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CELL-LIKE MAPPINGS, II

R. C. LACHER

This paper is an addendum to the previous paper, Cell-
like Mappings, I. Therein, the category of cell-like maps
between ENR's was established, homotopy-theoretic charac-
terizations of cell-like maps were given, and the image of a
cell-like map on an ENR was studied. In the present paper,
three related topics are considered: the relationship between
(sometimes global) properties of a map and local properties of
its mapping cylinder; limits of cell-like maps; and preserva-
tion of tameness properties under cell-like maps. Loose de-
scriptions of some of the results follow.

If an onto map between metric spaces has its image locally
collared in its mapping cylinder, then the two spaces are stably
homeomorphic. If a proper, onto map between ENR's has its
mapping cylinder locally A>connβcted mod its image for all k,
then the map is cell-like (hence a proper homotopy equivalence).

The limit of a sequence of cell-like maps between ENR's
is cell-like. Likewise, if a proper map between ENR's is
"concordantly" approximated by cell-like maps, it is cell-like.

The property of having ULC1 complements (for compact
sets in ENR's) is preserved under monotone maps.

In an appendix, the nonexistence of two types of isolated
singularities is proved.

Since this paper is a continuation of [17], none of the definitions
from [17] will be restated. All conventions, notation, etc., from [17]
carry over. When referencing [17], we will use (I. i. j) to mean
"result i.j. of [17]."

As usual, R is the real line, I = [0,1], Rn is euclidean ^-space,
Bn is the unit ball in Rn, and Sn = dBn+1.

1* Locally trivial mapping cylinders* If/: X —> Y is a map, the
mapping cylinder Zf of / is the quotient space of (X x I) U (Y x 2)
obtained by identifying 0,1) with (f(x),2) for each xeX. X is
identified with the image of X x 0 in Zf and Y is identified with the
image of Y x 2 in Zf. We have the natural projection p:Zf-+Y (a
cell-like map when / is proper) and the map q: X x I—>Zf, the quoti-
ent map restricted to X x I. (q is cell-like if and only if / is cell-
like.)

Local collars. Let 7 be a closed subset of the space Z, y e Y.
A local collar of Y in Z at y is an embedding j: V x [0, 1) —> Z such
that j(V x [0, 1)) is open in Z and y(v, 0) = v for all veV, where V
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is some neighborhood of y in Y. (See [4].)
We say Y is locally collared in Z if it is locally collared in Z at

each point of Y.

The following theorem serves to illustrate the power of certain
types of hypotheses concerning the way the range of a map is at-
tached to its mapping cylinder.

THEOREM 1.1. Let X and Y be metric spaces, f: X—> Y an onto
map. If Y is locally collared in Zf (e.g., if Zf is a topological
manifold with boundary X{J Y) then X x R F& Y X R.

Proof. Y is closed in Zf, so by [4] Y is collared in Zf. That
is, there is an embedding γ of Y x [0,1) onto an open subset of Zf

such that 7(2/, 0) = y for all yeY. Note that, by the definition of
Zf, X is also collared in Zf. In fact, if we let λ = q\X x [0,1), then
X(x, 0) = x for all xeX and X(X x[0,1)) = Zf - Y.

SUBLEMMA. For any 0 < r] < 1, there is a homeomorphism h:
Zf ?& Zf such that

( 1 ) h I (X U Y) = identity, and
( 2 ) hy(Yx[0,ΐ))z>Y\JX(Xx[η,l)).

Proof of sublemma. Since X is paracompact, we can find open
covers {Ua} and {Va} of X such that Vacz Ua, {Ua} being locally finite,
and such that there exists a number 0 < φa < 1 with

X(x,t)ey(Yx [0,1))

for all x e Va and φa rg t < 1. We extend φa to a continuous function
φa: X—> [0, φa] which is zero outside Ua. Now let

Φ(x) = max φa(x) .

