Since R is prime, MN #0
and NM = 0. Hence MN = NM, by Lemma 2.6. This proves that
all maximal ideals of R commute. Now, let A be a nonzero ideal
of R. Then, A contains a product of nonzero prime ideals, by 2.2.
Let {M,, M,, ---, Mg} be a minimal set of prime ideals such that
ADMM, -+« M,. Since each M; is a maximal ideal, we can collect
the powers of M,’s together. Renumbering if necessary, we get
ADMuMg2 -« M2, where @, + &, + +++ + a, = s, and {M,, M,, -+, M,}
is a set of distinct maximal ideals.

If possible, suppose that AZ M,. Then R = A + M, implies

MM oos Mong A+ MMz oo Mon = A

But this contradicts the minimality of the set {M,, M,, ---, M }. Hence
Ac M, Further if Ag M2, then by 2.10 M, = A + M?, which implies

Mfll—-leﬂz cos MZ”CA .

Again, a contradiction, thus, Ac M2. Proceeding in this way, using
Lemma 2.10, we get Ac M, Similarly, Ac M%,1 < ¢ < n. Therefore,

M Mg «oe NME2DADMAME «« o M2n,
But since, »
MiN Mgz e« N Myr = MPMz2 -« Mi»
by Lemma 2.7, we get
A= MaMg oo Man,

Proving (i), and completing the proof.

REMARK. For the nonprime case, Levy obtained only two types
of rings which are analogous to (1) and (3) of Theorem 2.12. It is
not difficult to see that a commutative ring of type (2) is of type (1).
Hence, Theorem 2.12 generalises Levy’s result only for the class of
nonprime rings. On the other hand, Theorem 2.13 shows that a prime
right noetherian ring whose proper homomorphic images are right
g-rings, is a ring which may be called a ‘noncommutative Dedekind
ring’.
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