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ON A THEOREM OF M. IZUMI AND S. IZUMI
SHIVA NARAIN LAL

This paper establishes a theorem on the absolute Norlund

summability of Fourier series which generalizes and unifies

generalizations by the author and by M. and S, Izumi of an
earlier result by McFadden.

Let >, a, be a series with partial sums S, and let p, be a
sequence of real constants with

Pn=z=opv’ p0>0y P_1=p_1:0-
The series >, a, is said to be summable | N, p, | if

Z‘lltn_—t'ﬂ—ll < oo,

where

D to= = 30,5,

We write P(t) = P,,; and in the sequel we assume that p, is
nonnegative, nonincreasing and lim,_.. p, = 0.

2. Let f(t) be a periodic function with period 27 and integrable
(L) in (—m, w). The Fourier series of f(¢) is

—;—ao + S (a, cosnt + b, sinnt) = > A (D)
n=1 n=0

where a, and b, are given by the usual Euler-Fourier formulae. We
write

#(t) = flw + ¢) + flw — ¢) — 2f(x) ,

at) = S, p,cosvt, B(t) =S p,sinvt,
v=0 v=0

a, = S:sﬁ(t)a(t) cosntdt, B, = S:¢(t) B(2) sin nt dt ,
w(@) = sup |fiz + 1) - fl)] .

p and ¢ are mutually conjugate indices in the sense that 1/p+1/¢=1.
Recently M. Izumi and S. Izumi ([2, Th. 3]) proved the following
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THEOREM A. Let {p,}be a positive decreasing and convex sequence
tending to zero and satisfying the condition

i;lpw—z < oo, A<p=<2).

If the modulus of continuity w{0) of f satisfies the conditions

- ()
n
nz=“1 n”"Pn <
and
1 _ c

B AN

then the Fourier series of f is | N, p,| summable.

In this note we prove that the condition (2.1) of the above
theorem is redundant in that the assertion of the theorem holds
- without the condition (2.1) as well. The final result is then embodied
in the following

THEOREM. Let {p, — D,..} be a nonincreasing sequence and

3

(2.2) pintt < C, 1<p=s2.
1

n

0l

If the modulus of comtinuity of the continwous function f(x) satisfies
the condition

2.3) S o(n ) Pyn < C
then the Fourier series of f is | N, p,| summable.

It is known that (see [4, Chapter XII, proof of Lemma 6.6])
the condition (2.2) of the theorem implies that

S P < C.

Also it is easy to show that the above condition implies the condi-
tion (2.2) of the theorem. Since p, is nonnegative and nonincreasing

1 Throughout the paper C denotes a positive constant, not necessarily the same
at each occurrence.
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we have np, < P, and therefore

St < 3 Pint

n=1 n=1
Thus the conditions (2.2) and >)r., PPn~%* < C are equivalent. In
view of this equivalence it follows that the theorem established

here generalises an earlier result of the author [3] as well.

3. The following lemmas are required for the proof of the
theorem.

LEmMMA 1. Under the condition (2.2) of the theorem

S:Inw(t)P(t"l)dt < Co(n-n-

Proof. Remembering that the condition (2.2) of the theorem
implies that

i Pin—? < C,
n=1

we have

IA

S;/nw(t)P(t“‘)dt < 3, ()P

i {w{v=yv=2+ ”}q]llq[i va—z]w

Co(n=)yn'r—,

IA

which is equivalent to the assertion of the lemma.

LEmmA 2. ([4, Chapter XII, Lemma 6.6]). For the function
a(t) to belong to the class LP(p > 1) it 1is mecessary and sufficient
that the condition (2.2) of the theorem 1s satisfied.

LEmMA 3. ([1, Lemmas 5.11, 5.14 and 5.32]). If p, s non-
negative and nonincreasing, then for 0 < a <b =< oo, 0 < t<7 and
any n

(3.1) | S petee| < cPaY

vV=a

3.2 > 2Dy — Do) — op
3.2) > PP =P

and
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(3.3) P(2%) < CP@YY,
as N — oo,

LemmA 4. ([3, Lemma 5.20]). If p, is nonnegative and mnon-
inereasing and if we take

1) = 3, pee™
=0
then for t im (h, T)

[Y(t + 2h) — 7(t)| < Cht'P(h™) .

LeEMMA 5. ([1, see proof of Lemma 5.16]). If p, is nonnegative
and monincreasing, lim,..p, =0 and {p, — D, .} ts nonincreasing,
then

Pl_ S ¢(t){§p cos (n — v)t + 2 pnp cos (1 — v)t}dt’
i et PQ}]S |8(t) | Pt)t-dt .