Clearly φ is continuous and maps X into [0, 1). Moreover,

X(x,t)eΎ(Yx [0,1))

for all x e X and φ(x) ̂  t < 1.

We can easily find a homeomorphism # of X x [0,1] onto itself
such that

g IX x 0 = identity,

flr|a? x [(0(α;) + 1)/2,1] = identity, and

g(x x [φ(x), 1]) = x x [η, 1]
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hold for all xeX. (g is defined linearly on each interval x x [0,57],
x x [η, φ(x)], x x [φ(x), (φ(x) + l)/2], and x x [(0(α?) + l)/2, 1]. Con-
tinuity of φ implies g is a homeomorphism.) Define h by

fλ^λ1 on £, - Y
h = ]

(identity on Y

This completes the proof of the sublemma.

The completion of the proof of (1.1) uses a typical "monotone
union" argument to show that (Zf — X, 7 ) ^ ( 7 x (0,1], Γ x 1) and
hence that X x (0,1) e* Zf - X - Γ ^ 7 x ( 0 , 1). (See [3] or [15].)

Locally shrinkable maps. Let f: X—*Y be an onto map. We
say / is locally shrinkable (by pseudo-isotopies) if and only if, for
each y e Y, there exist a neighborhood V of y in Y and a proper
homotopy h: f~ι(V) x I—>/~1(F) such that ht is an onto homeomor-
phism for 0 ^ t < 1 and {Kι(x) \x e f~\V)} = {f~ι(y)\ye V}.

COROLLARY 1.2. Let X and Y be locally compact metric spaces,
f: X—> Y a proper, onto map. If f is locally shrinkable, then X x
R^Y x R.

Proof. For yeY, let V and h be given as in the definition of
locally shrinkable, U = f~ι{V). The conditions imply that qH~ι: U x
I—> Zf is an embedding, where H(x, t) = h(x, t) x t. (See [10].) Also,
the image of U x / under gίf-1 is p~\V), a neighborhood of y in
Z/. Finally, note that hj~γ\ V —* U is a homeomorphism of V onto
U, so 7 = qH~ι(hJ~ι x T): F x I—*Zf is a local collar at T/, where
T(ί) = 1 - t. Hence, Γ is locally collared in Zf.

2. Local connectivity for maps*

VV-properties. Let A be a subset of the space X, and let J^
be a homotopy invariant covariant functor from a category contain-
ing inclusion maps of open sets (respectively based open sets) of X
to the category of based sets. We say that Ad X has property
UV(^) if and only if, for any neighborhood U of A in X, there
exists a neighborhood V of A in U such that the inclusion-induced
m.ap^(V)—>^~(U) (respectively ^{V, v)—>^{U, v)) is zero (for
all veV). Property UV(^~) is a topological property of A in the
following sense:

THEOREM 2.1. Let A be a compact set in the ANR X. If there
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exists an embedding f: A —> Y, where Y is an ANR and f(A) c Y has
property UV(^), then AaX has property UV(^). (See the argu-
ment that (a) ==> (d) in [16].)

Relative local properties. Let Z be a space, Y a closed subset of
Z, and let j^~ be a homotopy invariant covariant functor from a
category containing inclusion maps of open subsets of Z to the cate-
gory of based sets. For y e Y, we say Z is LC(J^~) mod Y at y if
and only if, for any neighborhood U of y in iΓ, there is a neighbor-
hood V of y in Z7 such that the inclusion-induced map ^"( V — Y) —•
^~(U - Y) is zero. If Z is LC(^^) mod Γ for all j / e Γ , we say
that Z is LC{^~) mod Γ.

Local properties of maps. Let /: X—> F b e a map. We say that
/ is LC(^) if and only if Zf is LC(&~) mod Γ.

Standard examples. There are special notations for UV(^) and
for certain ^ C When ^~ = Hk( — ;G) (reduced singular

homology with coefficients in the group G) we get k — uv(G) and
k - lc(G), respectively. When j ^ - Ho(-; G) 0 . . . © Hk(-; G), we
get uvk(G) and lck{G), respectively. When ^~ = [Sft, — ] (based homo-
topy classes of maps Sk—+ —) we get A — UV and & — LC, respec-
tively. And when &~ = [S°, -] φ ••• 0 [Sfc, - ] , we get i7F* and
LCfc, respectively.

For an appropriate space K, ^~ — [K, — ] also yields UV°° and
LC°°, respectively. When we are dealing with ANR's, K = disjoint
union of all homotopy types of ANR's, would do. When dealing with
separable metric spaces, K = disjoint union of all separable metpic
spaces works. And other examples can be worked up.

THEOREM 2.2. Let X and Y be locally compact metric spaces,
let f: X—+Y be a proper, onto map, and let j^~ be a homotopy in-
variant covariant functor from a category containing inclusion maps
of open sets of X and X x I to the category of based sets. Then the
following are equivalent:

(a) Each inclusion f~ι{y) c X has property UV{J^), y e Y.
(b) / is

REMARKS. Theorem 2.2 relates the (recently defined) C7F-properties
to the (classical) local connectivity properties. For results on the latter,
see [11], [22] and [26], among others. The results from [22] can be
translated, using (2.2) above, into an "Hurewicz" theorem: Let/: X—> Y
be a proper, onto map between locally compact ANR's; if each f~ι{y) has
property UVk then each has uvk(G) for all G; and, if each f~\y) has UV1
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and uvk(Z), where Z = integers, then each has UVk. (Compare with
Theorems 4.1 and 4.2 of [18].) Theorems 2 and 3 of [11] can be trans-
lated, again using (2.2), to yield (1.3.1). (See the remark on page 617.)

Proof. First assume that each inclusion f~ι(y) c X has
Let yeY, and suppose that U is a given neighborhood of y in Zf.
Find a neighborhood TJ^ of y in F and a number t, 0 < t < 1, such
that p-^ E7i) Π q(X x (ί, 1]) is contained in U. Then, we can find a
neighborhood VΊ of ?/ in t/Ί such that the inclusion-induced map

is zero. Define V = p-^V^Γi q(X x (t,l]). Since ά^ is homotopy
invariant, the inclusion-induced

map J H Z - T O x («, l ) ) - ^ / - 1 ^ ) x (*, 1))

is zero. But the restriction of q to /-1(ί7i) x (ί, 1) takes the pair

x (ί, 1),/^(Vi) x (ί,l))

homeomorphically into (£/ — F, F — F), with /"'(FO x (ί, 1) mapping
onto V - Y. Thus it is clear that j ^ ( V - F) -> ̂ *(Σ7 - F) is zero,
so Zf is LCCJH mod F at y.

Now suppose Z/ is LC{j^~) mod F. Let yeY, and let t/Ί be a
neighborhood of 7/ in F, £7 = p""1(ϊ71). By assumption, there is a
neighborhood V; of 7/ in F such that J ^ ( F - F) — .i^(Z7- F) is
zero, where V — p^iVΊ) Π q(X x (ί, 1]) for some t < 1. Let Z70 =
/^(C/O and Fo - /"'(Vi). Then g maps (Uo x [0, 1), Fo x (ί, 1)) home-
omorphically onto (U - F, F - F), so it is clear that ̂ "(F 0 )-> t ^(Z7 0 )
is zero. Since f~ι{y) has arbitrarily small neighborhood pairs of the
form (f/o, Fo), we see that f~ι{y)cX has property

REMARK. If one were to desire a definition of "locally homotopic-
ally collared" pertaining to YaZ, "LC°° mod 7 " might be a good
choice, at least when F is locally contractible. This interpretation,
combined with known facts, yields some interesting analogues (as
well as conjectures) about cell-like maps and locally shrinkable maps.