LEmMA 6. ([2]). Under the conditions (2.2) and (2.3) of the
theorem

4. Prooy of the theorem. For the Fourier series
Sy(x) — flx) = —S ¢(t)( + Z cos kt)dt ,

so that from (1.1) and Abel’s transformation we have

Tty — tul
= |[so{= (& o l;:’:z)cos (v + Dt}
= 55— | 1180 5, @.P. — .P) cos (n — )t t|
= ‘ Pi_j;}s(t)(i‘, D, €os (n — v)t)dt
1

@.1) P Pn_j (t)( S »,P, cos (n — )t + Z »,P, cos (n — v)t)dtl
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= S:¢(t)a(t) cos nt dti + S:¢(t) A(t) sin nt dt
1/n =
Lo o

Dn _
+ PP,HH $(t) 3, P, cos (n — v)t dt|

1 _ oo, B
+ | [1 6015 pcos (0 — 0t + 5 BePocos (n — wptfar |
25.!962”] , say

From (4.1) and the definition of the absolute Norlund summability
it is clear that for establishing the theorem we have to prove that

(4.2) Silep| < e, (r=1,2---,5).
Now

Slep1=5 3 el
(4.3) ég( = 1+1|“|) ( = F )

q 1/q

IA

C S 21rp-3(2%) f‘, ’ sin

=1 n=1

22+1

making use of (3.3) of Lemma 3.

Since the function ¢(¢) is bounded in [0, 7] and by Lemma 2,
under the condition (2.2) of the theorem, a(t)e L?, it follows that
s(t)a(tye L*. Also, it is known [1] that the Fourier series of
#(t + h)a(t + h) — ¢(t — R)a(t — h) is —4/r >, «, sin nt sin nh, and
therefore by Hausdorff-Young inequality we get

oo ?lq
(g‘i |, sin nh l")
< c§:|¢(t + Walt + k) — ¢t — ha(t — h) [°dt
= (7o + 1) = ot = WP att + )t
Cg"m(t F ) —alt — k)P4t — R) Pde
(4.4)
< Cw”(h)g la(t + h)? dt + CS la(t + 2h) — a(t) |7 | $(8) |7dt

< Cw(h) + CS-,,“’”(‘ t]) | alt + 2h) PPt
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+ ¢ w1 lat) pat + |t + 20) - att) Por)a
< Ca*(h) + Ch”P”(h“‘)gha)?’(t)t-"dt
using Lemma 4 and remembering that by virtue of Lemma 2, a(t) € L*.

Taking h = 7/2**' in the estimate (4.4) and then substituting it
in (4.3) we have

Ms

lx(l)
| n

¢ 2@ w(f) + 2@ eora]”

> + C%Z“‘”’”"”(Sz __@_(tld )

7/21+1 tp

A
i

8

IA

cs ’“’P—‘(Z‘)w(

=1

21 +1
4.5 <C i‘, ( )P;lvr”q + ngww-”{ql + Sl ) @A) dt}”p

i/z tz ?

II

< C C Z 22((1p—1) Z ( sz: wp(,n—l)np—2>1/p

m=1 \g=gm—14

I

I

< C -+ C Z 2"0(1—(1[11))(0(2—’”&) Z 22((1117)—-1)
m=1 i=m

<C+Clom)n"<C,

by virtue of the condition (2.3) of the theorem and Lemma 6.
Similarly, we can prove that

(4.6) S| < o
Also,
EWM§C§P:V%mHWW
(4.7) n=2 'n:z 0
= CY o )Prn < C,

by the application of (8.1) of Lemma 3, Lemma 1 and the condition
(2.3) of the theorem.
For the proof of

(4.8) > la| < C,

see the proof of Y7, K, < « in [2]. Finally, by Lemma 5 we have
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< - pn < n(pn p'rH—l) ]Sk P —~1\4—1
ZCEIPnPn_1+Cn§=‘,1 St + PP_l () P(t)t-dt

= 021 PpP + anzl n(l‘);’P L

> PnPn—-l 2 o )P

+c3 ___.__(7"13 5 Tﬂ) S 0w — )P

o —1 -1 Py
C+ C X w@)Py ;;PP“

—1 Pv —1 - n(pn pn-H)
, OV P nZv————PP =

IA

Ms

+C

<
I

M

<C+CSww ) =C,

v

Il
—

by the application of the estimate (3.2) of Lemma 3 and Lemma 6.
Combining the estimates in (4.5) — (4.9) we find that (4.2) is
established. This completes the proof of the theorem.

I am thankful to the referee for his kind advice.
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