COROLLARY 2.3. Let X and Y be locally compact metric spaces,
f: X-+ Y a proper, onto map. If f is LCk then

f*:πg(X,x)->πq(Y,f{x))

is an isomorphism for 0 <£ q ^ k (and an epimorphism for q = k + 1,
provided Y is an ANR).
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Proof. Apply (1.3.1). If Y is an ANR, use the technique in the
proof of (1.2.4) to see that /* is epic when q = k + 1.

COROLLARY 2.4. Let X and Y be ENR's, /: X—> Y a proper, onto
map. f is cell-like if and only if it is LC°°.

3* Limits of cell-like maps* The following was obtained inde-
pendently by R. Finney. (See [12].)

THEOREM 3.1. Let X and Y be ENR's and let f: X-* Y be a
proper, onto map. If there exists a sequence of proper, cell-like maps
of X onto Y which converges to f (in the compact-open topology) then
f is cell-like.

Before proving (3.1), we need the following lemma on monotone
maps. (A map f:X—> Y is monotone if f"\y) is compact and con-
nected for each yeY.)

LEMMA 3.2. Let X and Y be locally compact metric spaces, f a
proper map of X onto Y. Let {fn} be a sequence of proper monotone
maps of X onto Y which converges to f. Suppose that y e F c V a U,
where V and U are open sets in Y, V is connected, and U has
compact closure. Then there exists an integer m such that

for n ^ m.

Proof. Suppose that f~\y) φf«\V) for infinitely many n. Then,
there is an infinite sequence {x,), with Xief~\y) — f~}(V). Since
f~ι{y) is compact, we may assume that {Xi} converges to some x e
f~\y). Thus f%i{Xi) converges to f(x) = y, so almost all of fn.(Xi) must
lie in V, contrary to the choice of Xi$fn}(V). Hence there is an
integer k such that f~ι(y)afnl(V) for n^>k.

Now suppose that f~\ V) <£ f~ι{ U) for infinitely many n. Since
fn](V) ΓΊ f-\U) Φ 0 for all n ^ k, and each fcι(V) is compact and
connected, we can find an infinite sequence {#;}, with Zief^(V) Π B,
where B = /^(U) Π (X — f~ι{U)). B is compact, so we may assume
that {Zi} coverges to some zeB. Since {/»/«*)} converges to f(z), and
ZiGfZi(V), we see that f(z)e VaU, contradicting the fact that z$
f~\U). We conclude that there is an integer m ^ k such that

for n > m.
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Proof of (3.1). We want to show that each inclusion f~ι{y) c X
has property UV°°. The result will then follow from (1.1.1). Let
U, V, and W be connected neighborhoods of yeY, chosen so that
Wa 7 c 7 c U and Ό is compact. Let {fn} be a sequence of proper,
cell-like maps which converges to /. Choose W so that W is con-
tractible in V. By (3.2), we can find an integer m such that

f~ι(v) c fΛ W) c fΛ V) c f~\ U) .

By (1.1.2), f~\W) is contractible in f~\V). Since f~ι(y) has arbitr-
arily small neighborhoods of the form f~ι(U), f~ι(y) has property
UV~.

THEOREM 3.3. Let f: X—> Y be an onto map between ENR's.
Suppose / x 0 extends to a proper map f: X x [0, 1) —» Y x [0, 1) such
that f'\X x (0, 1) is a cell-like map of X x (0, 1) onto Y x (0, 1).
Then f is cell-like.

Proof. When a: X—> (0, 1) is continuous, let ^α be the map

φa(x, t) = q(x, 1 - - * — \ xeX,0^t£ a{x) .
\ a(x) J

Let ga = /Vα1- Then #α is a cell-like map of Zf onto a subset of
Y x [0,1). (#α is a homeomorphism on Y and is / ' "twisted" on
x x [0, 1).) Moreover, ga(y) = y x 0, and &,(£/ - Γ) c Γ x (0, 1).

Let a be chosen so that

F x [ 0 , | ] c U /'(» x [0, a(x)]) = ga{Zf) .
xeX

Then Y is collared in ga(Zf). Also, #α is cell-like, g^ι{ga{Zf) — F) =
Z/ — F, and grα | Y is a homeomorphism, so it follows as in the proof
of (4.2) below that Zf is LC°° mod Γ. By (2.4), / is cell-like.

4* Preservation of tameness properties* The tameness proper-
ties referred to involve the LCk properties. We think of the compact
set A in the ANR X as being "locally Λ -tame" in X whenever X is
LCk mod A; clearly, this is a topological property of the pair (X, A).

It should be noted that, when A is closed in the compact ANR
X, X is LCk mod A if and only if X - A is ULC& (uniformly locally
A -connected).

THEOREM 4.1. Let X and Y be locally compact ANR's, and let
A and B be compact sets in X and Y, respectively. Suppose that
f: X—* Y is a proper, onto UVk-map such that f~ι{B) — A and f\ A
is one-to-one. If X is LCk+ι mod A then Y is LCk+1 mod B.
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THEOREM 4.2. Let X, Y, A, B, and f be as in the hypothesis of
Theorem 4.1. // Y is LCk mod B then X is LCk mod A.

Proof of (4.1.). We will show that Y is LCk+1 mod B at each point
of B. Let U be a neighborhood of y e B in Y, and let V be a neigh-
borhood of /̂ in Z7 such that any mapS f f — > / - 1 ( F — B) extends to a
m a p S g + 1 - > / - 1 ( ί 7 - B), 0 ^ ? ^ k + 1, using the fact X is LC f c + 1

mod A at f~ι{x).
Since / induces epimorphisms on πq when restricted to any inverse

open set, it follows that any map Sq —• (V — B) extends to a map Bq+1 —•
(U- B), 0 ^ <? ̂  fc + 1, and Γ is LC f c + 1 mod B at j / .

Proof of (4.2.). We want to show that X is LC*modii at each
point of A. Let U be a neighborhood of x e A in X. Since f~ιf{x) =
a?, there is a neighborhood T7 of f(x) in F such that f"1(W)a U.
Now, F is LCk mod B at /(a?), so there is a neighborhood TF' of f(x)
in Γ such that any map Sq -+ (W — B) extends to a map Bq+1 —> (TΓ —
B), 0 ^ q < k. Let F = f~\W). Again, since / induces isomor-
phisms on τrg when restricted to any inverse open set in X — A, we
see that any map Sq —> (V — A) extends to a map Bq+1 —• (U — A), 0 ^
q ^ ky and X is LC* mod A at a?.

COROLLARY 4.3. Le£ Afm αwd Nn be unbounded PL manifolds
with m ^ 5 α^d n ^ 5. Further, let Pv and Qq be compact polyhedra
topologically embedded in M and N, respectively, m — p ^ 3, n — #2^3.
Finally, let f:M—+N be a proper, onto monotone map such that
f~ι(Q) = P and f\P is one-to-one.

( 1 ) If P is tame in M then Q is tame in N.
(2 ) / / each f~\y) has property 1— UV and Q is tame in N then

P is tame in M.

Proof. When n - p ^ 3, I f is LCι mod P if and only if P is
tame in M. The difficult part of this statement is due to Bryant and
Seebeck [5].

5* Maps on Euclidean space* In [8], Cohen pointed out that,
if f:Rz—*Rz is the example described by Bing in [2] of a proper,
monotone noncell-like map, there is no proper, onto map/' : R*—> R4

whose nondegenerate point-inverses are the same as those of / x 0.
A higher-dimensional analogue of this result can be obtained.

THEOREM 5.1. Let f: Rn - » R n be a proper, onto UV'-map. If
there exists a proper, onto mapf':Rn+1—*Rn+1 whose nondegenerate
point-inverses are the same as those offx 0, then j is cell-like (and
hence cellular if n Φ 4).
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Thus, for example, / could not be any of the generalizations of
Bing's example described in § 6 of [18], with k ^ 2 and I ̂  2.

Proof. Note that the condition implies that Zf embeds in Rn+ί

with the crinkled end being f'(Rn x 0). Thus Zf is lck relf(Rn) for
all k, by Theorem II. 5. 35 [26], and hence / is C/F^trivial and uvk-
trivial for all k by Theorem 2.2. Using the "Hurewicz" theorem
mentioned in the remark following (2.2), we see that / is UVk-trivial
for all k, hence cell-like.

For n ^ 3, it is not necessary to assume that / is ίJF^trivial in
the above proposition. (See [23] and Theorem 2 of [19].)

THEOREM 5.2. (Lacher and Wright.) Let f: Rn —> Rn he a proper,
onto map, n ^ 3. If there exists a proper, onto map / ' : Rn+ί —• Rn+1

whose nondegenerate point-inverses are the same as those of f x 0, then
f is shrinkable by a pseudo-isotopy.

THEOREM 5.3. Let f:Rn+ι-*Rn+ι be a proper, onto map,

Sf = {xeR^lf-'fix) Φx) .

If SfdRn x 0, f(Rn x θ ) ^ Rn, and f(Sf) is a polyhedron of dimension
^ n — 3, tame in both f(Rn x 0) and Rn+1, then f is cell-like.

Proof. By Theorem 6.1 of [7], f{Rn) is locally flat in Rn+1. As-
suming n 2> 3, and applying [6], we obtain a homeomorphism h of
Rn+1 onto itself such that hf(Rn) = Rn. By Theorem 3.3, hf\Rn is
cell-like, hence f\Rn is cell-like. Since SfdRn, f is cell-like.

REMARKS. 1. D. R. McMillan has recently proved the following:
If /: Rn+1 —> Rn+1 is a proper, onto map, and S(f) c Rn x 0, then each
f~\y) has property uv°°(Z).

2. The results of this section should be compared with [28].

Appendix: The nonexistence of two types of isolated singulari-
ties* Let M be a manifold (without boundary), Y a Hausdorff space,
and /: M-^Y a proper, onto map. Define two "singular sets" as
follows:

Cf = {y e YI f~ι(y) is not cellular in M) ,

and
Ef = {y e YIY is not locally euclidean at y] .

We show below that Cf — Ef has no isolated points (assuming dim
M^5, f is strongly acyclic, and M is simply connected), and that
Ef — Cf has no isolated points (assuming d i m M ^ 4,5). (Note: Ef is
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a closed subset of Y. Cf denotes the closure of Cf in Y.)

Al. Noncellular points of a strongly acyclic map. A map/: X—>
Y is strongly acyclic (cf. [20]) if and only if each inclusion f~\y) c
X,yeY, has property UV(^), where j ^ " = # * ( - ; Z). (I.e., J ^ is
reduced singular homology with integral coefficients.) According to
Corollary 3.3 of [18], if X is an ENR then a proper map /: X—> Y is
strongly acyclic if and only if H*(f-\y)) = 0 for all yeY. (ff* is
reduced Cech cohomology.) McMillan [20] and [21] and Wright [27]
have studied strongly acyclic maps on 3-manifolds. In particular,
Wright has shown that if /: M3 —> Nz is a proper, onto, strongly
acyclic map between (open or closed) 3-manifolds, then Cf is a closed,
locally finite set in N, and, hence, if M = S3 or iϋ3, Cf = 0 . Theorem
1 below could be considered a weak analogue of this last statement.

We recall two methods of producing strongly acyclic maps.

EXAMPLE 1. Let i ί be a topological fc-manifold which is a homo-
logy fc-sphere, and let A be the closure of the complement of a locally
flat λ -cell in H. By taking the quotient map cross the identity map,
we obtain a strongly acyclic map H x Sn~k —+ Sk x Sn~k between n-
manifolds with dim Cf = n — k, k ^ 3. In particular, one can have
Cf a finite set when the domain is not simply connected.

EXAMPLE 2. Let /: Rn —> Rn be a proper, onto map, and let Sf =
{x e Rn I f~ιf{x) Φ x). If /(Si/) is compact and O-dimensional, then / is
strongly acyclic. (See [25].)

Finally, we should point out that there is a strongly acyclic map
of Sn onto itself, n ^ 4, with dimCf = 1. (See [21].)

THEOREM 1. Let M and N be (open or closed) topological n-
manifolds, n^5, and let f: M—> N be a proper, onto, strongly acyclic
map. If M is simply connected then Cf has no isolated points.

Proof. Suppose that y0 is a point of N which has a neighborhood
V such that f~\y) is cellular in M for all y Φ y0 in V. Since

H'f-^yo) = 0,

f^iVo) has a PL neighborhood, according to Theorem 2 of [13]. We
assume, therefore, that V is an open w-cell and that f~ι{V) — U
is a PL manifold.

Let W be a closed neighborhood of f~\yQ) in Z7, chosen to be a
compact PL manifold. Let Wo = W - f-ι(y*), Uo = U - f~ι{y*), and
VQ — V — {y0}. Since f\ Uo: Uo-^ Vo is cellular, we see that Wo is 1-
connected at infinity. Applying Theorem 3.10 of [24], we can replace
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W by another compact manifold W whose boundary is connected and
simply connected. Applying Van-Kampen's Theorem, we see that
0 = π^M- W'YπAW'), so W is simply connected. Therefore f~\y,)
has property UVK

It follows from Theorem 4.2 of [18] that f~\yQ) has property
UV°° and hence is cellular in M.

A2. Noneuclidean points of a cellular map. Let f:Sn—>Y be
an onto map whose only nondegenerate point-inverse is A. Then A
is cellular if and only if Y is a manifold. I.e., Cf = 0 if and only
if Ef = 0 . Such a statement is not true about maps in general, but
Theorem 2 below is a partial converse to Theorem 1 in this sense.

THEOREM 2. Let M be a topological n-manifold (open or closed),
n Φ 4,5, and let Y be a Hausdorff space. If f: M-+ Y is a proper,
cellular map, then Ef has no isolated points.

Proof. Let yQ e Y, and suppose that y0 has a neighborhood V such
that V — {y0} is an open topological manifold. Then dim(F— {y0}) =
n, so V is an ENR by Corollary 1.3.3.

Let W = f~\V— {τ/0}) Since f\W is a proper homotopy equi-
valence when restricted to any inverse open set (see Theorem I. 1.2).
and since f~ι(yQ) is cellular in M, it is clear that y0 has a neighbor-
hood V a V such that the inclusion-induced map H\V — {y0}; Z2)—>
H\V — {y0}; Z2) is zero. It follows from the Kirby-Siebenmann
triangulation theorem [14] that y0 has a neighborhood V" c V such
that V" — {yQ} has a PL structure. (See the remark following Theorem
2 of [13]).

We may as well assume, then, that V — {y0} has a PL structure.
Let ε be the end of V determined by y0. Then {f~\ U) \ U e ε} de-
termines an end f~\έ) of W, the same one determined by f"\y^.
Moreover, /-1(ε) is (n — 2)-connected, so ε is (n — 2)-connected. It
follows immediately from [24] that, in case n ^ 6, ε has a collar
neighborhood (which must be S^1 x [0, <χ>) by [9]). Thus V is a
topological (in fact, PL) manifold, and yQ g Ef.

If n ^ 3, /1W is properly homotopic to a homeomorphism: W ̂
V — {y^, so the result is easy in that case. (See [1].)
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